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Over the past four decades, U.S. educational policy makers 
have enacted multiple legislative reform initiatives in sup-
port of student- and teacher-level accountability. This move-
ment began during the minimum competency era in the 
1970s (Bracey, 1995), and it picked up pace in 1983 after the 
release of A Nation at Risk (U.S. Department of Education, 
1983). Although it appeared to reach its peak after the pas-
sage of No Child Left Behind (2002), subsequent federal 
legislative acts—such as Race to the Top (2011), the No 
Child Left Behind waivers awarded to states that adopted 
stronger teacher accountability systems (Duncan, 2009, 
2011), and the Teacher Incentive Fund grant competition 
(U.S. Department of Education, 2012)—have helped to con-
tinue the push for stronger accountability in support of edu-
cational reform.

During this period, the evolution of policy-based school 
and teacher accountability reforms has involved two impor-
tant transitions: first, the transformation of teacher observa-
tion systems from a personally reflective mentoring and 
capacity building activity to that of a metric-driven assess-
ment process; second, the addition of and emphasis on 
growth in student academic performance (i.e., value-added 
or growth) as a core measure of instructional quality.

To date, a great deal has been consequently published on 
the various technical aspects of value-added models, student 

growth percentiles, and other measures of academic prog-
ress (Amrein-Beardsley, 2014; Au, 2010; Betebenner, 2011; 
Blank, 2010; Chetty, Friedman, & Rockoff, 2014a, 2014b; 
Hanushek, 2011; Hanushek & Raymond, 2005; McCaffrey, 
Lockwood, Koretz, & Hamilton, 2003). Notwithstanding, 
there remains much controversy over the appropriateness of 
these test-base metrics as valid representations of teachers’ 
instructional competencies and effects, especially when con-
sequential decisions (e.g., teacher merit pay, tenure, termina-
tion) are to be attached to such measures (Baker et al., 2010; 
Berliner, 2005; Cohen & Goldberger, 2016; Darling-
Hammond, Amrein-Beardsley, Haertel, & Rothstein, 2012; 
Papay, 2011).

In contrast, technical review of metric-based teacher 
observation systems has received far less scrutiny. 
Traditionally, school practitioners have enjoyed widespread 
use of observation-based evaluation systems to examine 
teachers’ instructional practice (Blank, 2010; Cohen & 
Goldberger, 2016; T. J. Kane, Kerr, & Pianta, 2014; Steinberg 
& Garrett, 2016). However, the intent has historically been 
formative, providing teachers with targeted feedback to 
improve pedagogical competency (Cohen & Goldberger, 
2016; Danielson, 2010, 2011; Steinberg & Garrett, 2016). 
Not until recently has this focus evolved in response to the 
same high-stakes policy-based accountability reforms. 
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Accordingly, these reforms substantively incentivized states 
to require the use of quantitative metrics based on standard-
ized observational frameworks to evaluate teachers (U.S. 
Department of Education, 2015). Some of the most widely 
used frameworks include Charlotte Danielson’s framework 
for teaching (Danielson Group, n.d.), the Classroom 
Assessment Scoring System (Teachstone, n.d.), Robert 
Marzano’s (n.d.) causal teacher evaluation model, California’s 
Performance Assessment for California Teachers (n.d.), and, 
of interest in this study, the National Institute for Excellence 
in Teaching’s (NIET’s) TAP System for Teacher and Student 
Advancement (formerly known as the Teacher Advancement 
Program and hereafter referred to as the TAP System; see 
NIET, n.d.-a, n.d.-b, n.d.-c, n.d.-d, n.d.-e).

Notably, such measurement systems, especially when 
they are used for consequential decision-making purposes, 
require close examination of the psychometric properties 
that support their inferential warrant (American Educational 
Research Association [AERA], American Psychological 
Association, & National Council on Measurement in 
Education, 2014). While the application of growth and 
value-added models in evaluation frameworks continue to 
be rigorously vetted in the published literature (see also 
AERA, 2015; American Statistical Association, 2014; Baker 
et al., 2010; Harris & Herrington, 2015), observation-based 
evaluation systems have received much less attention (see, 
e.g., Amrein-Beardsley, Holloway-Libell, Montana Cirell, 
Hays, & Chapman, 2015; Goldring et al., 2015; Lash, Tran 
& Huang, 2016; Polikoff & Porter, 2014; Weisberg, Sexton, 
Mulhern, & Keeling, 2009).

Indeed, most published validation studies of teacher eval-
uation frameworks have focused on criterion approaches 
contrasting summated evaluator ratings with student 
achievement (e.g., value added or growth) outcomes (Cohen 
& Goldhaber, 2016; T. J. Kane et  al., 2014; Kimball & 
Milanowski, 2009; Martínez, Schweig, & Goldschmidt, 
2016; Milanowski, 2004, 2011; Milanowski & Kimball, 
2005). Yet little attention has been paid to the observational 
measurement instruments themselves. By default, these 
types of criterion studies implicitly assume that the validity 
of the observation systems has been established.

For example, in a chapter titled “How the Framework for 
Teaching and Tripod 7 Cs Evidence Distinguish Key 
Components of Effective Teaching,” Danielson writes that 
her system (framework for teaching) is “research-based and 
[has] been refined over more than a decade based on analysis 
of prior results and feedback from elementary and secondary 
practitioners” (Ferguson & Danielson, 2014, p. 99). However, 
no reference is made to the technical and psychometric char-
acteristics of the system that might serve as evidence of such 
a claim. Hence, just because it might be “research based” 
does not mean that its technical and psychometric properties 
are “research evidenced” or their system uses “research 
warranted.”

Accordingly, we argue that a similar analytic void exists 
for many, if not most, well-known instructional observation 
systems currently utilized within policy-prescribed conse-
quential accountability systems (Bill & Melinda Gates 
Foundation, 2013; T. J. Kane & Staiger, 2012; National 
Council on Teacher Quality, 2015). We also suggest that use 
of such systems in high-stakes environments, without sup-
porting scale validation evidence, conflicts with the mea-
surement principles outlined in the Standards for Educational 
and Psychological Testing (AERA et al., 2014). This type of 
research evidence is needed to warrant the use of such sys-
tems, both in practice and as the basis of such accountability 
policies.

We also note that the existing literature base concerning 
observational rating systems fails to explicitly address sub-
stantive methodological and estimation issues characteristic 
of education-based K–12 observational rating data (Amrein-
Beardsley et  al., 2015; Cohen & Goldhaber, 2016; Lash 
et al., 2016). Specifically, in multischool agencies, evalua-
tion data become hierarchically structured, with teachers 
nested into schools, grades, departments, and so on. When 
local administrators (i.e., principals and assistant principals) 
serve as primary evaluators, ratings become interdependent. 
The nested nature of these data present substantive issues for 
empirical analysis, affecting results and associated policy 
inferences (Heck & Thomas, 2015; Luke, 2004; Muthén, 
1991, 1994; Raudenbush & Bryk, 2002).

Purpose of the Study

For these reasons, we focus on examining the factor struc-
ture posited by one of the most widely used observational 
evaluation frameworks: NIET’s TAP System (see http://
www.niet.org; see also, Barnett, Rinthapol, & Hudgens, 
2014). Specifically, we investigate whether the TAP System’s 
factor structure is supported by empirical measures of teacher 
instructional practice, as oft utilized in consequential evalua-
tion settings. Importantly, a search of the literature reveals a 
dearth of published research regarding this system’s mea-
surement attributes. This is worrisome given the extent to 
which actions are often attached to TAP outcomes, especially 
subscale-level estimates (i.e., teacher compensation based on 
performance rated with weighted subscale scores; see NIET, 
n.d.-d).

However, in our analysis, we do not attempt to reinterpret, 
redefine, or reformulate the TAP System’s structural frame-
work. Rather, we examine the degree to which the current 
framework is found tenable under an applied empirical con-
text. To our knowledge, this type of foundational analysis has 
yet to be published internally (e.g., available technical 
reports) or externally (e.g., peer-reviewed literature). Thus, 
we believe that this study serves as a critical starting point 
from which to document some of the technical characteristics 
of this system and to provide an empirical foundation from 

http://www.niet.org
http://www.niet.org
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which to further examine, modify, or improve the framework 
as a consequential teacher assessment tool.

Accordingly, we examine whether the TAP’s posited 
latent factor structure is supported by empirical evidence. 
We focus on the discriminant validity of the system’s sub-
constructs and the implications that our findings have on the 
application of the TAP metrics within consequence-based 
evaluation policies and practices.

TAP System

The Milken Family Foundation developed the TAP 
System to provide states, districts, and schools “a compre-
hensive educator effectiveness model” for teacher evalua-
tion purposes (NIET, n.d.-b). The system has two primary 
purposes: as a summative measure of teacher performance 
and as a formative tool to help improve teachers’ skills 
through individualized and concentrated professional sup-
port (Barnett et al., 2014; Culbertson, 2012; Daly & Kim, 
2010). Specifically, the TAP System is intended to provide 
benchmark and progress measures necessary for teachers to 
adapt and improve their instructional practice. In addition, 
yearly improvements in performance are to be aligned with 
monetary bonuses. Users (e.g., school districts) determine 
these bonuses based on a weighted combination of teachers’ 
value-added (student growth) measures and classroom 
observation scores derived from the weighted subscales 
built into the TAP System (see NIET, n.d.-d).

NIET is the nonprofit organization that oversees and pro-
motes the TAP System, upholding it as a comprehensive 
model that provides “powerful opportunities for career 
advancement, professional growth, instructionally focused 
accountability and competitive compensation for educators” 
(NIET, n.d.-b). This is facilitated by providing “district and 
school leadership teams with real-time data to inform deci-
sions,” as well as a set of accompanying “best practices” 
(NIET, n.d.-a). Likewise, the NIET organization states that its 
initiatives are “impacting over 200,000 educators and 2.5 mil-
lion students,” with “over 90 percent of participating TAP 
schools [serving] high-need and diverse areas,” most notably 
in Arizona, Arkansas, Indiana, Iowa, Louisiana, Minnesota, 
Tennessee, and Texas (NIET, n.d.-c). In addition, teacher edu-
cation programs are increasingly adopting TAP for similar 
reform purposes (e.g., evaluating student teachers and holding 
them accountable; see, e.g., Strauss, 2015; Toth, 2015).

However, most published research on the TAP System 
has focused on whether TAP use increases student achieve-
ment (Glazerman & Seifullah, 2012; Mann, Leutscher, & 
Reardon, 2013; Springer, Ballou, & Peng, 2014), to what 
extent TAP scores correlate with growth or value-added 
measures of student achievement (Loeb & Candelaria, 2012; 
Sartain, Stoelinga, & Brown, 2011), and whether TAP use 
improves teachers’ instructional quality (Armstrong, 2011; 
Eckert, 2010; Jerald & Van Hook, 2011; Mann et al., 2013). 

These studies report mixed results regarding TAP’s impact 
on academic outcomes, TAP’s low to moderate correlations 
with growth or value-added measures, and TAP’s impact on 
professional practice within the context of additional profes-
sional development and training. Again, these literatures are 
lacking substantive examinations of the underlying psycho-
metric characteristics of the TAP framework, including veri-
fication of the posited latent constructs used to evaluate 
teacher instructional competency in consequential ways.

Instrument Specifics

In terms of the actual instrument, the TAP rubric is com-
posed of 19 performance indicators situated within three 
subscales (performance indicators per subscale are noted in 
parentheses): Instruction (n = 12 indicators), Designing and 
Planning Instruction (n = 3 indicators), and the Learning 
Environment (n = 4 indicators). A breakdown of the perfor-
mance components aligned within each subscale is provided 
in Table 1.

During the school year, teachers are evaluated by certified 
evaluators on at least three occasions. Certified evaluators 
include mentor teachers, master teachers, and school admin-
istrators, each of which is local to the teacher’s campus. All 
evaluators are precertified under the TAP protocols based on 
their rating consistency as compared with national scoring 
standards. TAP evaluators receive training in application and 
interpretation of the scoring rubrics with certification based 
on one’s ability to score videotaped anchor lessons “within 
one point on each indicator and within no more than two 
points from the national rating on three indicators” (Daly & 
Kim, 2010, p. 12). TAP certification lasts 1 year, after which 
an observer must demonstrate interrater consistency per 
TAP’s certification standards to be recertified.

The three classroom observations are independent and 
occur at different times throughout the school year by dif-
ferent evaluators; hence, multiple rater scores for any single 
classroom observation are not available (see also McCaffrey, 
Yuan, Savitsky, Lockwood, & Edelen, 2015). Following 
each observation/evaluation, a postconference session is 
convened between the teacher and the observer to review 
each teacher’s evaluation scores and to identify and discuss 
instructional strengths and weaknesses. The intent is for 
teachers to use this information to focus on and improve 
specific attributes of their professional practice. This pro-
cess also aligns with the TAP System’s intent to provide 
formative and informative feedback to increase instruc-
tional capacity.

Under the TAP System, some observations are unan-
nounced, while others are scheduled to provide teachers 
with opportunities to demonstrate proficiency on the 
assessed performance indicators. During an observation 
session, rating scores are assigned to each of the 19 TAP 
performance indicators (see Table 1). For each performance 
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indicator, observers rate teachers on a scale of 1 to 5 (ordi-
nal), with 1 representing unsatisfactory performance, 3 pro-
ficiency, and 5 exemplary. In their TAP qualification 
training, observers are instructed to use ratings of 5 only for 
teachers who demonstrate “true excellence above and 
beyond what is expected of a proficient teacher on a certain 
standard” (Daly & Kim, 2010, p. 11).

At the close of the school year, a teacher’s final (i.e., sum-
mative) observation score is constructed as a weighted com-
posite of ratings from a mentor teacher, master teacher, and 
school administrator (see NIET, n.d.-d). Finally, the weighted 
average observation scores are combined with student aca-
demic (i.e., value added or growth) performance measures to 
derive an overall performance rating for each teacher.

Importantly, the computational methods for aggregating 
and combining classroom observation scores with student 
academic growth measures are policy-derived decisions 
developed by the NIET to compute global performance 
metrics of instructional quality. Again, these policy-based 
computations assume that the underlying observational 
metrics are sound and align with the posited measurement 
framework.

Methods

In this regard, we focus our study on examining the foun-
dational latent structure of the TAP System’s observational 
instrument. To do so, we utilize a single set of unweighted 
observational ratings to anchor the analysis to our primary 
research question: to investigate whether the TAP System’s 
posited factor structure is supported by empirical evidence. 
Specifically, we focus on examining the factor structure of 
the second set of unweighted midyear classroom observa-
tion scores and its coherence with the stated TAP System 
framework. The rational for this decision is that assessing 
structural characteristics based on weighted composite 

ratings inserts unnecessary policy-imposed noise into the 
information; that is, this study is not intended as an analysis 
of the policy environment but, rather, the measurement 
instrument’s psychometric and technical properties.

In addition, the longitudinal progression of the observa-
tion schedules suggests that the first formative evaluation 
scores (early in the school year) may reflect construct-irrele-
vant variance due to teachers’ relative lack of familiarity 
with the evaluation’s component framework and process.1 
This becomes less problematic after the first postconference 
review, in which all participating teachers have become 
familiar with the system’s process, procedures, and goals. 
Similarly, the third summative observation ratings (end of 
the school year) may reflect less variance due to sustained 
focus on improving component performance from prior 
evaluation results. Thus, in our opinion, the second observa-
tional rating provided the best opportunity to assess the 
foundational characteristics of the latent factor structure of 
the posited TAP framework by reducing exposure, training, 
and policy artifacts.

Study Sample

For this study, we examined teacher observation data col-
lected from a set of 14 school districts in one state. These 
districts represented a total of 54 schools, including 39 ele-
mentary schools (72%), nine middle schools (17%), and six 
high schools (11%) enrolling a combined 34,055 K–12 stu-
dents (>3% of the state’s total K–12 school enrollment).

TAP observational rating information were available for 
1,497 classroom teachers. Almost three quarters (72%) of 
the teachers were elementary school teachers (n = 1,078), 
while the remaining 21% were middle school teachers (n = 
314) and 7% high school teachers (n = 105). At the time of 
data collection, 43 schools (80%) had implemented the TAP 
System for 1 year.

Table 1
TAP System Subscales and Components

Instruction (n = 12)
Designing and Planning 

Instruction (n = 3) Learning Environment (n = 4)

I1: Standards and Objectives
I2: Motivating Students
I3: Presenting Instructional Content
I4: Lesson Structure and Pacing
I5: Activities and Materials
I6: Questioning
I7: Academic Feedback
I8: Grouping Students
I9: Teacher Content Knowledge
I10: Teacher Knowledge of Students
I11: Thinking
I12: Problem Solving

D1: Instructional Plans
D2: Student Work
D3: Assessment

L1: Expectations
L2: Managing Student Behavior
L3: Environment
L4: Respectful Culture
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The racial/ethnic makeup of the student population taught 
by TAP teachers in the sample (approximately) was 18% 
White, 55% Hispanic, and 27% other, as compared with 42%, 
43%, and 15%, respectively, at the state level. We conducted a 
chi-square test of independence comparing the racial/ethnic 
compositions of the sample versus the state overall. Results 
were significant (p < .05; χ2 = 8,866.433, df = 2, p < .001), 
albeit with a small effects size (V = .89; Cohen, 1988). This is 
likely due to the NIET’s focus on serving teachers and stu-
dents from lower-income communities/schools.

Related, because school participation in the TAP System 
was voluntary, as based on a majority vote of the school’s 
instructional staff, it should be noted that schools included in 
this sample likely differ from those not participating in the 
TAP System. Hence, the sample in this study does not neces-
sarily represent other schools within the district or across the 
state. This also implies that participants are generally accept-
ing and engaged in the TAP System’s evaluation processes 
and procedures.

Procedures

To investigate whether the TAP System’s posited factor 
structure is supported by empirical evidence, we first applied 
confirmatory factor analysis (CFA) to evaluate the tenability 
of the proposition. We followed this with an exploratory fac-
tor analysis (EFA) to more explicitly examine attributes of 
the latent structures inherent in the empirical data. Given the 
findings, we estimated higher-order CFA models incorporat-
ing a general (i.e., common) factor dimension. Each approach 
provides useful information for understanding the alignment 
between the hypothesized TAP framework and attributes of 
the measures from which inferential judgments are derived. 
We estimated all models using Mplus 7.4 with Multilevel 
Add-On (released November 2015).

As mentioned, the original data set included evaluation 
scores for a total of 1,497 teachers distributed among 14 
school districts and 54 elementary, middle, and high school 
campuses. However, the fidelity to the TAP evaluation pro-
tocol requires that every teacher be evaluated at least three 
times per year by a campus-assigned mentor teacher, master 
teacher, and school administrator. Information for a total of 
1,313 teachers satisfied this observational criterion. In addi-
tion, estimating two-level factor-analytic models requires a 
grouping (cluster) variable. Review of the sample data 
revealed that 232 teacher records contained no school build-
ing identification or registered incorrect identification num-
bers necessary to match against position assignments. This 
reduced the usable record count to 1,081 teachers (72% of 
the original data set). Finally, TAP program participation is 
determined on a site-by-site basis, not at the district level. In 
each case, the majority of teachers must agree to participate. 
For this reason, we initially modeled the multilevel structure 
as teachers nested within schools.

Because the observation rating information nests teachers 
within schools, we estimated multilevel CFA models to 
account for the lack of error independence (Bryne, 2012; 
Heck & Thomas, 2015; Muthén, 1991, 1994; Raudenbush & 
Bryk, 2002). We recognized that estimating single-level 
models in the presence of nested data may generate underes-
timated variances and standard errors and lead to improper 
inferences based on biased parameter estimates and associ-
ated test statistics. To control for this, we used multilevel 
approaches to partition total variance into components at the 
individual level (within school) and the group level (between 
school). Doing so permits modeling group-level latent struc-
tures independent of the individual level to obtain unbiased 
estimates. Accordingly, we used a two-level modeling 
approach specifying teachers nested within schools. We 
identified a total of 38 school locations (clusters) with an 
average cluster size of 28.50 teachers per campus (SD = 
7.56; min = 12, max = 41).

In addition to the nested nature of the data set, we recog-
nized that the observation ratings recorded under the TAP 
System were based on a five-option (ordinal) Likert-type 
scale. This lack of a continuous measurement scale poses 
substantive estimation issues in latent variable modeling 
(Brown, 2015; Byrne, 2012; Heck & Thomas, 2015; Muthén 
& Muthén, 2008–2012), including attenuated indicator cor-
relations, possible emergence of “pseudofactors,” and biased 
standard errors (Brown, 2015). Thus, ignoring the existence 
of noncontinuous measures may lead to incorrect inferences 
based on model output. To mediate the impact of ordinal 
measures, we invoked the Mplus WLSMV estimator 
(weighted least squares with mean- and variance-adjusted 
chi-square test) for all factor-analytic models (Muthén & 
Muthén, 2008-2012). Here, Brown (2015) noted that 
“WLSMV procedures produce accurate test statistics, 
parameter estimates, and standard errors of CFA models 
under a variety of conditions,” including conditions of “non-
normality and model complexity” (p. 355).

Table 2 provides summary distribution statistics for the 
TAP evaluation components. The information is organized 
by the three TAP behavioral domains and their measured 
components: Designing and Planning Instruction (D1–D3), 
Learning Environment (L1–L4), and Instruction (I1–I12).

As shown, the data contain no missing values, and all vari-
ables represent the full range of possible values (1 to 5). 
Skew and kurtosis statistics suggest generally well-behaved 
“close-normal” variability. The median for all measured vari-
ables is 3, while the means range from 2.86 (I11–Thinking 
and I12–Problem Solving) to 3.67 (L3–Environment and 
L4–Respectful Culture). While the five-item Likert-type 
scale displays relatively normal distributions, we decided to 
conservatively treat the measured data as categorical for 
model estimation, especially since Mplus provides a robust 
estimator (WLSMV) sensitive to distributional assumptions. 
The TAP-component polychoric correlation matrix generated 
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by Mplus is provided in Table 3. By default, Mplus computes 
polychoric correlations when ordered categorical data and 
WLSMV estimators are declared (Muthén & Muthén, 
2008–2012).

The mean intercomponent correlation of the sample data 
is .612, ranging between a minimum of .476 to a maximum 
of .861. In addition, scale (Cronbach alpha) reliability indi-
ces report α = .960 for all 19 TAP items, α = .848 for 
Designing and Planning Instruction (D1–D3), α = .896 for 
Learning Environment (L1–L4), and α = .938 for Instruction 
(I1–I12). No items were flagged for removal based on poten-
tial negative impacts to scale reliabilities.

Acknowledging the nested nature of the data set, we com-
puted intraclass correlation coefficients (ICCs) using Mplus 
7.4 to assess the degree of variability in the measures attrib-
utable to the clustering of teachers within schools (i.e., vari-
ability in the teacher ratings explained by school assignment). 
In general, ICC values in excess of .05 (or 5%) warrant 
application of multilevel modeling methods (Brown, 2015; 
Byrne, 2012). For the sample data, we found the mean ICC 
to be above this threshold (M = .122; min = .066, max = 
.273). Indeed, 12 of the 19 indicators (63%) report ICC val-
ues >.10, suggesting that multilevel modeling approaches be 
utilized to obtain unbiased parameter estimates and model fit 
statistics.

For each of the CFA models, we relied on the following 
model fit statistics to guide our analysis: chi-square (χ2), 
comparative fit index (CFI), Tucker-Lewis index (TLI), root 
mean square error of approximation (RMSEA), and stan-
dardized root mean square residual (SRMR; Brown, 2015; 
Bryne, 2012, Heck & Thomas, 2015; McCaffery et  al., 
2015).2 We adopted general fit criterion thresholds as fol-
lows: chi-square, p < .05; CFI/TLI ≥ .95; SRMR ≤ .08; 
RMSEA ≤ .06 (Hu & Bentler, 1999). We directed Mplus to 
report modification indices (MIs) >3.84 to assist in identify-
ing areas of problematic fit (Brown, 2015).

When generating EFA models, we again recognized the 
categorical nature of the measured variables (allowing 
Mplus to invoke the WLSMV estimator) and the nested 
structure of the data set. For the latter attribute, we estimated 
two-level EFA models specifying ordered extraction of one 
to four latent factors at the within-school level (individual) 
while leaving the between-school level (group) unrestricted. 
For all EFA rotations, we utilized the Oblimin (oblique) pro-
cedure. We based our warranted factor extractions for the 
EFA models on review of scree plots, Kaiser criterion (eigen-
values >1.00), size of rotated factor loadings, and factor 
interpretability. As an extraction procedure, parallel analysis 
was not available in Mplus for categorically measured vari-
ables with the WLSMV estimator. In addition, this option is 

Table 2
TAP System Evaluation Components Descriptive Statistics

M Mdn SD Variance Skew SE Kurtosis SE

Design and Planning Instruction  
  D1: Instructional Plans 3.24 3.00 .804 .647 .039 .068 .264 .135
  D2: Student Work 3.06 3.00 .749 .562 .112 .068 .561 .135
  D3: Assessment 2.91 3.00 .794 .630 .158 .068 .507 .135
Learning Environment  
  L1: Expectations 3.32 3.00 .832 .692 .048 .068 −.172 .135
  L2: Managing Student Behavior 3.53 4.00 .899 .808 −.179 .068 −.320 .135
  L3: Environment 3.67 4.00 .823 .677 −.026 .068 −.527 .135
  L4: Respectful Culture 3.67 4.00 .823 .677 −.122 .068 −.331 .135
Instruction  
  I1: Standards and Objectives 3.18 3.00 .844 .712 .006 .068 −.158 .135
  I2: Motivating Students 3.28 3.00 .821 .673 .117 .068 −.160 .135
  I3: Presenting Instruct Content 3.24 3.00 .882 .779 .003 .068 −.303 .135
  I4: Lesson Structure and Pacing 3.11 3.00 .868 .753 .100 .068 −.196 .135
  I5: Activities and Materials 3.19 3.00 .814 .662 −.064 .068 .115 .135
  I6: Questioning 3.00 3.00 .821 .675 .102 .068 .018 .135
  I7: Academic Feedback 3.04 3.00 .824 .680 .099 .068 −.009 .135
  I8: Grouping Students 3.03 3.00 .779 .607 .086 .068 .296 .135
  I9: Teacher Content Knowledge 3.41 3.00 .811 .658 .031 .068 .002 .135
  I10: Teacher Knowledge of Students 3.19 3.00 .787 .619 .049 .068 .051 .135
  I11: Thinking 2.86 3.00 .829 .686 .390 .068 .074 .135
  I12: Problem Solving 2.86 3.00 .918 .842 .573 .068 .016 .135

Note. For all components, valid N = 1,311; missing values = 0, minimum = 1, maximum = 5.
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not available as an extraction method for two-level EFA 
models. For these reasons, we conducted a parallel analysis 
based on a single-level EFA model applying an maximum 
likelihood (ML) estimator.

Based on results obtained from the EFA analysis, inclu-
sion and examination of a primary common factor seemed 
warranted. In this regard, we reformulated four additional 
CFA models to evaluate the appropriateness of second-order 
and bifactor solutions, including a single common-factor 
model.

Results

Confirmatory Factor Analysis

As discussed, the posited factor structure of the TAP 
observational framework identifies three subscales (see 
Table 1). It is assumed that these three domains covary to 
some degree. However, it is also presumed that each con-
struct independently measures unique attributes of instruc-
tional practice sufficient to permit inferential analysis of the 
subscales and the aligned indicators. That is, the intent of the 
evaluation framework is to compare component and sub-
scale scores for the purpose of identifying areas of instruc-
tional strength/weakness, to direct targeted interventions, to 
promote improvement in professional practice, and to assign 
weights for merit pay purposes. To do so requires that cor-
relations among latent factors remain relatively low and dis-
play substantive and statistically significant component 
loadings that are interpretable.

To evaluate the tenability of the posited TAP factor struc-
ture, we performed three initial CFA analyses. Each speci-
fied a correlated three-factor model with no cross loadings 
between measured variables. We estimated CFA 1 as a stan-
dard single-level model (nonnested). We estimated CFA 2 
using the Mplus TYPE = COMPLEX procedure, which 
adjusts model fit statistics and parameter estimates for error 
dependencies due to the nested structure of the data (Brown, 
2015). Here, CLUSTER = SCHOOL identified the grouping 
level. We estimated CFA 3 by explicitly modeling identical 
within-school (individual) and between-school (group) 
three-factor frameworks. We used the Mplus TYPE = 
TWOLEVEL procedure for this model. For all models, we 
used a WLSMV estimator. To establish the latent measure-
ment scales for CFA 1 and 2, each factor’s first measured 
indicator served as a marker variable—the default setting in 
Mplus. For CFA 3, we established scaling by fixing the vari-
ances of each latent factor to 1 while leaving all variable 
loadings unrestricted.3 Table 4 reports the fit statistics for 
each estimated CFA model.

Models CFA 1–3.  The standard CFI/TLI model fit statistics 
for the three initial models (CFA 1–3) marginally fell within 
acceptable range (>.95). In contrast, the RMSEA index fell 
outside acceptable levels for CFA 1 (single-level model) and 
CFA 2 (nested model with unrestricted between-school-level 
structure) at .109 and .067, respectively. This improved for 
CFA 3 (the fully specified multilevel model), with the 
RMSEA dropping to .059 but nevertheless remaining on the 

Table 3
TAP System Sample Data Component Polychoric Correlation Matrix (Mplus)

D1 D2 D3 L1 L2 L3 L4 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

D2 .693  
D3 .707 .753  
L1 .657 .693 .620  
L2 .528 .555 .498 .760  
L3 .583 .593 .520 .698 .744  
L4 .611 .604 .530 .738 .813 .846  
I1 .710 .651 .608 .674 .521 .573 .586  
I2 .606 .691 .556 .708 .638 .683 .670 .620  
I3 .673 .658 .624 .705 .568 .593 .611 .709 .668  
I4 .627 .622 .572 .721 .665 .592 .610 .644 .648 .715  
I5 .651 .713 .642 .705 .547 .608 .579 .646 .721 .694 .641  
I6 .596 .593 .568 .592 .520 .574 .515 .569 .625 .633 .563 .634  
I7 .557 .612 .551 .619 .527 .570 .564 .562 .633 .575 .546 .579 .636  
I8 .560 .584 .558 .653 .613 .585 .611 .593 .629 .575 .657 .603 .569 .558  
I9 .654 .681 .623 .678 .553 .547 .599 .669 .647 .740 .626 .67 .592 .58 .579  
I10 .623 .655 .571 .705 .589 .624 .655 .619 .691 .607 .599 .62 .546 .583 .661 .634  
I11 .591 .627 .546 .583 .518 .607 .559 .554 .614 .581 .558 .612 .609 .552 .534 .559 .546  
I12 .558 .580 .521 .525 .476 .569 .527 .536 .548 .561 .502 .555 .595 .531 .502 .512 .477 .861

Note. See Table 1 for indicator codes.
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edge of the threshold criterion. The SRMR index for the full 
multilevel framework (CFA 3) indicated good fit at the indi-
vidual level (within school) but poor fit at the group level 
(between school). This suggests that the factor structure at 
the cluster level may be different from that of the individual. 
Overall, this mix of information did not present a consistent 
interpretation of acceptable model fit.

Review of the individual factor loadings for CFA 1–3 
revealed substantive and statistically significant (p < .05) val-
ues. Table 5 reports the standardized loadings for the three 
models. The factor loadings for CFA 1–3 (within school) are 
similar. In addition, the CFA 3 between-school-level loadings 
are generally larger than those found at the within-school 
level. It is not unusual to find different magnitudes within- 
and between-school-level structures are compared in that the 
parameter estimates are derived independently.

Across Models 1–3, the latent factor correlations were 
substantively large (M = .867, range = .774–.940), suggesting 

poor discriminant inference across the subscale scores; that 
is, scores in one domain are good predictors of scores in the 
other domains, making it unclear what specific trait is being 
captured by the data. Low discrimination might suggest the 
presence of a general common factor that could be modeled 
with alternative factor frameworks, such as second-order or 
bifactor models.

MIs also provide useful information for evaluating model 
fit. The size of an MI reflects the approximate amount that 
the model’s chi-square value would decrease if the particular 
parameter was freely estimated. Generally, well-fitting mod-
els produce MIs that are small. MIs >3.84 are considered 
substantive (Brown, 2015), but our focus is on values that 
suggest a sizable effect. For poor or marginally fitting mod-
els, review of large MIs may suggest a need for structural 
adjustments. In addition, presence of numerous large MIs 
may indict the fidelity of the theoretical framework being 
tested. Importantly, adjusting model specifications should be 

Table 4
CFA/EFA Model Fit Statistics

RMSEA

Model Description χ2 (df)a Value 90% CI CFit CFI TLI

CFA 1 Three-factor, SL, CAT, 
WLSMV

2,465.60 (149) .109 [.105, .113] 0.000 .962 .957

CFA 2 Three-factor, ML, CAT, 
COMPLEX, WLSMV

867.62 (149) .067 [.063, .071] 0.000 .968 .964

CFA 3 Three-factor, ML, CAT, 
TWOLEVEL, WLSMV

1,437.58 (298) .059 n/a n/a .959 .953

SRMR: WI (.044), BT (.087)

EFA 1 One-factor, ML, URB, CAT, 
TWOLEVEL, WLSMV

1,622.37 (152) .095 [.090, .099] 0.000 .947 .881

EFA 2 Two-factor, ML, URB, CAT, 
TWOLEVEL, WLSMV

654.91 (134) .060 [.055, .065] 0.000 .981 .952

EFA 3 Three-factor, ML, URB, CAT, 
TWOLEVEL, WLSMV

405.83 (117) .048 [.043, .053] 0.756 .990 .970

EFA 1 Four-factor, ML, URB, CAT, 
TWOLEVEL, WLSMV

306.42 (101) .043 [.038, .049] 0.975 .993 .975

CFA 4 Bifactor (3), ML, CAT, 
COMPLEX, WLSMV

327.20 (133) .037 [.032, .042] 1.000 .991 .989

CFA 5 Second order, LM, CAT, 
COMPLEX, WLSMV

894.85 (150) .068 [.065, .072] 0.000 .967 .963

CFA 6 Bifactor (2), ML, CAT 
COMPLX, WLSMV

752.99 (145) .062 [.058, .067] 0.000 .973 .969

CFA 7 One-factor, SL, ML, CAT, 
COMPLEX, WLSMV

1,173.60 (152) .079 [.075, .083] 0.000 .955 .950

Note. Criteria: chi-square, reject p < .05; RMSEA, reject >.60, 90% CI does not include .60, and CFit significance (p < .05) → P(H
o
 RMSEA < .05) sig-

nificant at p < .05 level; SRMR, reject >.08; CFI/TLI, reject <.95. RMSEA = root mean square error of approximation; CFI = comparative fit index; TLI 
= Tucker-Lewis index; 90% CI = 90% confidence interval; CFit = significance (p value) testing that RMSEA <.05; SL = single-level, nonnested model; 
CAT = declared categorical indicators; WLSMV = Mplus estimator—weighted least squares with mean and variance-adjusted χ2 statistic; ML = multilevel; 
COMPLEX and TWOLEVEL = Mplus multilevel modeling procedures; n/a, not applicable; SRMR = standardized root mean square residual; WI = within; 
BT = between; EFA = exploratory factor analysis; CFA = confirmatory factor analysis; URB = unrestricted between-level structure.
aFor each chi-square value, p < .001.
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based on theoretical grounds and not simply driven by sam-
ple-based information.

Hence, we requested MIs for CFA 1 (single level) and 2 
(multilevel, COMPLEX).4 However, MIs are not available 
from Mplus when TYPE = TWOLEVEL procedures are uti-
lized (CFA 3). For CFA 1 and 2, the magnitude of the L1 
indicator distinguished itself (L1 is the first measured vari-
able in the Learning Environment domain, concerning a 
teacher’s ability to establish learning expectations). That is, 
the mean MI in the CFA 1 and 2 models excluding L1 was 
approximately 33 and 11, respectively. In contrast, the MIs 
for Design by L1 were 184 in CFA 1 and 88 in CFA 2, while 
those for Instruct by L1 were 213 (CFA 1) and 105 (CFA 2).

Given that the chi-square values for CFA 1 and CFA 2 were 
2,466 and 868, respectively, permitting L1 to freely load onto 
these domains would improve the model’s chi-square between 

8% and 12%. However, making these adjustments is not sup-
ported by theory, since the L1 component was established to 
measure aspects of the Learning Environment and not attri-
butes of Designing and Planning Instruction or Instruction. 
Finally, review of the remaining MIs (26 in CFA 1 and 21 in 
CFA 2) revealed that each potential adjustment would neces-
sitate aligning measured components to latent dimensions that 
they were not intended to measure.

Exploratory Factor Analysis

We used EFA to further explore dimensions of the sample 
data in the context of the posited TAP structure. As with CFA, 
we conducted all EFA procedures using Mplus 7.4 with 
Multilevel Add-On. For the main EFA analysis, we invoked 
the WLSMV estimator, categorical measured variables, and a 

Table 5
CFA Model Factor-Indicator Standardized Loadings

CFA 3 CFA 4: Bifactor 3a CFA 5: CFA 6: Bifactor 2b CFA 7

Factor: Indicator CFA 1 CFA 2 Within Between Specific General
Second 
order Specific General General

Design by  
  D1 0.871* 0.857* 0.832* 0.980* 0.193* 0.794* 0.877* 0.205* 0.790* 0.797*

  D2 0.895* 0.885* 0.869* 1.006* 0.240* 0.815* 0.874* 0.253* 0.812* 0.825*

  D3 0.833* 0.809* 0.810* 0.789* 0.644* 0.734* 0.801* 0.631* 0.731* 0.765*

Learning by  
  L1 0.930* 0.929* 0.929* 0.924* 0.213* 0.848* 0.929* 0.217* 0.848* 0.869*

  L2 0.840* 0.830* 0.838* 0.900* 0.485* 0.720* 0.831* 0.492* 0.716* 0.780*

  L3 0.880* 0.868* 0.857* 0.863* 0.456* 0.751* 0.869* 0.460* 0.749* 0.820*

  L4 0.901* 0.881* 0.887* 0.968* 0.578* 0.752* 0.880* 0.584* 0.748* 0.833*

Instruct by  
  I1 0.821* 0.796* 0.775* 0.905* −0.053 0.802* 0.765* 0.797* 0.786*

  I2 0.828* 0.835* 0.816* 0.911* −0.005 0.839* 0.838* 0.837* 0.823*

  I3 0.840* 0.830* 0.816* 0.898* −0.059* 0.839* 0.834* 0.831* 0.819*

  I4 0.810* 0.796* 0.782* 0.965* −0.082* 0.805* 0.799* 0.796* 0.787*

  I5 0.827* 0.814* 0.816* 0.907* 0.012 0.817* 0.817* 0.814* 0.799*

  I6 0.782* 0.743* 0.732* 0.843* 0.145* 0.742* 0.746* 0.744* 0.736*

  I7 0.766* 0.730* 0.717* 0.970* 0.062* 0.732* 0.733* 0.731* 0.723*

  I8 0.780* 0.760* 0.753* 0.825* −0.049 0.764* 0.762* 0.761* 0.751*

  I9 0.812* 0.806* 0.812* 0.697* −0.082* 0.812* 0.808* 0.807* 0.798*

  I10 0.773* 0.790* 0.774* 0.924* −0.092* 0.798* 0.793* 0.792* 0.780*

  I11 0.857* 0.811* 0.807* 0.780* 0.545* 0.738* 0.813* 0.812* 0.806*

  I12 0.824* 0.768* 0.770* 0.683* 0.640* 0.692* 0.770* 0.771* 0.762*

Common by  
  Design 0.943*  
  Leader 0.891*  
  Instruct 0.974*  

Note. See Table 1 for indicator codes. CFA = confirmatory factor analysis.
aBifactor 3 = general plus three subfactors
bBifactor 2 = general plus two subfactors.
*Coefficients significant at the p < .05 level.
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two-level nested structure, and we directed Mplus to sequen-
tially estimate one- to four-factor extractions at the within-
school level (individual) while leaving the structure at the 
between-school level (group) unrestricted. Because the latent 
factors are permitted to correlate, we utilized Oblimin 
(oblique) rotation. Model fit reflections are based on chi-
square, scree plot, Kaiser criterion (eigenvalues >1.00), 
factor loadings, and factor interpretability. As mentioned, 
Mplus does not provide parallel analysis for TYPE = 
TWOLEVEL or use of WLSMV estimators. For this reason, 
we estimated a single-level EFA model employing ML esti-
mators to generate parallel extraction information.

Model fit statistics.  Model fit statistics for a one- through 
four-factor extraction procedure are presented in Table 4 
(EFA 1–4). For all models, chi-square indices suggest poor 
ability of the estimated factor loadings to reproduce the sam-
ple component correlations. However, the indices drop sub-
stantively when moving from a one- to two-factor extraction 
solution and then decline less when moving to three- and 
four-factor extraction models. In addition, RMSEA indices 
suggest that three- and four-factor extraction models are 
adequate. CFI/TLI figures support two-, three-, or four-fac-
tor solutions, and the SRMR within-school indices support 
all four factor options.

Factor identification.  Based on Kaiser criterion (eigenval-
ues >1.00), review of eigenvalues for the within-school 
level of the EFA model reveal two factors with values >1.00 
(F1 = 11.804, F2 = 1.112). Similarly, eigenvalues for the 
between-school level also suggest the presence of two fac-
tors (F1 = 14.511, F2 = 1.645). Scree plots for the within- 
and between-school level EFA information are presented in 
Figures 1 and 2, respectively. Each suggests the presence of 
one or two factors.

We also examined the Oblimin (oblique) rotated factor 
loadings (i.e., pattern matrix, within-school level) to provide 
insight on the dimensions present in the data. These loadings 
are displayed in Table 6. The data suggest that a two-factor 
solution may be most tenable in that the three- and four-fac-
tor extraction models do not provide sufficient interpretable 
loading patterns beyond two dimensions. We conducted the 
same analysis on the factor structure matrixes and observed 
similar loading patterns. Finally, the consistently high load-
ings reported for the one-factor model also suggest the pres-
ence of a common overarching dimension. The pattern of 
loadings suggests that one dimension may be defined by the 
Learning domain (L2–L4) and a second by a combination of 
all three Design components (D1–D3) and a mix of the 
Instruction indicators.

EFA factor correlations.  As with the CFA analysis, an impor-
tant tenet of the TAP System is that the three posited dimen-
sions are each identifiable and sufficiently independent to 

afford meaningful inference on the subscale scores. Examin-
ing the EFA factor correlations helps examine this presump-
tion. Importantly, only F1 and F2 revealed interpretable 
dimensions (albeit, the factor interpretations may differ 
among models). Review of the information indicated that the 
correlation between F1 and F2 is .67 under the two-factor 
model and .72 under the three- and four-factor EFA models. 
In addition, F3 reports similarly sized association with F1 (r 
= .73 for three-factor model, r = .77 for four-factor model) 
but substantively lower correlations with F2 and F4. F4 also 
reports generally lower correlations with the other factors (r 
= .42–.54).

Parallel analysis.  Mplus does not provide parallel analysis 
for TYPE = TWOLEVEL EFA models or models declaring 
categorical data employing WLSMV estimators. However, 
the TAP rating information did not display substantive signs 
of nonnormality and were based on a five-item ordinal scale. 
Because of this, we felt it appropriate to estimate a standard 

Figure 1.  Exploratory factor analysis: two-level scree plot—
between school.

Figure 2.  Exploratory factor analysis: two-level scree plot—
within school.
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single-level EFA model based on maximum likelihood 
methods and generate a parallel analysis to further identify 
substantive latent factors in the data (Ledesma & Valero-
Mora, 2007).

Figure 3 provides the scree plot of the model with the 
eigenvalues for the randomized (n = 1,000) parallel analysis 
overlaid. The information suggests that the TAP information 
contains a single latent factor. While a second factor might 
be suggested based on Kaiser criterion (eigenvalues >1.00) 
and other criteria, the parallel analysis suggests that this 
value is no larger than would be expected by random chance.

EFA calibration samples.  To explore the stability of a pos-
sible two-factor solution, we randomly divided the original 
data (n = 1081) set into two subsamples (n

1
 = 543 and n

2
 = 

538; Izquierdo, Olea, & Abad, 2014) and estimated a new set 
of EFA models on each subsample and compared the various 
model output with the full-data EFAs to assess parameter 
stability and extraction decisions (i.e., each specified in 
Mplus as TYPE = TWOLEVEL with categorical measures 
employing WLSMV estimators specifying sequential extrac-
tions from one to four at the within-school level with unre-
stricted covariances at the between-school level). For both 

subsamples, Kaiser criterion (eigenvalues >1.00) at the 
within-school level suggested presence of one primary 
dimension with a less impactful secondary factor. Chi-square 
model fit statistics remained significant but declined in mag-
nitude similar to the full data set. The remaining model fit 
indices matched the full data set closely. Review of rotated 
factor loadings yielded similar perspectives and component 
clustering as found in the full model, suggesting that a two-
factor solution was tenable.

The biggest difference occurred at the between-school 
level for Subsample 1. Here the two-factor extraction model 
failed to provide an interpretable second factor, unlike that 
found in Subsample 2 and the full data set. However, the 
three- and four-factor extraction frameworks for Subsample 
1 retained the component clustering/ordering, supporting 
two interpretable dimensions. In addition, eigenvalues for 
the between-school-level Subsample 1 identified four pos-
sible dimensions instead of the two.

Finally, CFA models based on the calibration samples 
were not estimated, because the purpose of our analysis was 
not to respecify the TAP framework nor fully reinterpret fac-
tor meaning. Rather, the CFA and EFA analyses were 
intended to examine suitability of the posited factor structure 

Table 6
EFA Rotated (Oblimin Pattern Matrix) Loadings for Factor Extraction Models (Within-School Level)

One-factor 
model Two-factor model Three-factor model Four-factor model

Indicator F1 F1 F2 F1 F2 F3 F1 F2 F3 F4

D1 0.777* 0.214* 0.625* 0.867* −0.063 −0.024 0.851* 0.055 −0.054 −0.033
D2 0.807* 0.154 0.711* 0.799* −0.060 0.101* 0.725* 0.038 0.123* −0.011
D3 0.751* 0.092 0.709* 0.791* −0.122* 0.103* 0.884* −0.048 0.063 −0.128
L1 0.858* 0.566* 0.386* 0.561* 0.409* −0.037 0.252 0.498 0.042 0.232
L2 0.784* 0.806* 0.068 0.134* 0.761* 0.006 −0.119 0.845 0.039 0.156
L3 0.804* 0.745* 0.153 0.071* 0.730* 0.155* 0.075 0.779* 0.089 −0.059
L4 0.835* 0.929* −0.006 −0.020 0.889* 0.114* 0.051 1.011* −0.015 −0.178
I1 0.767* 0.227* 0.603* 0.846* −0.038 −0.037 0.637* 0.060 0.023 0.151
I2 0.805* 0.388* 0.500* 0.581* 0.239* 0.061 0.240 0.304 0.175* 0.267
I3 0.805* 0.246* 0.628* 0.857* −0.006 −0.029 0.530* 0.076 0.082 0.272*

I4 0.774* 0.425* 0.431* 0.672* 0.226* −0.087* 0.289 0.297 0.035 0.329*

I5 0.810* 0.197* 0.674* 0.755* 0.006 0.083 0.467* 0.062 0.196 0.229*

I6 0.723* 0.104 0.666* 0.571* −0.005 0.220* 0.213 0.006 0.386* 0.304*

I7 0.707* 0.223* 0.546* 0.511* 0.112* 0.158* 0.192 0.154 0.281* 0.248*

I8 0.741* 0.403* 0.416* 0.485* 0.283* 0.048 0.184 0.339 0.150* 0.227
I9 0.804* 0.241* 0.630* 0.774* 0.038 0.019 0.480* 0.113 0.122 0.233*

I10 0.764* 0.420* 0.426* 0.591* 0.250* −0.019 0.379 0.335 0.029 0.147
I11 0.799* −0.215* 1.003* 0.119* 0.066* 0.773* 0.012 0.026 0.878* −0.010
I12 0.763* −0.270* 1.016* 0.015 0.054 0.874* −0.023 0.000 0.958* −0.080

Note. See Table 1 for indicator codes. Oblique (Oblimin) pattern matrix loadings represent unbounded regression coefficients. EFA = exploratory factor 
analysis.
*p < .05.
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advanced by the TAP System as used in this study setting. 
That said, there is some indication from the EFA analysis 
that two dimensions represent a plausible within-school-
level structure for the sampled data set.

Higher-order CFA.  Review of the initial CFA (1–3) and 
EFA (1–4) models suggests the presence of a general (com-
mon) dimension influencing variation in the measured vari-
ables. This is apparent from the magnitude of the CFA factor 
correlations, the aggregated impact of cross-factor influ-
ences (as evidenced by MIs), the factor extraction analysis, 
and the interpretation of factor loadings. In addition, appli-
cation of the TAP framework is intended to assess overall 
instructional competence, which then serves as the basis for 
establishing merit-based rewards (NIET, n.d.-d).

To this end, we specified three additional CFA modeling 
frameworks (CFA 4–6) that attempt to evaluate the contribu-
tion of a general factor. The first (CFA 4) is a bifactor model, 
followed by a second-order model (CFA 5). Each incorpo-
rates a general factor to account for variation in the mea-
sured variables (Chen, West, & Sousa, 2006). Finally, we 
specified a single general-factor model (CFA 6) to evaluate 
and compare model fit and factor loading information.

Bifactor models presume the existence of a general (com-
mon) factor that accounts for a substantive proportion of 
variance in all observed measures. However, bifactor speci-
fications also assume that multiple domain-specific factors 
account for additional unique variance beyond that of the 
general factor. Here, bifactor models specify direct effects of 
the general factor on each measured variable independent of 
the variance accounted for by the domain-specific factors. 
Brown (2015) notes that bifactor models are most appropri-
ate where a substantive unidimensional factor is posited with 
numerous but less substantive subdomains.

Second-order models also assume the presence of a gen-
eral factor but specify its effect in a different manner. Here, 
the general factor is accounting for the covariance between 
the related latent factors and not variation in the observed 
variables. Second-order models presume that each latent 
factor is influenced by a higher dimension.

We estimated the general factor CFA models as multi-
level frameworks using the TYPE = COMPLEX procedure 
in Mplus with declared categorical measures employing 
the WLSMV estimator. We left latent factor scaling at the 
default setting in Mplus except for the first measured vari-
able (I1) in the Instruction domain under the bifactor 
framework. Here, we unrestricted the indictor and set the 
factor variance to 1.0 to establish the measurement scale. 
This adjustment enabled the model to estimate properly 
with no warnings or errors. For the second-order model, we 
fixed the Instruction loading parameter on the Common 
factor (Common by Instruct) at .90 to resolve estimation 
issues.5 Table 4 reports the fit statistics for each of the 
higher-order factor (CFA 4 and CFA 5) and single general-
factor (CFA 6) models.

Models CFA 4 and 5.  For the bifactor (CFA 4) and second-
order (CFA 5) models, the chi-square values remain signifi-
cant, consistent with the previously estimated CFA models. 
Here, the chi-square for the second-ordered model (CFA 5; 
χ2 = 895, df = 150, p < .001) was slightly higher than the 
first-order model (CFA 4; χ2 = 868, df = 149, p < .001) previ-
ously discussed. The RMSEA suggests good fit for the bifac-
tor specification (CFA 4; RMSEA = .037) and poor fit for the 
second-order framework (CFA 5; RMSEA = .068). CLI/TLI 
indices suggest good model fit for both specifications; how-
ever, the values for the second-order model are below those 
of the bifactor estimates.

Figure 3.  Exploratory factor analysis plot of eigenvalues with overlay of parallel-analysis values. Parallel-analysis eigenvalues 
generated from 1,000 randomized samples.
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Bifactor models permit a common (general) factor to 
account for the direct effects of all measured variables. In 
addition, subdomains are specified to account for direct 
effects on a subset of indicators. In this configuration, it is 
possible that one or more subfactors may be rendered irrel-
evant (Brown, 2015; Chen et al., 2006). That is, the subdo-
main factor loadings may become low or insignificant 
because most of the measured variance is accounted for by 
the general factor. Indeed, review of the factor loadings for 
the estimated bifactor model (CFA 4) suggests that this is 
occurring for the Instruction subdomain. Table 5 reports the 
standardized factor loadings for the bifactor (CFA 4) and 
second-order (CFA 5) models.

For the bifactor model (CFA 4), loadings for seven of 12 
Instruction indicators reported negative magnitudes. In addi-
tion, the magnitude on 10 indicators was relatively low, and 
four were not significant. In contrast, all the remaining sub-
domain loadings (Design, Leader, and Common) were sub-
stantive and significant. This suggests that the components 
of the Instruction subdomain were better accounted for by 
the general (i.e., common) factor. Six components reported 
substantive cross loadings between the specific and general 
factor: one in Design (D3: Assessment), three in Learning 
Environment (L2: Managing Student Behavior, L3: 
Environment, L4: Respectful Culture), and two in Instruction 
(I11: Thinking, I12: Problem Solving). Finally, all parameter 
estimates reported for the second-order model were well 
behaved. That is, all the standardized domain loadings were 
substantive in magnitude and significant (p < .05).

Because the bifactor (CFA 4) model identified the 
Instruction subdomain as being captured by the general fac-
tor, we estimated an adjusted bifactor model (CFA 6) elimi-
nating the indicators for this dimension. The model fit 
statistics (Table 4) provided mixed results: χ2 = 752.99, df = 
145, p < .001; RMSEA = .062, 90% CI [.058, .067], CFit = 
0.00 (for definition, see Table 4); CFI = .973; TLI = .969. The 
chi-square value more than doubled that reported by the 
unadjusted bifactor (CFA 4) framework; the RSMEA moved 
from being acceptable to poor; and the CFI and TLI indices 
both declined. However, all the standardized factor loadings 
were substantive and significant (see Table 5 to review the 
factor loadings for the adjusted bifactor model, CFA 6). As 
with CFA 4, lower loading values on the Designing and 
Planning Instruction and Learning Environment domains are 
noted, as are similar cross loadings when compared with the 
general factor. This suggests, again, that the common factor 
is accounting for most of the variation in the measured 
variables.

Finally, we estimated a one-factor CFA model (CFA 7) 
based on the premise that a single dimension might be 
explaining the variation in the empirical data. The model fit 
statistics (Table 5, CFA 7) for this simplified framework 
reported generally poor results: χ2 = 1,173.60, df = 152, p < 
.001; RMSEA = .079, 90% CI [.075, .083], CFit = 0.00; CLI 

= .955; TLI = .950. The standardized factor loadings (Table 
5) were large (.723–.869) and significant (p < .05). No MIs 
>3.84 were reported.

Summary of Findings

The principle research question that we investigated in 
this study concerned the tenability of the TAP System’s pos-
ited factor structure. To assess this question, we conducted 
multiple confirmatory and exploratory factor analyses to 
examine whether the proposed three-factor structure was 
supported by empirical data. Our additional interest focused 
on the discriminant validity afforded by the three TAP sub-
constructs (Designing and Planning Instruction, Instruction, 
and Learning Environment) and their ability to uniquely 
inform on targeted areas of professional practice. As our 
analysis evolved, we explored additional factor structures 
examining the presence of a single general dimension and its 
association with secondary factors. The data set originated 
from a large sample of elementary schools engaging in the 
TAP System.

Our findings suggest that the posited three-factor frame-
work provides a poor to marginal fit with the empirical data. 
Exploratory examination of factor structures suggests that a 
two-factor solution may be more tenable. Subsequent bifac-
tor and second-order CFA models seem to provide a better 
conceptualization of the TAP structure where a common 
(i.e., general) factor accounts for most of the variance in the 
measured variables. A bifactor structure where the general 
factor substantively aligns to all measured indicators per-
forms best from a fit perspective, as compared with a sec-
ond-order framework. Here, three of the four subcomponents 
of the Learning Environment domain seem to retain their 
posited meaning as a interpretable secondary (supporting) 
dimension. In addition, large factor correlations revealed 
throughout the modeling activities suggest that the discrimi-
nant validity among the posited latent constructs is low.

Put differently, results from bifactor specifications suggest 
the presence of a general latent construct supported by a sub-
set of components from the Learning Environment domain. 
This is consistent with the exploratory factor information that 
does not distinguish Instruction as a fully independent dimen-
sion. The reason may be that the TAP framework itself is cap-
turing predominantly instructional competency behaviors as 
the primary behavioral trait with components related to 
developing the Learning Environment in secondary (perhaps 
supporting) roles. Fittingly, this has implications for low- and 
high-stakes applications of TAP output.

Policy and Measurement Considerations

The TAP framework posits that instructional quality may 
be assessed across three distinct behavioral domains: 
Instruction, Learning Environment, and Designing and 
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Planning Instruction. However, questionable model fit sug-
gests that this proposition may not be tenable. Large latent 
factor correlations further indict the suitability of interpret-
ing instructional performance at the subscale level due to 
poor discriminant validity. That is, unique interpretation of 
specific subscales is brought into question when indicators 
from other dimensions are highly correlated, which seems 
to be the case here.

The combination of poor model fit and substantive latent 
factor correlations subsequently suggests that consequential 
actions (e.g., interventions and/or professional status deci-
sions) based on subscale scores may not be warranted (or, at 
best, should be done with caution), since explicit identifica-
tion of the measured behavioral constructs remains unclear. 
Put differently, if the validity of the inferences to be drawn 
from TAP subscale scores does not hold as posited, espe-
cially when consequential decisions are attached to subscale-
level estimates (i.e., teacher compensation based on latent 
performance as rated with weighted subscales), this may be 
problematic in policy and practice.

Correspondingly, when the independence (discriminant 
inference) across subscales is not empirically established, it 
may be more prudent to utilize the unweighted summated 
score to distribute individuals along the primary trait for 
which the instrument was originally designed. Indeed, the 
empirical implication may be to devalue consequential deci-
sions based on subscale scores and rely more heavily on full-
scale summated measures to identify and distinguish relative 
distributions of instructional competency.

Indeed, while the TAP instruments are posited to reflect 
the most important tasks, skills, knowledge, and abilities rel-
evant for witnessing high-quality instructional practices, 
Haladyna (2013) noted that “the most important feature of a 
test is the validity of its test score interpretation and use” 
(p. 4; see also M. T. Kane, 2013; Messick, 1989, 1998). This 
implies that claims of validity require a range of supporting 
evidences, most certainly including the empirical assess-
ment of the instrument’s measurement characteristics. As 
evidenced herein, again, some foundational examinations 
suggest that the measured constructs posited for the TAP 
instrument may not neatly align with the proposed constructs 
of interest. This raises questions concerning score interpreta-
tion and the proper use of scores for specific policy and 
pragmatic purposes.

Within a larger context, states and districts throughout the 
United States have increasingly adopted policy-driven edu-
cational reform initiatives based on student- and teacher-
level accountability measures (e.g., standardized 
observational inventories such as the TAP System and 
growth- or value-added models). We believe that these pol-
icy initiatives have encouraged what might be considered to 
be hasty implementation of evaluation tools and instruments 
at the expense of affording sufficient attention to the techni-
cal aspects of the measures utilized. Again, while more 

attention has been paid to the technical attributes of using 
growth and/or value-added modeling to assess teachers’ 
impact on student learning, little empirical attention has 
been paid to the observational systems meant to be used 
alongside and theoretically complement these measures 
(see, e.g., Bill & Melinda Gates Foundation, 2013; Chester, 
2003; Chin & Goldhaber, 2015; Martínez et  al., 2016; 
National Council on Teacher Quality, 2015; U.S. Department 
of Education, 2015).

We assert that when the foundational psychometric prop-
erties and validity evidences of any instrument remain unex-
amined, it is difficult for policy leaders to warrant their use 
within multiple policy settings (AERA et al., 2014; Haladyna 
& Rodriguez, 2013; Linn, 1993; Messick, 1989, 1998). This 
is especially true when interpretation of evaluation measures 
potentially affect the personal and professional identities of 
those being evaluated (M. T. Kane, 2006, 2013; Messick, 
1998; Sheppard, 1993, 1997; Slomp, Corrigan, & Sugimoto, 
2014).

In this regard, the ubiquitous application of standardized 
observational frameworks used to evaluate teachers elevates 
the need for empirical evidence supporting their technical 
design and application (Amrein-Beardsley et  al., 2015; 
Goldring et  al., 2015; Polikoff & Porter, 2014; Weisburg 
et al., 2009; Lash et al., 2016). Without such evidence, the 
validity threats surrounding misapplication of these mea-
sures may be both profuse and profound. Our contention, 
therefore, is that the greater the consequence, the greater the 
need for extensive and exhaustive validity evidence (AERA 
et al., 2014; Lane 2014; see also M. T. Kane, 2013; Messick, 
1989, 1998).

The findings presented herein underscore the need to rig-
orously examine the psychometric characteristics of all 
observational teacher evaluation frameworks inclusive of 
how such systems are currently being implemented and uti-
lized. In turn, these evidences should be used to shape the 
extent to which consequential educational evaluation and 
accountability policies might also be implemented.

Limitations and Opportunities for Further Research

In this study, we did not attempt to address all of the var-
ied types of validity evidences possible for evaluating the 
psychometric attributes of the TAP System’s evaluation 
instrument. Rather, we purposefully focused on an initial 
examination of the coherence between the framework’s pos-
ited three-factor structure and empirical measures. In addi-
tion, most of our analytic attention was directed at 
within-school scale characteristics, with little effort made 
toward examining structures at the group level (between 
school). However, we believe that is an important extension 
of our analyses.

In addition, most of the sample participants reported eval-
uation scores for three independent time points (start of year, 
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midyear, and end of year). As discussed previously, we 
chose to focus on midyear evaluation ratings as a starting 
point for examining attributes of the TAP instrument. 
Replicating the analysis for these three periods and conduct-
ing temporal invariance testing would also represent an 
important extension to this study. In addition, within each of 
the three periods, teachers were evaluated by any one of 
three types of certified raters: mentor teachers, master teach-
ers, and school administrators. Additional invariance studies 
across rater type and time should be conducted. Finally, 
parametric invariance test results might be examined 
between levels and across teacher characteristics (e.g., years 
of experience, grade level, instructed subject area), as this 
would likely be of added empirical value.

In this study, we also to utilize the full set of sample data 
to evaluate the alignment between the hypothesized factor 
structure and the empirical data. Here, we estimated numer-
ous CFA models, followed by a variety of EFA procedures. 
An alternative way to utilize the sample data would have 
been to initially split (via stratified random sampling by 
school) the participants into two groups and conduct a vari-
ety of comparative analysis and invariance testing across 
subsamples.

Related, we initially focused on evaluating two-level 
nested models that grouped teachers within schools. This 
was initially decided per the volunteer basis by which 
schools choose to participate, as noted prior. Hence, extend-
ing the modeling to three levels (teachers within schools 
within districts) would add another perspective to the analy-
sis and permit the analysis of comparative factor specifica-
tions at the school and district levels. In addition, because 
the sample schools represented a more diverse racial/ethnic 
student population than that found at the state level, this 
compromises more generalized inferences beyond the local-
ized context, suggesting that replication with expanded sam-
ples is warranted.

While not strictly an analysis of the evaluation instrument 
itself, the TAP System imposes a number of policy restrictions 
regarding how evaluation scores are derived, aggregated, and 
combined to arrive at overall teacher performance. This 
includes weighted ratings based on rater type, methods for 
combining the three time-period scores, and procedures for 
deriving overall performance classifications based on inte-
grating observational scores with value-added measures. Each 
of these reflects important policy dimensions inherent in the 
TAP evaluation system that should be examined within the 
context of program purpose and consequential outcomes.

Conclusions

Classroom observations serve as critical components of 
many federal and state educational reform initiatives because 
they appear to provide actionable formative and summative 

information to practitioners and policy makers. That is, it 
seems reasonable to expect that teachers use evaluation 
information in a formative manner to improve targeted areas 
of professional practice (Goldring et  al., 2015) and that 
school and district leadership use evaluation information in 
a summative manner for policy-directive purposes (e.g., 
pay-for-performance incentives, retention/promotion, hir-
ing, or other high-stakes policy decisions). Indeed, TAP 
System developers presume this type of causal pathway 
whereby formative and summative evaluation measures 
should lead to improved instructional competence, boost 
retention of highly effective teachers in high-needs schools, 
and ultimately incentivize and increase student academic 
performance over time (Jerald & Van Hook, 2011; see also 
NIET, n.d.-d).

However, fidelity to these types of outcomes requires 
pedagogically specific feedback aligned to component 
scores that uniquely assess discernable attributes of teachers’ 
instructional practice. Importantly, results from this study 
suggest that reliance on subdimension scores to identify tar-
geted practices, initiate interventions, and consequentially 
infer attributes of instructional competency may be suspect. 
At the same time, while the three-factor structure of the cur-
rent TAP System framework may not be conclusively sup-
ported, this does not mean that summative scales constructed 
from the individual indicators (i.e., representing the general 
or common factor) does not capture essential elements of 
quality instructional practices. However, warrant for this 
claim requires evidence not currently available in the techni-
cal literature. We believe that this needs to be part of the 
evolving evidence that may help warrant the use of this and 
similar observational systems for low- and high-stakes uses 
and decision-making purposes.
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Notes

1. In this study, approximately 80% of participating campuses 
were new to the TAP System. Thus, the first observation event (i.e., 
near the start of the school year) represented a teacher’s first expo-
sure to the evaluation.

2. In Mplus, SRMR is reported for TYPE = TWOLEVEL 
only when WLSMV estimators are used with declared categorical 
indicators.

3. We encountered estimation errors when we left the scaling 
markers at the default setting. Our resetting of the markers to the 
latent factors permitted full model estimation with no warnings or 
errors.

4. Complete tabulations of MIs for each CFA model are not pro-
vided due to space considerations.

5. Default scaling settings caused estimated factor correlations 
>1.0.
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