
Implementation of traffic splitting using meter table in software-defined networking
Nattapong Kitsuwan, Eiji Oki

Department of Computer and Network Engineering, The University of Electro-Communications, Tokyo, Japan
E-mail: kitsuwan@uec.ac.jp

Published in The Journal of Engineering; Received on 20th July 2016; Accepted on 14th September 2016

Abstract: An implementation technique for traffic splitting using a meter table of a standard OpenFlow in a software-defined network is pro-
posed. The proposed technique uses different differentiated services code point (DSCP) numbers, which are generally used to classify network
traffic for quality of service (QoS) levels, in a packet header to decide an output port for a corresponding route. The meter table is generally
designed for a QoS purpose. The OpenFlow standard provides two types of meter band, ‘drop’ and ‘dscp_remark’. The proposed technique
adopts the ‘dscp_remark’ type for a splitting traffic purpose, instead of the QoS purpose. The DSCP number of the packet is modified when the
packet rate exceeds a pre-defined traffic rate. Packets with different DSCP numbers are sent out to the neighbour switches from their corre-
sponding output ports. The original DSCP number is returned to the packets when they are sending out to the neighbour switches, so that the
QoS is not affected.
1 Introduction

Efficient routing in Internet protocol (IP) networks increases
network throughput and resource utilisation. Consequently, add-
itional traffic can be inserted into the network. For an example,
an approach that minimises the maximum link utilisation rate,
called a congestion ratio, increases the admissible traffic, which
enhances the routing performance. In this approach, the traffic is
split and injected into multiple routes to reduce the congestion ratio.

To avoid network congestion, smart open shortest path first
(S-OSPF), which is an extended version of the OSPF routing proto-
col [1], was presented. In S-OSPF, the traffic is split only at a source
edge node. The packets are distributed to the neighbour nodes with
the distribution ratios specified by the network controller. At the
neighbour nodes, the packets are forwarded to the destination
node based on the regular OSPF routing.

Software-defined networking (SDN) enables all network elements
to be controlled by a central intelligent control and management plat-
form, where an improved network programmability allows dynamic
and flexible control of the routing elements. OpenFlow is a protocol
that enables the control plane of the controller to interact with the data
plane of the switches in the SDN network, so that the network can be
adjusted. The forwarding instructions are based on flow entries,
which are defined by a set of specific parameters.

Traffic splitting in the SDN network can be implemented using a
group table, which is available from OpenFlow 1.1. The group table
is able to represent additional methods of forwarding. With option
group type ‘select’, each packet is selected to be forwarded based on
a selection algorithm, which is implemented in each switch. It is ne-
cessary to implement the selection algorithm on every switch in the
network. The concept using the group table was implemented in [2].
In this implementation, the traffic is split into the primary and
backup paths based on splitting policy, once traffic rate exceeds
the pre-defined traffic rate.

Another implementation approach is splitting the traffic into mul-
tiple output ports based on a period of time [3]. The controller sends
a flow configuration to adjust an output port of a flow entry every
pre-assigned period of time. The flow messages from the controller
are torrential in the network control plane. In [4], it takes 14 ms to
send flow configurations from the controller until an OpenFlow
switch finishes a flow installation. Accordingly, the frequency of
sending flow configurations to modify the output port is restricted.

This paper proposes an implementation technique for traffic split-
ting by adopting a meter table, which is available from OpenFlow
This is an open access article published by the IET under the Creative
Attribution -NonCommercial License (http://creativecommons.org/licen
3.0/)
1.3 [5]. It remarks packets with different differentiated services
code point (DSCP) numbers and splits the traffic at a node based
on the DSCP number. DSCP is a 6 bit field in the IP header,
which identifies a level of service of a packet in the network. The
meter table consists of several meter entries. Each meter entry
includes a meter band, which specifies the rate of the band and
the way to process the packet. The OpenFlow standard provides
two types of meter bands, which are ‘drop’ and dscp_remark’.
The option ‘drop’ is used to limit a packet rate. The meter band
drops packets if the rate passing through the meter exceeds a pre-
defined rate. The option ‘dscp_remark’ is used to define a simple
DS (DiffServ) policer, as a quality of service (QoS). For example,
DSCP = 0 and DSCP = 46 are used for best effort and high priority
expedited forwarding, respectively. It is performed by modifying
the DSCP field in the IP header of the packets whose rate
exceeds the pre-defined rate. The proposed technique adopts the
‘dscp_remark’ option. A modification of DSCP number is used to
remark the packets according to the pre-defined rate before the
packets are sent out to desired output ports. Note that the output
port returns the original DSCP number to the packets before
sending them to a neighbour switch, so that the QoS of the traffic
will not be changed.

2 OpenFlow meter table

The meter table consists of meter entries, defining per-flow meters.
A meter measures an incoming packet rate and performs QoS
operations including rate-limiting and DiffServ. A meter entry
includes a meter band as one of the main elements. The meter
band specifies a rate of the band and the way to process the
packet. It includes a band type, a rate, and type specific argument.
The band type defines how to process packets. The rate defines the
lowest rate at which the band can apply. The type specific argument
specifies the modified DSCP number. It is required if the band type
is ‘dscp_remark’.

3 Proposed implementation technique

The implementation technique adopts the ‘dscp_remark’ type of
meter band from the standard OpenFlow to measure and to modify
the DSCP number. Packets with different DSCP numbers are for-
warded to desired output ports of the switch. The DSCP number is
used as a label to divide the incoming packets into splits in the pro-
posed technique, but it is unlikely used for the QoS purpose as in the
Commons
ses/by-nc/

J Eng, 2017, Vol. 2017, Iss. 12, pp. 662–665
doi: 10.1049/joe.2016.0217

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


Fig. 1 General concept of traffic splitting using meter table
standard OpenFlow. Let n be a total number of splits. Let oi be an
output port for the ith split traffic, where 1 ≤ i ≤ n. Let pi be a
DSCP number for the ith split traffic. Let ri be a traffic rate of the
ith split traffic. Let rT be a total rate of incoming traffic,
rT = ∑n

1 ri. Packets with pi are sent to port oi. The concept of the
proposed technique is shown in Fig. 1. The incoming packets with
traffic rate rT and DSCP = p1 arrive at the switch. Meter 1 measures
rT and divides the traffic into DSCP = p1 with rate r1 and DSCP = p2
with the rest of rate. The traffic with DSCP = p2 is measured by meter
2 and is divided into DSCP = p2 with rate r2 and DSCP = p3 with the
rest of rate. The process is repeated until the given number of splits is
reached. After that, the packets with DSCP = pi are sent out at output
port oi. The original DSCP numbers of the packets are returned when
the packets are sent out at the output ports. Therefore, the QoS
remains unchanged.
The architecture of each OpenFlow switch depends on switch

vendors. For example, Pica8 switch [6] has a limitation of the mul-
tiple table architecture. The multiple tables are logically configured,
but a ternary content-addressable memory of the switch physically
supports only one table. The DSCP number of a packet cannot be
modified without passing through an output port of the switch.
To support all switch architectures, two dummy cables are intro-
duced to recurve the packets via two output ports of the switch,
in the case of three or more splits. Note that only one dummy
cable is needed for the case of two splits.
Fig. 2 Pattern of meter and flow entries
a Port definition
b Meter and flow entries pattern

J Eng, 2017, Vol. 2017, Iss. 12, pp. 662–665
doi: 10.1049/joe.2016.0217

This is an open
Attribution -Non
Let us consider the case of n ≥ 2 splits. The total number of ne-
cessary flow entries and meters for the splits are 2n− 1 and n− 1.
Fig. 2a shows the definition of ports. Let d1 and d2 be an output
port to and an input port from the first dummy cable, respectively.
Let d3 and d4 be an output port to and an input port from the
second dummy cable, respectively. The process of traffic splitting
is as follows:

† Step 1: Set i = 1. The DSCP number of the source traffic is
defined by pi.
† Step 2: Packets are received from port INPUT.
† Step 3: Rate of packets with the DSCP number pi is measured by
meter i. The DSCP number of packets whose rate exceeds ri is
defined by pi+1. DSCP number of other packets remains pi.
† Step 4: If i is an odd number, packets are sent out at port d1. Port
d1 modifies the DSCP number of packets (if needed) as defined in
step 3. Otherwise, packets are sent out at port d3. Port d3 modifies
the DSCP number of packets (if needed) as defined in step 3.
† Step 5: d2 and d4 receive packets returned from d1 and d3,
respectively.
† Step 6: Packets with DSCP number pi are sent out at port oi.
† Step 7: Increase i by one.
† Step 8: If i , n, repeat from step 3. Otherwise, go to step 9.
† Step 9: Packets with DSCP number pi+1 are sent out at port oi+1.
access article published by the IET under the Creative Commons
Commercial License (http://creativecommons.org/licenses/by-nc/

3.0/)



Fig. 3 Network topology

Fig. 5 Traffic rate for each DSCP number
Fig. 2b shows a general pattern of flow entries of the switch in
which the traffic is split based on the above process. Let x be an
index of flow entry. x is used as a parameter to calculate the
pattern. Only match field and actions are contained in the flow
entry. At the initial state, ri is configured by meter i.
4 Implementation

The idea of the proposed implementation technique is confirmed by
an experiment using a Pica8 switch. Five bridges, from BR0 to
BR4, are created as virtual switches. Fig. 3 shows network topology
and port number. BR0 modifies the DSCP number of packets when
the traffic rate exceeds the defined rate. Ports 28 and 29 are used for
the first dummy cable, d1 = 28 and d2 = 29. Ports 30 and 31 are
Fig. 4 Process of DSCP modification
a Paradigm of implementation
b Flow and meter entries at BR0

This is an open access article published by the IET under the Creative
Attribution -NonCommercial License (http://creativecommons.org/licen
3.0/)
used for the second dummy cable, d3 = 30 and d4 = 31. BR0
also distributes packets to desired output ports based on the
DSCP number. BR1–BR4 just forward every packet to their
output port. In the experiment, we use a testing tool, called iPerf3
[7], to create a transmission control protocol traffic with 100
Mbps from H1 to H2. Traffic rate of 100 Mbps is equally split
into five parts. The first to the third parts are forwarded to ports
2, 3, and 4, respectively. The fourth and the fifth parts are forwarded
Commons
ses/by-nc/

J Eng, 2017, Vol. 2017, Iss. 12, pp. 662–665
doi: 10.1049/joe.2016.0217



to ports 2 and 4, respectively. Returning the original DSCP number
to the packets is omitted since all packets with different DSCP
numbers will be confirmed at the destination.
The process of DSCP modification is shown in Fig. 4. Fig. 4a

illustrates a paradigm of the implementation. The incoming traffic
has 100 Mbps with DSCP = 0. Packet rate of the incoming traffic
is measured by meter 1.
DSCP = 8 is defined for packets with traffic rate over 20 Mbps.

All packets are sent to the output port 28. DSCP number of
packets is modified. The traffic is then split into two parts, which
are 20 Mbps of packets with DSCP = 0 and 80 Mbps of packets
with DSCP = 8. After the packets recurve back to port 29, packets
with DSCP = 0 are directly forwarded to output port 2. Meter 2
measures the traffic of packets with DSCP = 8. DSCP = 10 is
defined for packets with traffic rate over 20 Mbps. The DSCP
number of packets with defined DSCP = 10 is modified at port
30. All packets are sent out at port 30 and recurved back to port
31. Packets with DSCP = 8 are then sent to output port 3. Meter 3
measures the traffic of packets with DSCP = 10. DSCP = 12 is
defined for packets with traffic rate over 20 Mbps. The DSCP
number of packets with defined DSCP = 12 is modified at port
28. All packets are sent out at port 28 and recurved back to port
29. Packets with DSCP = 10 are then sent to output port 4. Meter
4 measures the traffic of packets with DSCP = 12. The DSCP
number of packets with defined DSCP = 14 is modified at port
30. All packets are sent out at port 30 and recurved back to port
31. Finally, packets with DSCP = 12 and DSCP = 14 are sent to
output ports 2 and 4, respectively. Fig. 4 shows meter and flow
entries in switch BR0 to corresponding with the above scenario.
They are calculated as the definition in Fig. 2. Note that returning
the original DSCP number is not configured, since we want to
measure the traffic rate of each split traffic at H2.
All packets are captured at H2 using Wireshark. The average

received traffic rate of the total packets at H2 is 96.7 Mbps. The
average traffic rates of packets with DSCP = 0, 8, 10, 12, and 14
J Eng, 2017, Vol. 2017, Iss. 12, pp. 662–665
doi: 10.1049/joe.2016.0217

This is an open
Attribution -Non
are 19.284, 19.776, 19.776, 19.883, and 18.478 Mbps, as shown
in Fig. 5. We also check the byte counters at BR1–BR3 to
confirm that the packets with different DSCP numbers are for-
warded to their corresponding paths. This result confirms the
concept of using meter table to modify the DSCP number for
traffic splitting.

5 Conclusion

An implementation technique for traffic splitting using a meter table
in an SDN network was proposed. In the proposed technique, a
DSCP number in IP packet header is modified based on pre-defined
traffic rates. After modification of the DSCP number, packets are
sent out at corresponding output ports of the switch, each output
port is associated with a corresponding DSCP number. The result
of the implementation confirms the idea of the proposed technique.
The traffic is freely split as a user requirement.

6 References

[1] Mishra A.K., Sahoo A.: ‘S-OSPF: a traffic engineering solution for OSPF
based on best effort networks’. Proc. IEEE Global Communications
Conf., Washington, DC, USA, November 2007, pp. 1845–1849

[2] Braun W., Menth M.: ‘Load-dependent flow splitting for traffic engin-
eering in resilient OpenFlow networks’. Proc. Int. Conf. and Works
Networked Systmes (NetSys), Cottbus, German, March 2015, pp. 1–5

[3] Oki E., Nakahodo Y., Naito T., ET AL.: ‘Implementing traffic distribu-
tion function of smart OSPF in software-defined networking’. Proc.
21st Asia-Pacific Conf. Communications (APCC2015), Kyoto,
Japan, October 2015, pp. 239–243

[4] Kitsuwan N., McGettrick S., Slyne F., ET AL.: ‘Independent transient
plane design for protection in OpenFlow-based networks’, IEEE/
OSA J. Opt. Commun. Netw., 2015, 7, (4), pp. 264–275, doi:
10.1364/JOCN.7.000264

[5] ‘Open Networking Foundation – OpenFlow v1.3’, 2012
[6] http://www.pica8.com/, accessed January 2016
[7] http://www.software.es.net/iperf/, accessed January 2016
access article published by the IET under the Creative Commons
Commercial License (http://creativecommons.org/licenses/by-nc/

3.0/)

http://www.pica8.com/
http://www.pica8.com/
http://www.pica8.com/
http://www.pica8.com/
http://www.pica8.com/
http://www.software.es.net/iperf/
http://www.software.es.net/iperf/
http://www.software.es.net/iperf/
http://www.software.es.net/iperf/
http://www.software.es.net/iperf/
http://www.software.es.net/iperf/

	1 Introduction
	2 OpenFlow meter table
	3 Proposed implementation technique
	4 Implementation
	5 Conclusion

