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SUMMARY

Recent empirical studies have revealed that travel time variability plays an important role in travelers’
route choice decisions. To simultaneously account for both reliability and unreliability aspects of travel
time variability, the concept of mean-excess travel time (METT) was recently proposed as a new risk-
averse route choice criterion. In this paper, we extend the mean-excess traffic equilibrium model to
include heterogeneous risk-aversion attitudes and elastic demand. Specifically, this model explicitly con-
siders (1) multiple user classes with different risk-aversions toward travel time variability when making
route choice decisions under uncertainty and (2) the elasticity of travel demand as a function of METT
when making travel choice decisions under uncertainty. This model is thus capable of modeling travelers’
heterogeneous risk-averse behaviors with both travel choice and route choice considerations. The pro-
posed model is formulated as a variational inequality problem and solved via a route-based algorithm
using the modified alternating direction method. Numerical analyses are also provided to illustrate the
features of the proposed model and the applicability of the solution algorithm. Copyright © 2012 John
Wiley & Sons, Ltd.

KEY WORDS: mean-excess travel time; travel time budget; user equilibrium; multiple user classes; elastic
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1. INTRODUCTION

Transportation systems have many uncertainties (e.g., demand fluctuation, capacity degradation),
which aggregately result in travel time variability [1]. Recently, several empirical studies have revealed
that travel time variability plays an important role in travelers’ route choice decisions (e.g., [2,3]).
Travelers treat travel time variability as a risk in their travel choices because it introduces uncertainty
for an on-time arrival at the destination. Because of its theoretical and practical importance, modeling
route choice behavior under uncertainty is becoming an emerging research subject. Some of the recent
principal advances on this topic are listed in Table I, which highlights the aspects of travel time vari-
ability in consideration (e.g., reliability, unreliability, or both), the type of travel demand (e.g., fixed or
elastic), the number of user classes (e.g., single or multiple), the source of uncertainty (e.g., demand,
supply, or both), and the assumed probability distribution of uncertainty. Furthermore, this table also
provides the route choice decision criterion (e.g., user equilibrium (UE) or stochastic user equilibrium),
and the mathematical approach used in the formulation (e.g., mathematical programming, nonlinear
complementarity problem, variational inequality (VI), or fixed point problem). For other route
choice models under uncertainty, interested readers may refer to the game theory approach (e.g., [4]),
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MULTI-CLASS MEAN-EXCESS TRAFFIC EQUILIBRIUM MODEL 205

utility-based approach (e.g., [5]), expected residual minimization approach [6], and prospect theory-based
approach (e.g., [7]).

The models shown in Table I can be classified as the travel time budget (TTB)-based, schedule
delay-based, and mean-excess travel time (METT)-based models according to the aspect(s) of travel
time variability considered in the model:

(1) TTB is defined as a travel time reliability chance constraint such that the probability that a trip can be
completed within the threshold is not less than a user-specified confidence level o [8—10]. It is composed
of the mean travel time and a buffer time, similar to the concept of effective travel time used to ensure
the user-specified travel time reliability requirement. However, it does not account for the unreliability
aspect of travel time variability when the travelers are late (i.e., encountering worse travel times beyond
the TTB in the distribution tail of 1 — ). Recently, the TTB model is also adopted in transit assignment
under uncertainty (e.g., [11-13]) and dynamic traffic assignment under uncertainty (e.g., [14]).

(2) In order to consider the unreliability aspect of travel time variability, Watling [15] proposed a late
arrival penalized user equilibrium model by incorporating a schedule delay term in a disutility func-
tion to penalize the late arrival for a fixed departure time (or a fixed TTB).

(3) METT is defined to address two fundamental questions: “how long do I need to allow for this trip”
and “how bad should I expect for the worse cases” [16]. It is considered as a more complete and
accurate risk-averse measure to describe travelers’ route choice decisions under uncertainty because
it simultaneously accounts for both reliability (on-time arrival) and unreliability (late arrival) aspects
of travel time variability.

In the mean-excess traffic equilibrium (METE) model recently proposed by Chen and Zhou [16], they
assume that the origin—destination (O-D) demand is fixed and given, and all travelers have the same risk
attitude toward travel time variability in their route choice decisions. These assumptions are relaxed in this
paper to better reflect the decision processes of multi-dimensional travel choices (i.e., whether to travel
and which route to take). In this study, travel demand is affected by the risk-averse impedance of making
a trip (i.e., the minimal METT between an O-D pair). A classic example is that when the O-D minimal
METT during the peak period is greatly increased, part of the potential travelers may start their trips ahead
of the usual departure time, postpone their departure time, or even cancel the trip plan. All these responses
may result in decreasing the volumes of demand during the peak period.

Besides the dependence of travel demand on travel time variability, different travelers may respond
to such variation of travel time differently depending on their risk preferences. Typically, travelers can
be categorized as risk-prone, risk-neutral, and risk-averse according to their attitudes toward risk [5].
The risk in this context is travel time variability, which directly affects their decisions to travel during
the peak period (i.e., demand for travel) and their decisions in selecting a route (e.g., a route with a low
mean travel time and a high travel time variance versus another route with a high mean travel time and
a low travel time variance). In addition, a risk-averse traveler will allocate a larger amount of travel
time to more frequently ensure on-time arrivals and also to avoid late arrivals at his or her destination.
Thus, it is necessary to explicitly account for the heterogeneous risk-averse travel behaviors and the
impact of travel time variability (via METT) on the elastic demand in the METE modeling framework.

The objective of this paper is to develop a multi-class METE with elastic demand (MC-METE-ED) to
consider both reliability (on-time arrival) and unreliability (late arrival) aspects of travel time variability
when making travel choice decisions under uncertainty. This model is formulated as a VI problem and
solved via a route-based algorithm using the modified alternating direction (MAD) method to obtain the
equilibrium flow and demand patterns. The remainder of this paper is organized as follows. In Section 2,
we provide the equilibrium conditions and the equivalent VI problem. A route-based MAD method is
developed in Section 3. Section 4 presents some numerical examples to illustrate the essential ideas of the
proposed model and the applicability of the solution algorithm. Finally, some concluding remarks are given
in Section 5.

2. MATHEMATICAL MODEL

In this section, we present the descriptive conditions of MC-METE-ED, the equivalent VI formulation,
and a special case of METT under the lognormal demand distribution.
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2.1. Equilibrium conditions

Consider a transportation network G =[N, A], where N and A denote the sets of nodes and links, re-
spectively. Let W denote the set of O-D pairs for which travel demand ¢" is generated between O-D
pair weW, and let ” denote the flow on route peP”, where P" is the set of routes connecting O-D pair

w and all P" constitute P. For completeness, we first present the definition of METT and then the
MC-METE-ED conditions.
Definition 1. The METT 771‘,“(0() on route p between O-D pair w with respect to a predefined confi-

dence level o is defined as the conditional expectation of the random route travel time T, exceeding
the corresponding route TTB é;f(oc) [16], i.e.,

(@) = E [T;

T > é;f(oc)} NpEPY, weW, 1)

where E[-] is the expectation operator and f;f(oc) is defined by the following travel time reliability
chance-constrained model:

£(x) = min{é’Pr(T,‘fs 5)2 oc} — E[Tﬂ +9%(2),Yp € P*, we W, 2)

where y;”(oc) is a “buffer time” added to the mean travel time E [T;’ ] to ensure the travel time reliability

requirement for on-time arrivals at the confidence level o.
Meanwhile, Equation (1) can be rewritten as:

(@) = &) +E| (T = &)

where the first and second terms represent the reliability (in terms of TTB) and unreliability (in terms of
expected excess delay (EED)) aspects of route travel time variability, respectively. These two terms
explicitly capture the left region of the travel time distribution with the o-percentile reliability requirement
and the right region with the (1 — «) percentile of unreliability in the distribution tail, respectively. In this
sense, METT considers both on-time arrival (via TTB) and late arrival (via EED) aspects, whereas TTB
only considers on-time arrival requirement. It should be noted that for the convenience of explicitly
presenting the composition of METT, we decompose METT into two terms (i.e., TTB and EED).
However, these two terms are interdependent via the confidence level of o.

In this study, we classify travelers according to their risk attitudes toward travel time variability using the
confidence level . Different user classes have different confidence levels. However, we assume all travelers
within a user class i€/ (/ is the set of all user classes) have the same confidence level o;. Accordingly, the
random travel demand Q" is also divided into I/l user classes (Il is the cardinality of 7). We denote the travel
demand of a generic user class by Q}", i € I, w € W. Descriptive conditions of the MC-METE-ED are
defined as follows:

Definition 2. The MC-METE-ED is a network state such that for each user class, all used routes
connecting an O-D pair have equal and minimal METT. Meanwhile, the actual travel demand between
each O-D pair for each user class satisfies its corresponding elastic demand function.

For each user class, the METT on the used routes is not larger than that on any unused route connecting
this O-D pair. In addition, the actual O-D demand for each user class depends on the minimal METT of
this O-D pair and this user class. The earlier descriptive conditions can be mathematically stated as

T > f‘ff(oc)} VpeEP, weW, 3)

— v if () >0

i

(£ " WpePY, weWw, i€l )
oz () =0
(¢/) =Dy (W) vweWw, icl, )

where ;) and ", are the METT and flow of user class i on route p between O-D pair w, respectively; u;’, g,
and DY (-) are the minimal METT, actual demand, and elastic demand function of user class i between O-D
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pair w, respectively. We further assume that the travel demand function between each O-D pair w for each
user class i, D!'(-), is a monotonically decreasing function of its corresponding minimal METT, #!". This
assumption guarantees g’ = D!' (') is invertible. Note that although the travel demand function is separa-
ble, non-separable elastic demand functions (including symmetric and asymmetric forms) can also be used
in this model.

Accordingly, Equations (4) and (5) can also be rewritten as the following complementarity system
of equations:

fp"”i(n‘pﬁi_ul?"):o’vpepw, weW,iel, ©)
My —ui =0¥peP’, weW, iel, )
[i=20peP, weW, icl, (€))
g (w =DM (a))) =0vwew, iel, ©)
W' =D (gf)=0Ywe W, i€l (10)
g/ 20vweW,icl, (I
S bi=ql¥weWw, iel, (12)

pepP

where D;"il (qlw) is the inverse demand function of user class i between O-D pair w. Equations (6)—(8)
are the METT-based UE conditions for each user class and each O-D pair. That is, for each user class,
if a route is used, then the route METT is equal to the minimal METT between this O-D pair, while the
unused route will not have a lower METT. Equations (9) and (10) imply that if the O-D demand for a
user class is positive, then the corresponding minimal METT and the actual O-D demand satisfy the
elastic demand function. On the contrary, if the minimal METT is greater than the O-D cost obtained
from the inverse demand function, then no user is willing to travel. Equation (11) is the non-negativity
constraint of the actual travel demand, and Equation (12) is the flow conservation constraint.

2.2. Variational inequality formulation

The aforementioned equilibrium conditions can be equivalently formulated as the following VI prob-
lem, which is to find a route flow and demand pattern (f*, q*)egfq, such that

SY S (- (5) ) -

iel weW pepPv (13)
S DY) (gf — (gF)")=0,Y(F, q) € Q,

il weW

where Qg is the feasible set defined as follows:

Z b =q; Ywe W, iel, (14)

peP”
fi=0VpeP, weW, iel, (15)
@' =>0YweW, iel (16)

For conciseness, the aforementioned VI problem given in Equations(13)—(16) can also be written in
the following compact vector form:
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() (F—£) D (q") (- q")=0Y(f, q) € O, (17)

where the feasible set ¢4 in vector form is,
Qi = {(f,q)|Af =q, >0, ¢>0}, (18)

where A is the O-D pair-route incidence matrix. The dimensions of the vectors f = (---, s SRR
q="(-q" )", n= ("'777;,1" <) and w= (---,u, )" are IN-IP, 111 1W, 111 -1PI, and I1-IWA,
respectively.

For the existence of a solution to this VI problem and its equivalence to the MC-METE-ED, please
refer to Appendix A. It is necessary to point out that the uniqueness of the equilibrium route flow
solution cannot be guaranteed. In order to prove the uniqueness, strict monotonicity of the mapping
is required. However, it is difficult to guarantee the monotonicity of the non-additive route METT with
respect to route flows in general.

2.3. Mean-excess travel time under the lognormal travel demand distribution

In this section, we provide a special case of the analytical METT expression under the lognormal
distributed demand uncertainty. Note that the lognormal distribution has been extensively used in
general reliability applications to model failure times. It can capture the asymmetric and skewed
characteristics of a probability distribution. For the lognormal distributed travel demand, the probability
distribution of the random route travel time can be derived as shown in Table II, where we use the
following Bureau of Public Roads (BPR)-type link performance function:

o = 1g[1+ B(va/Ca)'|.¥a € A, 19)

where t,, tao, v,, and C, are the travel time, free-flow travel time, flow, and capacity on link a, respectively.
f and n are BPR parameters. From the route travel time distribution shown in Table II, the expressions for
calculating TTB ¢ ;(o;) and METT 1),,(o) at a certain confidence level o; can be derived as follows:

&) = 1) + @ (o;)-0) Vp e P, we W, i€, (20)

w

w W O-P:t (q)_l(ai))z - w
npﬁi((xi) - gp,i(ai) + (\/Mexp <_2 - l((x,‘)~0'p’l

w PN @D
W O-PJ (q) (ch)) W .
Ry ~reeenit ] S NpEP, weW, icl,

b \/ﬂ(l — 0

where 17 and o)), are the mean and standard deviation of the travel time on route p between O-D pair w,
respectively, and @~ '(-) is the inverse of the standard normal cumulative distribution function. For details
of the derivation, interested readers may refer to Chen and Zhou [16] and Zhou and Chen [17]. For the nor-
mally distributed travel demand, please refer to Shao et al. [10] for the derivation of the analytical TTB
expression.

3. ROUTE-BASED SOLUTION ALGORITHM

The METT in the proposed VI problem is non-additive because it is not possible to decompose the
route METT into the sum of link-based generalized costs. Thus, the commonly used link-based traffic
assignment algorithms, such as the well-known Frank—Wolfe algorithm are not applicable. Considering
the special structure of this VI problem, we adopt a route-based algorithm using the MAD method to
obtain the equilibrium route flow and O-D demand pattern. The MAD method is attractive for solving
large-scale structured VI problems where the feasible set is an intersection between a simple set and a
polyhedron (see Han [18] for the convergence property). In this paper, we extend the MAD method
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210 X. XU ET AL.

developed by Chen and Zhou [16] to solve the MC-METE-ED model. We should point out that the
solution vectors in this paper include both the route flows and travel demands for each user class. These
considerations make the VI problem more complicated to solve compared with that in Chen and Zhou [16],
especially on the descent direction, step-size determination, and convergence criterion.

After attaching a Lagrangian multiplier vector 7t for the conservation constraint in Equation (14),
the original VI problem can be rewritten as follows:

F(x) (x —x") > 0,¥x € Q, (22)
where
f nf) - Al'm
x=1[q cQ, = (R‘f“” % R\+VV|\1| % R|W\|1|)7 F(X) — _Dfl(q) +m . (23)
[ Af —q

At this time, f € R'f"m because the conservation constraint has been eliminated. The new feasible set
Q, in Equation (22) is just an intersection of two non-negative orthants and a Euclidean space. This
manipulation facilitates the projection operations on the new simple feasible set. The solution proce-
dure of the MAD method is presented as follows.

Step 0: Initialization and parameter setting.

(1) Set values for parameters: tolerance error &, initial inner loop step-size f, its scaling factor p€(0,1),
adjusting factors ve(0,1), 6€(0,1), and scaling parameter y€(0,2) for updating the iterative solution.

(2) Set an initial solution x’€Q, where the only requirement is > 0, ¢° > 0.

(3) Set the iteration counter k:=0.

Step 1: Compute the METT w(f*) and the inverse demand function —D~(¢").
Step 2: Check convergence. Calculate the Euclidian norm Iir(x¥, Sy, where
r(xt, B,) =x* — Po [x — BF(x*, B)]. ie.,

I Xk,ﬂk fk - PR[’\ 1 [fk - ,Bk (n(fk) - AT(T‘k - ﬁk (Afk - qk)))]
(l‘z x*, By ) =1 4q- Prwi [@“ = B (-D7'(d") + (=" — i (A" —q")))]
r; Xk7 ﬂk ﬁk (Afk _ qk)

If max{||r(x*, B, )||/Br. |[r(x*,B:)||} < . then stop and set x":=x"; otherwise, find the smallest non-
negative integer my such thatfs, = f;-p™ satisfying

Bulrr (< 5)) [n(E) (@) + Al ) D (a) + D @)+
Bulrs 8 ) A () — By (o ) () <
(e (e B)IE + e B)IP).

where £ = Py [f* = B (n () — A7 (7 — B (A" — g)))], and
@ = Py [a" = B (D7 (@) + (= = B (AT —q)))]
Step 3: Compute 7 = w* — , (Afk - ﬁk>.
Step 4: Find the descent direction —d(x*, f3,).
() = i ()~ ()] - par e )

0B = | ot ) — B[ (@) + D (@)] + furs (- )
3 (x5, B,) — BiAr; (x5, By) + Bira (X5, B)

(Continues)
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Step 5: Find the step-size in the outer loop p(x*, 8,).

P, ) = S where (s, ) = [ (<5 B[+ [l B0

B (%, 5))" [n(t) = n(F)] - (2 (x, £))"[-D7(¢) + D' (@)
— By (rs (x*, 5k))TArl (X", Bi) + B (rs (x*, ﬁk)>T1'2(ka Bi)

Step 6: Update the iterative solution x*™' = Pq_[x* —yp(xk, B )d(x*, B;)], ie.

gt ) = | max{0, ¢ —yp(x", Bi)da(x", B)

,-n-kJrl ﬂk 7Vp(xk7 ﬁk)d3 (Xk7ﬁk)

<fk+1 ) max{0, f* —yp(x*, f,)d, (Xk7ﬁk)}}

Step 7: Update the step-size in the inner loop f;, ;. If

Al 8))" ) = (1) ) [0 (@) + 07 () |+
B (ra (x¥, B)) Ary (x5, B) — B (rs (3%, B)) o (X, ) >

o(Ilr G B+ s (4, B )

then set ;1= fi/u; else, set frs1 =P Set ki=k+1 and go to Step 1.

The MAD method mainly consists of an inner loop and an outer loop. The inner loop is to find a
suitable auxiliary solution, which is similar to finding an auxiliary link flow pattern in the convex com-
bination method. The outer loop aims to find a new iterative solution based on the descent direction
and the step-size corresponding to the auxiliary solution obtained from the inner loop. For more details
of deriving the descent direction and step-size determination, please refer to Appendix B.

4. NUMERICAL EXAMPLES

In this section, we use a small network to demonstrate the essential ideas of the proposed model, and a
medium network to show the applicability of the proposed solution algorithm.

4.1. Example 1: a small network

The simple network, depicted in Figure 1, consists of six nodes, seven links, and four O-D pairs.
We adopt the commonly used BPR function in Equation (19) with parameters §=0.15 and n=4. Link
free-flow travel time and capacity are also provided in Figure 1.

We assume the random O-D demands follow the lognormal distribution, where the expected value
follows the elastic demand function in Equation (24), and the variance-to-mean ratios (VMR) of all O-
D demands are equal to 0.3.

g’ =ri(qhy —u')YweW, i€l 24)

where g} is the expected demand of user class i between O-D pair w, ¢’ . is the maximum (or poten-
tial) demand between O-D pair w, u}” is the minimal METT of all routes between O-D pair w of user
class 7, and r; is the proportion of user class i in the travel demand between O-D pair w, i.e., > ;r; = 1.
The maximal demand of each O-D pair and the composition of each route are shown in Table III.
Travelers are partitioned into four user classes with the confidence level ranging from 50% to 95%
associated with the O-D demand proportions as shown in Table IV.

Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2014; 48:203-222
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Equilibrium results. 'The equilibrium results of the proposed model are presented in Table V. As
expected, the equilibrium results satisfy the following basic requirements:

The METE conditions: the METTSs on all used routes for each O-D pair and each user class are equal
and not greater than those of unused routes. For example, the METTs of route 2 for user classes 1-3
in O-D pair (1, 3) are greater than those of route 1, and consequently, travelers of user classes 1-3 only
use route 1, whereas travelers in user class 4 use both routes because of their equal METTS (i.e., 12.37)
at that confidence level.

The elastic demand functions: the actual travel demand for each O-D pair and each user class satisfies
the elastic demand function with respect to the corresponding equilibrium O-D METT. For example,
the equilibrium METT for O-D pair (1, 3) and user class 4 is 12.37, which gives the equilibrium travel
demand g = ry (¢ — u"¥) = 0.4 x (60— 12.37) = 19.05.

The conservation constraints: the foute flows for each O-D pair and each user class are feasible. Using
the same example earlier, the summation of route flows (i.e., 4.55 + 14.50) for O-D pair (1, 3) and user
class 4 equals the actual travel demand (i.e., 19.05) determined using the aforementioned elastic
demand function.

Besides, according to the equivalence property in Appendix A, (f, q") is the solution to the VI problem

if and only if it is a solution to the linear programming model (Equation (A.1)). For the equilibrium results
shown in Table V, we have n(f*)Tf* — D_l(q*)Tq* =9.69e-7~ 0. Thus, as expected, the optimal route-
based total system METT n(f)f" is quite close to the optimal O-D-based total system METT u'’q" =
D '(q")"q". In addition, the optimal values of the Lagrangian multiplier vector 7" associated with the
conservation constraints are equal to the minimal O-D METT vector u*, which is also consistent with
the well-known duality theory.

Free-flow

Link # . Capacity
travel time
1 10 35
2 3 30
3 12 35
4 4 35
5 5 35
6 3 35
7 4 25

Figure 1. Example network 1.

Table III. Composition of routes and demand distribution.

O-D pair Demand distribution Route Sequence of links
O-D (1, 3) Gmax =60, VMR =0.3 1 1
2 2-5-6
O-D (1, 4) Gmax =15, VMR =0.3 3 2-5-7
O-D (2, 3) Gmax =25, VMR =0.3 4 4-5-6
O-D (2, 4) Gmax =50, VMR =0.3 5 4-5-7
6 3

O-D, origin—destination; VMR, variance-to-mean ratio.

Table IV. Classification of users in Example 1.

User class Confidence level (%) Proportion of demand (%)
1 50 10
2 65 20
3 80 30
4 95 40
Sum 100
Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2014; 48:203-222
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Table V. Equilibrium flow and demand pattern of the proposed model.

O-D pair No. of route User class Flow METT Demand
(1, 3) 1 1 4.83 11.72 1 483
2 9.63 11.86
3 14.39 12.03 2 9.63
4 4.55 12.37
2 1 0.00 12.04 3 1439
2 0.00 12.11
3 0.00 12.20 4 19.05
4 14.50 12.37
(1,4) 3 1 0.21 12.89 0.21
2 0.41 12.95 0.41
3 0.59 13.04 0.59
4 0.72 13.21 0.72
2,3) 4 1 1.20 13.03 1.20
2 2.38 13.10 2.38
3 3.54 13.19 3.54
4 4.66 13.36 4.66
2,4) 5 1 0.00 13.88 1 3.64
2 0.00 13.94
3 0.00 14.03 2 7.26
4 4.94 14.19
6 1 3.64 13.58 3 10.84
2 7.26 13.71
3 10.84 13.87 4 1433
4 9.39 14.19

O-D, origin—destination; METT, mean-excess travel time.

From Table V, we can also see that route METT is increasing with the confidence level. The increase of
METT on route 1 is sharper than that on route 2 because of its larger variance of travel time. Route 1 has a
smaller mean travel time but a larger variance, whereas route 2 has a larger mean travel time but a smaller
variance. When the confidence level is less than 95%, route 1 has a lower METT than that on route 2, and
thus, all travelers of classes 1-3 only use route 1. With the increase of the confidence level, the METTs on
routes 1 and 2 gradually get close to each other. When the confidence level reaches 95%, travelers of user
class 4 use both routes because of the same METT (12.37). The aforementioned equilibrium results indi-
cate that considering both reliability and unreliability requirements of travel time variability may have a
more significant effect on route choice decisions for the more risk-averse travelers.

48.5 2.5
0-D(1,3) 0-D(1,4)
<= =
g g
g 48 £ 2
D 13
= =
47.5 1.5
12.5 36.5
0-D (2,3) 0-D (2,4)
= =
g g
g 12 g 36
D D
_ =
11.5 355

Hl UE Bl TTB (0.5) D METE (0.5) B TTB (0.7) EEMETE (0.7) T TTB (0.9) __METE (0.9)]

Figure 2. Elastic demands from different traffic equilibrium models: UE, user equilibrium; TTB, travel time
budget; METE, mean-excess traffic equilibrium. Note: TTB (0.5): the TTB model with the confidence level
of 50%.
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Elastic demand under different route choice criteria. In the following, we examine the effect of dif-
ferent route choice criteria on the actual travel demand. The expected travel demands obtained from the
UE, TTB, and METE models with a single user class (i.e., the same confidence level) are compared in
Figure 2. From these results, we have the following observations:

* As expected, the optimal travel demand pattern from the TTB model with the confidence level of 0.5
is equal to that from the UE model, which further validates the correctness of the results.

* The travel demands from the UE model are larger than those from both risk-averse models (i.e., TTB
and METE models). This means that ignoring travel time variability will overestimate the travel de-
mand level.

* For a particular confidence level, the optimal travel demands from the TTB model are always larger
than those from the METE model. This result indicates that ignoring the unreliability aspect of travel
time variability in the TTB model may lead to a biased overestimation of the actual travel demand
level.

e With the increase of users’ confidence level, the actual demand from the TTB (or METE) model is
always decreasing. This result implies that more conservative travelers are more likely to cancel trips
to hedge against travel time variability.

Effect of travelers’ classification. Recall that travelers are classified according to their confidence
levels, and each class corresponds to a certain demand proportion (see Equation (24)). Thus, travelers’
classification is related to the confidence level combination and user proportion combination. In this
section, two experiments are conducted to obtain insights into the effect of travelers’ classification:
(1) components of METT under different confidence levels and (2) demand patterns under different
user proportion combinations.

In Experiment (1), we compare the mean travel time (MTT), buffer travel time (BTT), and EED under
different confidence levels. We continue to use the same combination of confidence levels in Table IV
but set equal demand proportion for all classes (i.e., 25%). For demonstration purpose, the components
of METTs on routes 1 and 6 under the aforementioned setting are shown in Figure 3.

We can see that (a) the MTT is independent of the confidence level, and the BTT under the
confidence level of 50% equals O for user class 1; (b) with the increase of travelers’ confidence level
(i.e., from class 1 to class 4), both the BTT and the summation of BTT and EED are always increasing.
This means that more risk-averse travelers will add a larger travel time to ensure more on-time arrivals
and also to avoid worse trip times; and (c) the EED (i.e., the difference between METT and TTB) is
decreasing with the increase of confidence level. This decrease is attributed to the fact that under lower
confidence levels, if travelers cannot arrive at their destinations within the TTB, the EED could be

4
g
-~ 3
&S]
22
w
-
1 I EED
10.6 10.8 11 112 114 116 118 12 122 124 126
Travel Time of Route 1
4
g
=3 1
o
g2 B VT
=) C_IBTT
1 I EED

122 124 126 128 13 132 134 13.6 138 14 14.2

Travel Time of Route 6
Figure 3. Components of mean-excess travel time under different confidence levels. MTT, mean travel time; BTT,

buffer travel time; EED, expected excess delay.
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Figure 4. Origin—destination (O-D) demand and total demand under different proportion combinations.

large. However, with the increase of confidence level, the distribution tail beyond the TTB value is
gradually decreasing.

Recall that in Figure 2, we examined the travel demand obtained from different traffic equilibrium
models with a single user class. Here we conduct Experiment (2) to investigate the aggregate effect of
different user proportion combinations on the actual travel demand. Four cases with the same combination
of confidence levels (50%, 65%, 80%, 95%) as in Table IV but with different combinations of user class
proportions are compared. Again for demonstration purpose, we only show the demand of O-D pair
(1, 4) and the total travel demand (i.e., the summation of all O-D pair demands for all user classes) in
Figure 4. In Case 1, risk-neutral travelers with a confidence level of 50% dominate the four-class user
group; in Case 4, more risk-averse travelers with a confidence level of 95% dominate the user group.

From Figure 4, we can observe that from Case 1 to Case 4, the actual demand of O-D pair (1, 4) is
strictly decreasing as shown in the left panel. Similar results also occur for the other O-D pairs. Thus,
the total travel demand is also decreasing as shown in the right panel. In addition, the reduction from
Case 3 to Case 4 is the largest for both the O-D demand and total demand. The reason is that Case 4 is
dominated by the most risk-averse class 4 with a confidence level of 95%. This means the MC user-
group dominated by the more conservative travelers is more influenced by travel time variability
and will accordingly cancel more trips. This result is also consistent with the result under a single user
class presented in Figure 2.

4.2. Example 2: Sioux Falls network

In this section, we use the well-known Sioux Falls network to demonstrate the applicability of the pro-
posed algorithm to medium networks. This network contains 24 nodes, 76 links, and 550 O-D pairs.
The network topology and link performance parameters are available in the study conducted by
Leblanc [19]. We use the standard BPR function in Equation (19) with parameters f=0.15 and
n=4. For simplicity, we use a behaviorally generated working route set from Bekhor et al. [20]. In this
route set, the total number of routes is 3441, the maximum number of routes for any O-D pair is 13, and
the average number of routes is 6.3 per O-D pair. The random O-D demands are assumed to follow the
lognormal distribution, where the expected value follows the elastic demand function in Equation (24),

Table VI. Classification of travelers in Example 2.

User class Confidence level (%) Proportion (%)
1 70 30
2 90 70
Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2014; 48:203-222
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Figure 6. Evolution process of route flows, mean-excess travel times (METTs), demands, and multipliers. Note:
Flow (1406, 1): flow on route 1406 of class 1; Demand (1): actual demand of class 1.

and the VMRs of all O-D demands are equal to 0.3. The maximal O-D demand is the same as the O-D
trip table in the study by Bekhor et al. [20]. We consider two user classes as shown in Table VL.
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Table VII. Comparison of network-level performance measures.

Model User equilibrium Travel time budget Mean-excess traffic equilibrium
Total network travel time 37.73 (14.33%) 34.21 (3.67%) 33.00
Total network travel demand 301.12 (4.05%) 293.00 (1.24%) 289.41

The parameters used in the MAD method are set as follows: ¢=1e-5, f,=0.1, u=0.6, y=1.95, and
5=0.75. We use the residual error function lir(x*, B)ll/f; as the convergence measure. The initial
demand for a given O-D pair and a given user class is set to be the maximal demand of this O-D pair
multiplied by the proportion of this user class. The initial route flows for a given O-D pair and a given
user class are set to be the initial O-D demand of this user class divided by the number of routes
connecting this O-D pair. The algorithm is coded in MATLAB® 7.5 and run on a personal TOSHIBA
laptop computer with 2.00 G Pentium (R) Dual-Core processor and 1.86 G RAM.

Initially, we show the convergence curve of the MAD method in Figure 5. The algorithm terminates
after 2626 iterations, and the CPU time is 73 s. One can see that the residual error fluctuates sharply in
the early iterations and stabilizes after 700 iterations. The superior performance mainly owes to the
self-adaptive step-size strategy in Steps 2 and 7. The step-size ff; can adjust itself automatically according
to the route flows, METTS, and demands generated in the previous iterations.

To further demonstrate the convergence characteristics of the MAD method, we examine the evolu-
tion process of route flows, route METTs, O-D demands, and O-D multipliers of different user classes.
For demonstration purpose, we only show the results on the four routes between O-D pair (10, 14) in
Figure 6. One can see that the required accuracy (i.e., 1e-5) can be achieved within acceptable compu-
tational efforts. Also, as expected, the route flows, METTs, travel demands, and multipliers satisfy the
METT-based UE conditions, conservation constraints, and elastic demand functions.

Finally, we compare the network-level performance corresponding to the UE, TTB, and METE
models. All three models use the same elastic demand function, travel demand distribution, and user
classification. The total network travel time (TNTT) and total network travel demand (TNTD) are
shown in Table VII. The percentages shown in parentheses denote the relative differences with respect
to the METE model. We can observe that both UE and TTB models overestimate the TNTT and
TNTD, which may lead to a biased network performance assessment. Thus, both reliability and unre-
liability aspects of travel time variability should be simultaneously considered in travelers’ travel
choice and route choice decisions under uncertainty.

5. CONCLUSIONS AND FUTURE RESEARCH

In this study, we developed a MC-METE model with elastic demand. METT is adopted as a route
choice criterion to consider both reliability (on-time arrival) and unreliability (late arrival) aspects
of travel time variability. This model explicitly considers heterogeneous risk-aversion attitudes
and elastic demand in the METE framework. Specifically, each user class has their own risk
attitude toward travel time variability. The actual demand of each user class and each O-D pair
is dependent on the minimal O-D METT. The proposed model was formulated as a VI problem
and solved using a route-based MAD method to handle the elastic demand and heterogeneous risk-
aversion considerations. Numerical examples were also provided to illustrate the essential ideas of the
proposed model and the applicability of the MAD method to medium networks.

The analysis results indicated that (1) on the route choice level, considering both reliability and
unreliability requirements of travel time variability has a more significant effect on route choice
decisions for the more risk-averse travelers; (2) on the travel choice level, more conservative travelers
(or the MC user-group dominated by the more conservative travelers) are more likely to cancel trips to
hedge against travel time variability; and (3) on the network performance level, ignoring reliability and
unreliability aspects of travel time variability can overestimate the TNTT and TNTD, which may lead
to a biased network performance assessment.
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For future research, uncertainties from both demand fluctuation and capacity degradation should
be simultaneously considered. We plan to explore the characterization methods of travel demand
uncertainty and the effect of different travel demand distributions (e.g., Gamma, Weibull, Burr)
on the equilibrium flow patterns as well as network-wide performance measures. For solution
algorithm, embedding a column generation scheme (e.g., [21]) within the route-based MAD method
for testing large networks is needed for practical applications of the proposed traffic equilibrium
model. In addition, we plan to explore the mathematical properties of METT (e.g., monotonicity),
which are useful for developing more efficient solution algorithms. It will also be useful to enhance
the modeling capability by extending the current model to consider the effects of travel time
variability and heterogeneous risk-aversion attitudes on other travel choice dimensions (e.g., destination
choice and mode choice). The combined (or integrated) travel demand models are directly related to the
selection of different risk-taking choice criteria. We will examine the effect of using different risk-taking
criteria (e.g., TTB and METT) on other travel choice decisions in the future.

6. LIST OF SYMBOLS AND ABBREVIATIONS

6.1. Abbreviations

BPR Bureau of public roads
BTT Buffer travel time
EED Expected excess delay
MAD Modified alternating direction
MC-METE-ED  Multi-class mean-excess traffic equilibrium with elastic demand
METE Mean-excess traffic equilibrium
METT Mean-excess travel time
MTT Mean travel time
TNTD Total network travel demand
TNTT Total network travel time
TTB Travel time budget
UE User equilibrium
VI Variational inequality
VMR Variance-to-mean ratio
6.2. Symbols
N Set of nodes
A Set of links
w Set of O-D pairs
1 Set of all user classes
P" Set of routes connecting O-D pair w
P Set of P*
Ty Travel time on route p between O-D pair w
i Route flow of user class i on route p between O-D pair w
o Confidence level of user class i
C;’ ; Travel time budget of user class i on route p between O-D pair w
My i Mean-excess travel time of user class i on route p between O-D pair w
q’ Travel demand of user class i between O-D pair w
DY(-) Travel demand function of user class i between O-D pair w
u Minimal METT of user class i between O}D pair w
Vector of route TTBs & = ( . ;”_l., .. )
mn Vector of route METTs m = ( Tl iy .)T
f Vector of route flows f = ( P T .)T
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Vector of travel demands, q = ( cqY- . .)T
Vector of minimal METTs, u = ( cout )
O-D pair-route incidence matrix

T

> 2 e
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APPENDIX A

Appendix A presents the qualitative properties of the proposed VI problem, including the existence
of a solution to the VI problem, and its equivalence to the MC-METE conditions with elastic
demand.

Proposition 1. Existence The proposed VI problem admits at least one solution under the assump-
tions that the METT on each route between each O-D pair for each user class is positive and contin-
uous with respect to its route flow, and the inverse demand function between each O-D pair for each
user class is non-negative and continuous with respect to its travel demand.

Proof. The feasible set Qg is non-empty, closed, and convex. Moreover, the METT y(f) is positive and
continuous with respect to f, and the inverse travel demand function D~!(q) is non-negative and con-
tinuous with respect to q. According to Corollary 2.2.5 in the study conducted by Facchinei and Pang
[22], the aforementioned VI problem thus has at least one solution. This completes the proof. =

Proposition 2. Equivalence; The solution to the proposed VI problem is equivalent to the MC-
METE-ED conditions.

Proof. Equation (17) is equivalent to n(f*)"f — D! (q*) q>n(f*)"t* —D~'(q*)"q*, V(f,q) € Q.
Thus, (f*,q*) is a solution to the VI problem (17)—(18) if and only if it is a solution to the following

linear programming model with the same solution vectors (i.e., route flow and travel demand): =
min  q(f)'f-D'(q")q. Al
o min n(f") (@)'q (A.D)

Using the relationship between the primal and dual solutions of linear programming (Equation
(A.1)) [23], we can obtain

£ (n;;,.(f*) - u”) —OVpeEP, weW, icl, (A.2)

() —u'=0vp e P, we W, icl, (A.3)

];;f;*zo,vp eP’'. weW,iel, (A.4)

@ (u}” —pr! (q,?"*)) —0YweW, i€l (A.5)

w’ — D Mg ) =0vwe W, iel, (A.6)

g >0NweW, iel (A7)
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Equations (A.2)—(A.4) ensure that the equilibrium route flow pattern satisfies the METT-based UE
conditions. From Equations (A.5)—(A.7), the travel demand functions also give the equilibrium
demand pattern. Thus, the MC-METE-ED conditions are satisfied. This completes the proof.

APPENDIX B.

Some formulae used in the solution procedure are derived as follows.
Define r(x, f3) as

r1(x, B) £ — Pyron [f = B(n(f) — A" (m — B(Af — q)))]
rx,f) = | n(x,B) | = q- PR\WHI\ [q—B(-D7'(q) + (7 — B(Af — q)))]
r3(x, ) BAE — q) ®.1)
£~ Pyrnlf — i (¥) ’
=la- PRLW"‘” [q — fg,(x)]
g5(x)
Let (f*, q*, ") be an arbitrary solution of the VI problem.
(1) According the basic property of the projection operator, we have
T
{f — Pei(x) = Pprun[f — Pe (x )]} { e lf — g (x)] = }20, (B.2)
T
{a= B0 = Pywnla — bl } {Pownla — b)) —q |20, 3.3)
(2) Based on the monotonicity assumption, we have
ﬁ{”‘l( rinlf — Pei(x )]) (f*)}T{ Prenlf — Pe (x)] - }207 (B.4)

ﬁ{—D_l (PR\lwm [q— ﬁgz(x)}) +D7! (q*)}T{PR\yW\ [a — Bg,(x)] — q*}20~ (B.5)

(3) Because (f*, q*, @*) is a solution to the VI problem, we obtain

B{n(f") - ATﬂ*}T{PRw [f — pg,(x)] — f*}z‘l (B.6)
B{-D"'(q") + w*}T{PRw [4 - (%)) - q*}zo. (B.7)
Note that f —r(x,8) = Pprun[f — fg,(x)] and q —ra(x, ) = Pywin[q — fg(x)], then adding
Equations (B.2), (B.4), and (B. 6) we have ’
{ri(x, ) — Bln(t) - n(—nuﬁm—ﬁﬁn@wwHMWﬂ—w»‘ B3
(-1 —ri(x,p)=
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Similarly by adding Equations (B.3), (B.5), and (B.7), we can get

{r2(x, ) = B[-D (@) + D' (q — r2(x, B))] + Brs(x, f) — B(m — =)} -

(q — q" —ra(x, B))=0.

Adding Equations (B.8) and (B.9), we then have

£\ rixp) = f(E) —n(f — ri(x, B))] - PATEs(x, B)
q- q I‘Q(X,ﬁ) —[)’[—Dil(q)—|—D71(q—r2(x,ﬂ))] —|—ﬂl‘3(X,[))) =

r3(x, B) — BAr (X, B) 4 fra(x, B)

1 (x, B)IIP + |2 (x, )II* = Bri(x, B)) (F) —n(f —ri(x, )] —
B(ra(x, )" [-D 7 (q) + D7 (q — r2(x, B))] — B(r3(x, B)) Ari(x, f) +
Brs(x, B)) ra(x, B) = ¢(x, B).

X,

(B.9)

(B.10)

The self-adaptive step-size strategy in Steps 2 and 7 mainly comes from the right-hand-side term of
inequality (Equation (B.10)), and the second term on the left-hand side of inequality (Equation (B.10))

is the search direction in Step 4.
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