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Abstract- Boundary conditions in an unbounded domain, i.e. boundary condition at 
infinity, pose a problem in general for the numerical solution methods. The aim of this 
study is to overcome this difficulty by using Padé approximation with the differential 
transform method (DTM) on a form of classical Blasius equation. The obtained results 
are compared with, for the first time, the ones obtained by using a modified form of 
Adomian decomposition method (ADM). Furthermore, in order to see the consistency 
of solutions, they are also compared with the ones obtained by using variational 
iteration method (VIM).
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1. INTRODUCTION

In many areas of scientific fields such as plasma physics, fluid mechanics and
population models, many of the nonlinear phenomena can be modeled by nonlinear 
differential equations. The nonlinear differential equations which have boundary 
conditions in unbounded domains have a great interest and they will be examined in this 
work. However, many of the modeled nonlinear equations do not have an analytical 
solution. Both analytical solutions methods and numerical solutions methods are used to 
solve these equations. For instances, Adomian decomposition method [1–3], homotopy
perturbation method [3, 4], variational iteration method [5, 6, 24]. The differential 
transform method [7–15] is one of the effective and reliable numerical solution methods 
for handling both linear and nonlinear differential equations.

In this work, the differential transform method will be applied to a form of 
classical Blasius equation [16, 17]. 

2. BLASIUS EQUATION

Many different but related phenomena are stated and studied by the Blasius 
equation [9, 18, 19] that has a special importance for all boundary-layer equations in 
fluid mechanics. The Blasius equation can be described as the non-dimensional velocity 
distribution in the laminar boundary layer over a flat plate which is shown in Fig.1.
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Figure 1. Laminar flow over a flat plate

The continuity equation, the Navier Stokes equation and the boundary conditions
can be expressed as [20]:
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where u and v are the velocity in the x and y direction respectively.

After a group of transformations [20], the equations (1-5) reduce to the 
following form: 
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However, Eq. (6-7) and other forms of Blasius problem have boundary condition 

in unbounded domains, i.e. boundary condition at infinity and this makes a difficulty for 
the numerical solution methods. To overcome this difficulty, Padé approximants can be
applied to manipulate the obtained series for numerical approximations. For instance, in 
[21], using Padé approximants, Thomas-Fermi equation, which also contains boundary 
condition at infinity, was solved by the differential transform method.

3. DIFFERENTIAL TRANSFORMATION METHOD

Differential transform method is a numerical method based on Taylor expansion. 
This method tries to find coefficients of series expansion of unknown function by using 
the initial data on the problem. The concept of differential transform method was first
proposed by Zhou [7]. It was applied to electric circuit analysis problems by Zhou [7]. 
Afterwards, it was applied to several systems and differential equations. For instance, 
initial – value problems [10], difference equations [11], integro-differential equations 
[12], partial differential equations [13,14], system of ordinary differential equations 
[15]. 
Definition 1. The one–dimensional differential transform of a function y(x)  at the point 

0xx   is defined as follows [8,15]:
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where y(x)  is the original function and  kY  is the transformed function.

Definition 2. The differential inverse transform of  kY  is defined as follows [8,15]:
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From (8) and (9) we obtain
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The following theorems that can be deduced from Defs. 3.1. and 3.2. are given 
below:
Theorem 1. If )()()( xhxgxf  , then )()()( kHkGkF  .
Theorem 2. If )()( xgxf  , then )()( kGkF  , where   is a constant.
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4. PADE APPROXIMANT

A well known fact is that polynomials are used to approximate truncated power 
series. Further, the singularities of polynomials cannot be seen obviously in a finite 
plane. Since the radius of convergence of the power series may not large enough to 
contain the two boundaries, it is not always useful to use the power series [22]. Padé
approximants are applied to manipulate the obtained series for numerical 
approximations to overcome this difficulty. Padé approximant is the best approximation 
of a polynomial approximation of a function into rational functions of polynomials of 
given order [23].

Padé approximants are used widely in computer calculations due to the fact that 
a Padé approximant often gives better approximation of the function than truncating its 
power series and it may still work where the power series does not converge. Therefore, 
Padé approximants can be easily computed by using symbolic programming languages 
such as Maple or Mathematica.

A Padé approximation to f(x) on [a, b] is the quotient of two polynomials, say 
PN(x) and QM(x) of degrees N and M respectively [23]. The notation  MN  will be 
used to denote this quotient.
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In order to obtain better numerical results, the combination of the differential 
transform method and the diagonal approximants [N/N] will be used. 

5. APPLICATION

Consider the following boundary value problem related to another form of 
classical Blasius problem [16, 17].
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In order to find numerical values of )0(f  , the series obtained by the differential 

transform method and the diagonal Padé approximants will be combined. Several 
diagonal Padé approximants of different degrees will be used to form an opinion about 
the behavior of the solution of the Blasius equation.

Note that Af  )0( , where A is a positive constant.
Now, the differential transform method will be applied to (11) as follows;
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It is also necessary to find differential transform equivalence form of initial and 
boundary values. For the initial and boundary values, differential transform 
equivalences are as follows;

2
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Using Maple, from (13) and (14), the following solution is obtained;
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Now, our aim is to determine a numerical value for A using the boundary 
condition 

0)(lim 

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f (16)

which is in condition (12). In order to do this, derivative of polynomial solution (15)
should be taken. Then, after the formation of this equation by Padé approximation, we 
will apply the condition (16) for the obtained rational function.
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At last, the value 3.5773502690A  is obtained from equation 013 2  A .
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At last, the value 5.5163977790A  is obtained from equation
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At last, the value 8.5227030790A is obtained from equation 
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In [16], Padé calculations were made utmost [4/4] diagonal approximant. Hence, 
we will make our comparisons till this value.   

The diagonal approximants [2/2], [3/3] and [4/4] were computed by using Maple 
12. According to the above procedure, obtained values for A are listed at the left column 
in Table 1 below. Besides this, at the right column of the Table 1, the obtained values 
for A by using a modified form of Adomian decomposition method in [16] are listed.

Table 1. Padé approximants and numerical value of A
Padé Approximant A A (Ref. [16])

[2/2] 0.5773502693 0.5773502693

[3/3] 0.5163977795 0.5163977793

[4/4] 0.5227030798 0.5227030798

In addition to these, there does not exist analytical solution for this problem. 
Therefore, in order to see the consistency of solutions, the series solution up to the 12th

term of the problem are calculated by the differential transform method, Adomian
decomposition method and variational iteration method respectively with respect to the 
numerical value of A for the [4/4] diagonal approximant for which 0.5227030796 is the 
obtained value by variational iteration method [24]. Furthermore, they are calculated 
with step size 0.1 on the interval [0,1] and the results are shown graphically in Figure 1 
below. 
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Figure 1. Results obtained by ADM, DTM and VIM

6. CONCLUSION
Boundary conditions in an unbounded domain, i.e. boundary condition at 

infinity, pose a problem in general for the numerical solution methods. In this work, in 
order to get ride off this problem, Padé approximation with the differential transform 
method was used. The computations done above were performed by using Maple 12. 

The results we obtained in this study by the differential transform method are 
compared with, for the first time, the ones found by using a modified form of Adomian 
decomposition method in [16], which can be easily seen in Table 1.

Finally, convergence of the obtained results can also be seen from Figure 1. The 
results obtained here are in accord with the one found by variational iteration method, 
i.e. all of them are coincides. 
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