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Abstract- The flow interior and exterior to a viscous liquid drop in steady motion
in an unbounded quiescent fluid is investigated using the perturbation solution of
Taylor and Acrivos (1964) to first order in the Reynolds number. New analytical
results are derived for the detached wake behind the drop. It is found that as the
viscosity of the drop tends to infinity the wake becomes attached to the surface of
the drop and the results of Proudman and Pearson (1957) for a solid sphere are
rederived.
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1. INTRODUCTION

The objective of the paper is to derive new analytical results for the streamlines and
for the wake in the steady flow of a viscous fluid past a spherical liquid drop.

Van Dyke [1] applied the singular perturbation solution of Proudman and Pear-
son [2] for slow viscous flow past a solid sphere to analyse the attached wake be-
hind the sphere. He found that although the perturbation solution was derived for
Reynolds numbers Re < 1 the results obtained were in good agreement with experi-
mental and numerical results for values up to Re = 60. The prediction of Proudman
and Pearson [2] that standing eddies first appear behind the sphere at Re = 8 agrees
well with the numerical value of 8.5 obtained by Jenson [3] using the full Navier-
Stokes equation and with the experimental value of 12 obtained by Taneda [4]. Van
Dyke also found good agreement, up to Re = 60, between the perturbation solution
to first order in Re and the experimental and numerical values for the length of the
attached wake. For Re >∼ 60 the flow behind the sphere becomes unsteady.

We will derive new analytical results for the axisymmetric flow past a viscous
liquid drop with constant surface tension using the singular perturbation solution of
Taylor and Acrivos [5]. We will assume that the inter-facial tension is large so that
the Weber number is small and therefore the deformation of the spherical drop is
small. The perturbation solution depends on two parameters, the Reynolds number
Re and the ratio of the viscosity of the drop to the viscosity of the surrounding fluid,
κ . Although the perturbation solution was derived for Re < 1, we will consider
Re > 1 as was done with the perturbation solution of Proudman and Pearson for
flow past a solid sphere. There is evidence that the predictions of the perturbation
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solution of Taylor and Acrivos may be applicable for Re > 1. For instance Wellek et
al [6] found that the Taylor and Acrivos solution quite accurately predicted drop ec-
centricities for drop Reynolds numbers up to Re = 20. The perturbation expansions
for large κ should be applicable to flow past a very viscous drop.

There have been several numerical investigations of flow past a liquid drop [7-10].

2. STREAM FUNCTIONS

The singular perturbation solution of Taylor and Activos [5] describes the steady
axisymmetric motion under gravity of a viscous drop slightly deformed from the
spherical shape in an unbounded quiescent fluid. The fluids are incompressible,
immiscible and the interfacial tension σ between the viscous drop and the sur-
rounding fluid is uniform. Physical variables inside the drop are distinguished from
corresponding variables outside the drop by a circumflex. A fixed spherical polar
coordinate system (r, θ, ϕ) is used with origin at the centre of mass of the viscous
drop. All the fluid dynamical variables are dimensionless and independent of ϕ. The
characteristic length is the radius, a, of the spherical drop with the same volume,
and the characteristic velocity is the terminal velocity U of the drop. The Reynolds
number, defined in terms of the parameters of the exterior fluid, and the viscosity
ratio κ are

Re =
Ua

ν
, κ =

η̂

η
, (2.1)

where η is the shear viscosity and ν = η/ρ.
Taylor and Acrivos used the method of matched asymptotic expansions for the

solution exterior to the drop. The straightforward expansion in powers of Re is the
inner expansion exterior to the drop. The inner expansion is used to analyse the
exterior flow close to the drop which includes the attached wake. It was found that
there is no deformation of the drop at zero order in Re. The boundary conditions
for the first order solution are therefore imposed at r = 1. The inner expansion
exterior to the drop and to first order in Re can be written as
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(2.2)

as Re→ 0. The stream function inside the liquid drop to first order in Re is

ψ̂(r, θ) = −r
2(1− r2) sin2 θ

4(1 + κ)

[
1 +

κ(2 + 3κ)

40(1 + κ)2
Re

+Re
(2 + 3κ)(5 + 4κ)

40(1 + κ)2
(1− r cos θ)

]
+O(Re)2 ,

(2.3)
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as Re→ 0.
The stream functions (2.2) and (2.3) depend only on Re and κ and are indepen-

dent of the Weber number We and density ratio γ where

We =
ρaU2

σ
, γ =

ρ̂

ρ
(2.4)

This is because the boundary conditions for the order Re solution are imposed on
the zero order surface of the drop which is not deformed. The deformation of the
drop to first order in Re is proportional to We and depends on γ and κ. The results
therefore apply only for small Weber number.

3. DETACHED WAKE

We now investigate the properties of the wake behind the drop using the stream
function (2.2).

3.1. End points of the boundary of the standing eddy

From (2.2), ψ(r, θ) = 0 on the surface of the drop r = 1, along the axis of symmetry
θ = 0 and θ = π, and also along the curve

cos θ =

(
1 +

8(1 + κ)

(2 + 3κ)Re

) 5(1 + κ)
[
2(1 + κ)r2 − κr − κ

]
r[

10(1 + κ)2 r3 − 5κ(1− κ)r2 − κr − κ(6 + 5κ)
] . (3.1)

Equation (3.1) is the boundary of the standing eddy behind the drop. It generates
a surface of revolution about the line θ = 0. The end points of the boundary are its
points of intersection with the axis of symmetry θ = 0 and are obtained by putting
cos θ = 1 in (3.1). The points therefore satisfy the cubic equation

P (r) = 0 (3.2)

where

P (r) = r3 − κ

2(1 + κ)
r2 − κ

2(1 + κ)

[
1 +

(2 + 3κ)(4 + 5κ)

40(1 + κ)2
Re

]
r

+
κ(6 + 5κ)(2 + 3κ)

80(1 + κ)3
Re .

(3.3)

For a solid sphere, κ = ∞, and (3.3) reduces to

(r − 1)

(
r2 +

1

2
r − 3

16
Re

)
= 0 . (3.4)
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The roots of (3.4) are

r = −1

4

[
1 + (1 + 3Re)1/2

]
, r = 1 , r =

1

4

[
(1 + 3Re)1/2 − 1

]
. (3.5)

In the limit κ = ∞, (3.2) has one negative root which is not physical and two
positive roots. Since r = 1 is one end point, the boundary of the standing eddy is
attached to the solid sphere. For the eddy to lie in the flow field the third root in
(3.5) must be greater than unity, that is Re > 8 [1, 2]. In the limit κ = 0, which
describes an inviscid gas bubble, (3.2) reduces to r3 = 0. Equation (3.2) then has
three coincident roots at r = 0 which is in agreement with the result that there is no
standing eddy behind a spherical bubble because no vorticity is generated upstream
on the surface of an inviscid bubble [11].

Consider now 0 < κ < ∞. General properties of the roots of (3.2) can be
obtained from Descartes’ rule of signs [12]. Since there are two changes of sign in
the coefficients of P (r) equation (3.2) cannot have more than two positive roots.
Since P (0) > 0 and P (r) → ∞ as r → ∞ there will be either two distinct positive
roots, two coincident positive roots or no positive roots. Further, since P (1) > 0, the
two positive roots, when they exist, will either both be greater than unity or both
between 0 and 1. When they exist, the two positive roots greater than unity are the
end points of the boundary of the standing eddy. There is one change of sign in the
coefficients of P (−r) and therefore (3.2) cannot have more than one negative root.
Since P (0) > 0 and P (r) → −∞ as r → −∞ there will be exactly one negative
root. This negative root is not physical.

In order to transform (3.2) to the standard form of a cubic equation let [12]

r = s+
κ

6(1 + κ)
. (3.6)

Equation (3.2) becomes

s3 + 3Hs+G = 0 (3.7)

where

H(κ,Re) = −
[
κ(6 + 7κ)

36(1 + κ)2
+
κ(2 + 3κ)(4 + 5κ)

240(1 + κ)3
Re

]
, (3.8)

G(κ,Re) = −(9 + 10κ)κ2

108(1 + κ)3
+
κ(2 + 3κ)(25κ2 + 62κ+ 36)

480(1 + κ)4
Re . (3.9)

The standing eddy exists when all three roots of (3.7) are real, that is when [12]

G2 + 4H3 ≤ 0 . (3.10)

For condition (3.10) to apply it is necessary that H < 0 which is satisfied by (3.8).
When (3.10) holds, the solution of (3.7) is [12]
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Sn = 2(−H)1/2 cos

(
ϕ+

2nπ

3

)
, n = 0, 1, 2, (3.11)

where

cos 3ϕ = − G

2(−H)3/2
, 0 ≤ ϕ ≤ π

3
. (3.12)

Hence, transforming back from s to r using (3.6), the three real roots of (3.2) when
they exist are

rn =
κ

6(1 + κ)
+2

[
κ(6 + 7κ)

36(1 + κ)2
+
κ(2 + 3κ)(4 + 5κ)

240(1 + κ)3
Re

]1/2
cos

(
ϕ+

2nπ

3

)
, (3.13)

where n = 0, 1, 2 and ϕ is the solution of (3.12) in the range 0 ≤ ϕ ≤ π/3.
Consider now the special case in which the two positive real roots are coincident.

Coincident roots occur when the standing eddy first appears in the downstream
wake. Equation (3.7) has three real roots with two roots the same and one different
if [12]

G2 + 4H3 = 0 (3.14)

and H ̸= 0 and G ̸= 0. Thus for two coincident real roots

G = ±2(−H)3/2 (3.15)

and

cos 3ϕ = ∓1 , 0 ≤ ϕ ≤ π

3
. (3.16)

If cos 3ϕ = +1 then ϕ = 0 and it can be verified that r1 = r2 < 0. To obtain the
coincident positive roots we therefore consider cos 3ϕ = −1. When cos 3ϕ = −1,
ϕ = π/3. Equation (3.13) with n = 1 gives r1 < 0. Equation (3.13) with n = 0 and
n = 2 gives the two coincident positive roots, r0 and r2, Let rA = r0 = r2. Then

rA =
κ

6(1 + κ)
+

[
κ(6 + 7κ)

36(1 + κ)2
+
κ(2 + 3κ)(4 + 5κ)

240(1 + κ)3
ReA

]1/2
3 . (3.17)

The Reynolds number ReA satisfies (3.14) and has still to be determined. It is the
Reynolds number at which the standing eddy first appears as Re is increased from
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zero. The distance from the centre of mass of the drop to the point on the axis of
symmetry where the eddy first appears is rA.

The points of intersection of the boundary of the standing eddy with the axis of
symmetry are r0 and r2 given by (3.13) for n = 0 and n = 2. The solution r1 for
n = 1 yields the negative root. Graphs of r0 and r2 plotted against Re for a range
of values of κ are shown in Figure 1. For κ = ∞, r2 = 1 and the boundary of the
standing eddy is attached to the surface of the solid sphere. For finite κ, r2 > 1 and
the boundary of the standing eddy is detached as shown for κ = 2, 3, 5, 10 and 30.
For finite κ the wake is detached from the surface of the drop in agreement with
numerical predictions [10]. When Re = ReA for given κ, then r0 = r2 = rA. As
Re increases from ReA the length of the wake increases. The end point r0 moves
downstream while the end point r2 moves upstream towards the surface of the drop.
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Figure 1: Points of intersection of the boundary of the
standing eddy with the axis of symmetry plotted against
Re for κ = 2, 3, 5, 10, 30 and ∞.

The point on the axis of symmetry where the eddy first appears will be outside
the drop if rA > 1. It follows from (3.17) that rA > 1 if ReA > Re∗ where

Re∗ =
120(2 + 3κ)(1 + κ)2

κ(2 + 3κ)(4 + 5κ)
. (3.18)

It is readily verified that for 0 < κ <∞, Re∗ > 8 and that

Re∗ = 8

[
1 +

38

15κ
+

169

225κ2
+O

(
1

κ3

)]
, (3.19)
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as κ → ∞. In the limit of a solid sphere, κ = ∞ and Re∗ = 8. For a solid sphere
rA = 1 and Re∗ = ReA = 8 which is the prediction of Proudman and Pearson [2].
For a drop, Re∗ ̸= ReA because rA > 1 which is clearly seen in Figure 1. In the next
subsection we will investigate ReA and rA.

Taylor and Acrivos [5] have observed that in all cases of physical significance
the drop will be deformed into an oblate (flattened at θ = 0 and θ = π) rather
than a prolate (flattened at θ = π/2) spheroid. Thus rA > 1 will be exterior to
the deformed drop in all cases of physical significance even when the deformation is
included.

3.2. Reynolds number for which standing eddy first appears

The Reynolds number ReA for which the standing eddy first appears satisfies equa-
tion (3.14). Substituting (3.8) and (3.9) into (3.14) gives for ReA the cubic equation

F (Re) = 0 , (3.20)

where

F (Re) = Re3 − 5(1 + κ)(1175κ4 + 7580κ3 + 15524κ2 + 13008κ+ 3888)

κ(2 + 3κ)(4 + 5κ)3
Re2

+
400(1 + κ)3(165κ2 + 322κ+ 156)

(2 + 3κ)2(4 + 5κ)3
Re+

8000(1 + κ)5(8 + 9κ)

(2 + 3κ)3(4 + 5κ)3
.

(3.21)
For solid sphere, κ = ∞ and (3.21) reduces to

(Re− 8)2
(
Re+

1

3

)
= 0 . (3.22)

Thus when κ = ∞, (3.20) has two coincident roots at Re = 8 and one negative root,
Re = −1/3 which is not physical. Hence for a solid sphere, ReA = 8 in agreement
with the result derived from (3.5).

Consider now 0 < κ < ∞. There are two changes of sign in the coefficients of
F (Re) and therefore, by Descartes’ rule of signs, F (Re) = 0 cannot have more than
two positive roots. But F (∞) = +∞, F (Re∗) < 0, F (8) < 0 and F (0) > 0 where
Re∗ is given by (3.18). Thus F (Re) = 0 has at least two positive roots and hence
there are exactly two positive roots, ReS and ReL, where ReS < ReL. Then

0 < ReS < 8 < Re∗ < ReL . (3.23)

Since ReL > Re∗, rA(ReL) > 1 where rA is given by (3.17) and therefore ReL = ReA,
the value of the Reynolds number at which the standing eddy first appears behind
the drop. Since ReS < Re∗, rA(ReS) < 1 and therefore rA will lie inside the drop
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which is not physical. There is one change of sign in the coefficients of F (−Re) and
therefore F (Re) = 0 cannot have more than one negative root. Since F (0) > 0 and
F (−∞) = −∞, F (Re) = 0 has

at least one negative root and hence exactly one negative root. This negative
root is not physical.

In order to evaluate (3.17) analytically we will derive a perturbation solution for
ReA for large values of κ. The perturbation solution is in a more suitable form to
interpret the results than the exact solution. Let ε = 1/κ and y = Re. Then(3.20)
becomes

y3 − 47

3

(
1 +

3091

705
ε+O(ε2)

)
y2 +

176

3

(
1 +

67

55
ε+O(ε2)

)
y

+
64

3

(
1 +

67

45
ε+O(ε2)

)
= 0 ,

(3, 24)

as ε→ 0. Consider first the straightforward perturbation expansion

y = y0 + εy1 +O(ε2) . (3.25)

Equation (3.24) becomes

(y0 − 8)2
(
y0 +

1

3

)
+
ε

3

[
(9y0 − 22)(y0 − 8) y1 −

1

45

(
9273y20 − 9648y0 − 4288

)]
+O(ε2) = 0 .

(3.26)
Equate the coefficients of like powers of ε in (3.26):

ε0 : (y0 − 8)2
(
y0 +

1

3

)
= 0 , (3.27)

ε : y1 =
9273y20 − 9648y0 − 4288

45(9y0 − 22)(y0 − 8)
. (3.28)

From (3.27) y0 = 8, 8 and -1/3. When y0 = −1/3, it follows from (3.28) that
y1 = −1/225 and therefore

y = −1

3

[
1 +

ε

75
+ O(ε2)

]
, (3.29)

as ε → 0. When y0 = 8, it follows from (3.28) that y1 = ∞. The assumed form
(3.25) for the expansion of y when y0 = 8 is therefore not correct.



Streamlines and Detached Wakes in Steady Flow Past a Liquid Drop 551

To determine a valid expansion when y0 = 8 consider [13]

y = 8 + ενy1 + ε2νy2 +O
(
ε3ν

)
, (3.30)

as ε→ 0 where ν > 0. Substituting (3.30) into (3.24) gives

25

3
y21 ε

2ν − 102400

27
ε+O

(
ε1+ν

)
+O

(
ε3ν

)
= 0 . (3.31)

Balancing the dominant terms, which are of order ε2ν and order ε, gives
ν = 1/2. We therefore consider the perturbation expansion

y = 8 + ε1/2y1 + εy2 + ε3/2y3 +O(ε2) , (3.32)

as ε→ 0. If (3.32) is substituted into (3.24), then (3.24) becomes

(
25

3
y21 −

102400

27

)
ε+ y1

(
50

3
y2 −

9248

9
+ y21

)
ε3/2 +O(ε2) = 0 , (3.33)

and equating the coefficients of like powers of ε yields

ε : y1 = ±64

3
, (3.34)

ε3/2 : y2 =
3

50

(
9248

9
− y21

)
=

2576

75
. (3.35)

Hence from (3.30),

y = 8

[
1± 8

3
ε1/2 +

322

75
ε+O

(
ε3/2

)]
, (3.36)

as ε → 0. Since ε = 1/κ and y = Re the three roots (3.29) and (3.36) of the cubic
equation (3.20) are

Re = −1

3

[
1 +

1

75κ
+O

(
1

κ2

)]
(3.37)

ReS = 8

[
1− 8

3κ1/2
+

322

75κ
+O

(
1

κ3/2

)]
, (3.38)
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ReA = 8

[
1 +

8

3κ1/2
+

322

75κ
+O

(
1

κ3/2

)]
, (3.39)

as ε→ 0. Only ReA, given by (3.39), is physically significant.
In Figure 2 the numerical solution of (3.20) for ReA and the perturbation solution

(3.39) are compared. The Reynolds number Re∗ given by (3.18) is also plotted.
The perturbation expansion (3.39) is a good approximation for 5 <∼ κ ≤ ∞. The
numerical curve Re = ReA divides the (κ,Re) plane into two regions. For Re > ReA
the standing eddy exists downstream of the drop while for Re < ReA it does not
exist. For Re = ReA the standing eddy first appears for the given value of κ.
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Figure 2: Graphs of (a) the numerical solution for ReA,
(b) the perturbation solution (3.39) for ReA and (c) Re∗

given by (3.18), plotted against κ. For a given value of
κ, the standing eddy exists in the downstream wake if
Re > ReA.

The perturbation solution for rA is obtained by substituting (3.39) into (3.17)
and expanding for large κ:

rA = 1 +
4

5κ1/2
+

18

125κ
+O

(
1

κ3/2

)
, (3.40)

as κ → ∞. The expansion (3.40) clearly shows that the standing eddy first ap-
pears at a point in the flow downstream of the drop. In Figure 3, rA calculated
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from (3.17) using the numerical solution of (3.20) for ReA is compared with (3.40).
The perturbation expansion underestimates the numerical solution but is a good
approximation for 5 <∼ κ ≤ ∞. The distance from the surface of the drop which
we approximate as r = 1, to where the standing eddy first appears, rA − 1, is
approximately proportional to κ−1/2:

rA − 1 =
4

5κ1/2

(
1 +

9

50κ1/2
+O

(
1

κ

))
, (3.41)

as κ → ∞. As κ increases the distance behind the drop to the point where the
eddy first appears decreases and in the solid sphere limit, κ = ∞, the eddy may be
imagined to penetrate through the surface and appear in the flow [1].
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Figure 3: Distance from the centre of mass of the drop
to the point where the standing eddy first appears, rA,
plotted against κ: numerical solution (——), perturba-
tion solution (3.40) (−−−−).
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3.3. Stagnation points
The radial and tangential components of the fluid velocity are

vr(r, θ) =
1

r2 sin θ

∂ψ

∂θ
, vθ(r, θ) = − 1

r sin θ

∂ψ

∂r
. (3.42)

Thus using (2.2) for ψ(r, θ),

vr(r, 0) =
(r − 1)

r4
P (r) , vθ(r, 0) = 0 , (3.43)

where P (r) is defined by (3.3). Now the two distinct roots of P (r) = 0 greater
than unity are the end points of the boundary of the standing eddy on the axis of
symmetry θ = 0. The end points of the boundary of the standing eddy are therefore
stagnation points where vr = vθ = 0. The point at which the eddy first appears
is also a stagnation point. At this point the two stagnation points are coincident
and the radial velocity vr(r, 0) attains a local minimum value. The third stagnation
point on the line θ = 0 is the rear stagnation point r = 1. As κ→ ∞ the stagnation
point closest to the drop as well as the point at which the eddy first appears tend
to the rear stagnation point.

4. STREAMLINES INSIDE THE LIQUID DROP

The stream function inside the drop to first order in Re is (2.3). From (2.3), ψ̂(r, θ) =
0 on the surface of the drop r = 1 and along the axis of symmetry, θ = 0 and θ = π.
When 0 ≤ r < 1 and θ ̸= 0 and θ ̸= π, ψ̂(r, θ) < 0. There is therefore no boundary

curve, ψ̂(r, θ) = 0, which divides the interior flow into two regions similar to the
boundary of the standing eddy in the exterior flow. There is only one flow region in
the axial plane inside the drop and the streamlines form closed curves which extend
over the whole of the axial plane. This is in agreement with numerical solutions
[8, 9, 10].

In Figure 4 the streamlines inside and outside the drop are plotted for κ = 5
and Re = 40. The standing eddy exists downstream of the drop since from Figure
1, Re > ReA.

5. RESULTS AND DISCUSSION

The analysis predicts a detached wake for flow past a liquid drop, in contrast to the
attached wake for flow past a solid sphere, which is consistent with numerical results
and experiment. The existence of standing eddies downstream of the drop is due
to the accumulation of vorticity generated upstream on the surface of the drop [10].
If Re < ReA convection will transport away the vorticity generated at the interface
and no standing eddy will form. If Re > ReA then the vorticity generated at the
interface will form a standing eddy behind the drop. The wake grows in size as Re
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Figure 4: Streamlines for flow past a drop with k = 5
and Re = 40. The direction of the flow is from left to
right.

increases and also as κ increases as the no slip condition at the interface becomes
a more effective source of vorticity. The wake is detached from the drop because of
the internal flow of the drop. A liquid drop with an attached wake would require
a secondary interior vortex [10]. As κ increases the strength of the flow inside the
drop decreases and the wake moves closer to the surface of the drop. In the limit
κ→ ∞ there is no internal flow and the wake is attached.

The stream functions (2.2) and (2.3) to first order in Re and therefore the results
derived from them depend only on two parameters, Re and κ, and apply only for
small Weber number, We ≪ 1. The numerical and experimental results in the
literature depend on four parameters, Re, κ, We and the density ratio γ. We will
compare our analytical predictions with the numerical results of Dandy and Leal
[10]. The Reynolds number and Weber number used by these authors is twice the
value defined in (2.1) and (2.2).

Dandy and Leal [10] investigated the dependence of the structure of the wake
on We for Re = 50 and κ = 4. For We = 1 the drop is almost spherical and r0,
the maximum extension of the wake downstream, is approximately 2.4 while the
analytical prediction (3.13) is r0 = 2.14. As We is increased the drop becomes
an oblate spheroid and for We = 2, 3 and 4, r0 ≃ 3, 4.3 and 4.6. The comparison
between the analytical and numerical predictions is quite good forWe = 1 but there
is strong dependence on We and the analytical result is not reliable for We > 1.

The numerical plots of the streamlines in Dandy and Leal [10] can also be used
to check the predictions of Figure 1. For Re = 50 andWe = 2 their streamline plots
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show that the standing eddy has not appeared for κ = 2 but is present in the flow for
κ = 4 while for Re = 30 the standing eddy has not appeared for κ = 4 (We = 0.25)
but is present for κ = 10 (We = 2). These numerical results are consistent with
Figure 1.

Equation(3.41) predicts that for We≪ 1, the distance from the point where the
eddy first appears to the surface of the drop decreases like κ−1/2 as κ → ∞. We
were not able to find data to check this prediction.

The perturbation solution of Taylor and Acrivos was derived for Re < 1 but it
gave a good qualitative description of the flow features for Re <∼ 60.
Van Dyke also found that the perturbation solution of Proudman and Pearson for
Re < 1 gave good predictions for the downstream end of the boundary of standing
eddies for Re <∼ 60. There are other examples in fluid mechanics where predictions
have been made by giving the parameters values greater than permitted in the
derivation of the solution. Longuet-Higgins [14] extended the range of the solution
for capillary waves to predict the entrainment of air bubbles in wave troughs and
Sostarecz and Belmonte [15] extended their model of a viscoelastic drop to predict
that the boundary will self-intersect which could describe internal pinch-off at the
trailing edge of the drop.

6. CONCLUDING REMARKS

Several new analytical results were presented. It was shown analytically that
the wake is detached from the drop and that the end points of the boundary of the
standing eddy on the axis of symmetry and the point at which the eddy first appears
are stagnation points. We also saw analytically that inside the drop the streamlines
from closed curves which extend over the whole of the axial plane. The end points
of the boundary of the standing eddy were obtained as functions of the Reynolds
number Re and the viscosity ratio κ. Useful singular perturbation expansions in
powers of κ−1/2 were derived for the Reynolds number at which the downstream
eddy first appears and for the point in the flow at which it first appears. It was
predicted that the distance from the surface of the drop to the point where the eddy
first appears is approximately proportional to κ−1/2 for large κ.
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