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SUMMARY

Reliability is an important factor in route, mode and also departure time choice analysis and is a key perfor-
mance indicator for transport systems. However, the current metrics used to measure travel time variability
may be not sufficient to fully represent reliability. Better understanding of the distributions of travel times is
needed for the development of improved metrics for reliability. A comprehensive data analysis involving
the assessment of longitudinal travel time data for two urban arterial road corridors in Adelaide, Australia,
demonstrates that the observed distributions are more complex than previously assumed. The data sets dem-
onstrate strong positive skew, very long upper tails, and sometimes bimodality. This paper proposes the use
of alternative statistical distributions for travel time variability, with the Burr Type XII distribution emerging
as an appropriate model for both links and routes. This statistical distribution has some attractive properties
that make it suitable for explicit definition of many travel time reliability metrics. Copyright © 2011
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many factors can adversely affect transport network performance. Different types of incidents, either
short term (e.g. vehicle breakdowns) or long term (e.g. bridge collapse), or random (e.g. road crashes)
or intentional (e.g. road works), can happen at any time and may lead to higher travel time variability
and perhaps wider consequences for the community. In addition, the need for more reliable transpor-
tation systems and demands for ‘just-in-time’ services have generated new interest in transportation
system reliability, which is thus a major research topic.
Travel time reliability is based on the concept of a travel time that meets travellers’ expectations [1].

Travellers expect their travel times not to exceed a scheduled value, or average travel time plus some
acceptable additional time, and hence, they can decide on a starting time for the journey. The concept
of an acceptable additional time is subjective and will vary depending on perceptions and individual
circumstances. Overly conservative travel time estimates may be unhelpful as these may cause travel-
lers to arrive too early. This leads to the use of maximum utility models to jointly determine departure
time and trip time, as discussed by Fosgereau and Karlstrom [2].
Acknowledging the appropriate travel time distribution and the probability of travel time ‘failure’1 is

thus important for the development of travel time reliability metrics. This is consistent with practice in
reliability engineering, which is concerned with measuring the consistency and the persistency of a
product under different conditions over a period. On the basis of the following considerations,

1Travel time failure is taken to be excess travel time incurred above some acceptable threshold.
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• The current metrics used to measure travel time variability may not be sufficient to fully represent
travel time reliability.

• There is known to be significant variability in individual travel times (e.g. [3]).
• There are growing demands for more reliable travel time measurements (e.g. see [4] and [5]).

A better understanding of the distributions of individual travel times is needed for the development
of relevant metrics for assessing travel time reliability.
This paper focuses on the specification of appropriate day-to-day travel time variability distribu-

tions.2 It first reviews previous research and then tests different statistical distributions using empirical
data. Whereas previous travel time reliability studies have often focused on freeway travel times—usually
because of the availability of suitable data sets involving observations of large numbers of individual
travel times over a short period (hours of the day)—the present study investigates travel time reliabil-
ity of two urban arterial road corridors. The study used continuous travel time data collected using
GPS-equipped probe vehicles travelling along the routes, with repeated runs made over long periods
(weeks and months) for individual journeys each starting at about the same time of day. This data
collection replicates the experiences of an individual traveller making a routine trip, such as the
journey to work.

2. TRAVEL TIME VARIABILITY DISTRIBUTIONS

Research on fitting continuous distributions to observed travel time data began many decades ago. Al-
though initial belief was that the normal distribution was appropriate, Wardrop [6] first suggested that
travel times followed a skewed distribution. Later, Herman and Lam [7] analysed urban arterial travel
time data collected in Detroit in a longitudinal study of work trip journey times. They found significant
skew in the observed times and proposed either the Gamma or lognormal distributions to represent
travel time variability.
Richardson and Taylor [8] then collected and analysed longitudinal travel time data in Melbourne.

They assessed the correlations between travel times on each section of the study route and developed
relationships between the travel time variability and the level of congestion. They concluded that travel
times on a link were independent of those on other links along the route and that the observed travel
time variability might be represented by a lognormal distribution.
Using continuous travel time data collected in Chicago, Polus [9] found that the Gamma distribution was

superior to normal or lognormal distributions. More recently Al-Deek and Emam [10] used the Weibull
distribution to model travel time reliability.

3. THE BURR DISTRIBUTION

Previous studies have fitted travel time data to normal, lognormal, Gamma and Weibull distributions.
However, these distributions do not seem to fit many empirical travel time data sets particularly well,
as they are unable to model travel time distributions with strong positive skew and long upper tails.
Similar problems have arisen in reliability engineering, where most life-test data is also distributed
with positive skew and long tails. Study of the best-fit distributions for product lifetime data are thus
of interest. Initial product reliability analyses assumed that the lognormal distribution could be appro-
priate for life-test data distributions. However, recent research has tended to reject this hypothesis,
while the Weibull and Gamma distributions have also proved largely unsuccessful in fitting observed
life-test data distributions. Zimmer et al. [11] noted the advantages of the Burr Type XII distribution
(subsequently termed the Burr distribution) in modelling observed lifetime data. The Burr distribution
is also well known in actuarial theory, where it has found a place in modelling distributions of insur-
ance claims. It was developed by Burr [12] for the express purpose of fitting a cumulative distribution
function (c.d.f.) to a diversity of frequency data forms. In its basic form, it has two parameters, c and k.

2This is in keeping with the broad planning definition of travel time reliability as the level of variation from day to day for
a trip made by an individual starting at about the same time each day (e.g. see [22]).
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The probability density function (p.d.f.) f(x, c, k) of the Burr distribution is

f x; c; kð Þ ¼ ckxc�1 1þ xcð Þ� kþ1ð Þ

where x> 0, c> 0 and k> 0. The c.d.f. F(x, c, k) is given by

F x; c; kð Þ ¼ 1� 1þ xcð Þ�k

The distribution has some interesting statistical properties [13]. In the first instance, the rth moment
of the distribution (E(xr)) will only exist if ck> r, in which case,

E xrð Þ ¼ m′r ¼
kΓ k � r

c

� �
Γ r

c þ 1
� �

Γ k þ 1ð Þ

where Γ(y) is the mathematical Gamma function. The product ck is thus an important factor for the
visualisation of a specific Burr distribution fitted to observed data. In addition, the modal value xm is
given by

xm ¼ c� 1
ck þ 1

� �1=c

but xm will only exist if c> 1. (If c≤ 1, then the distribution is L-shaped.)
The Burr distribution thus has a flexible shape and is well behaved algebraically. A number of reli-

ability engineering applications have utilised it to model the product life process [14]. The distribution
has an algebraic tail that is useful in modelling less frequent failures [15]. As its c.d.f. can be written in
closed form, its percentiles are easily computed. It allows a wide variety of shapes in its p.d.f. [11],
making it useful for fitting many types of data and for approximating many different distributions
(e.g. lognormal, log-logistic, Weibull and generalised extreme value).

4. EMPIRICAL TRAVEL TIME DATA

Our longitudinal journey to work travel time surveys are being conducted3 on arterial road routes in the
Adelaide metropolitan area by using GPS-equipped probe vehicles. The GPS provides a second-by-
second data stream, including location and travel speed continuously recorded as the vehicle moves
along the route. The routes, shown in Figure 1, are as follows:

(1) Glen Osmond Road, from the eastern suburbs of Adelaide into the central business district
(CBD). This route comprises 16 links, with link lengths varying from 152m to 1146m, and
posted speed limits of either 60 km/h or 50 km/h

(2) The South Road corridor, comprising 22 links. Link lengths vary from 135m to 4007m with
posted speed limits between 80 and 60 km/h.

There are 180 runs for route 1 and 67 runs for route 2. Tables I and II show the mean, standard de-
viation and coefficient of variation of link travel times for each route.

4.1. Normal and lognormal distributions

Normal and lognormal distributions were first fitted to the observed data, using the Kolmogorov–Smirnov
goodness-of-fit test. The results for the Glen Osmond data set are shown in Table III. Neither the normal
nor lognormal distributions fitted any of link travel time data sets on this route. A slightly different

3The longitudinal surveys are ongoing, and the data presented in this paper represent the first 12months of data collection
on two specific routes. Other routes have recently been added to the study.
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result was found for South Road, where the normal distribution fitted three of the 22 links at the 0.1
significance level (and six of the 22 links at the 0.05 significance level4), as shown in Table IV. Similar
results were found for the lognormal distribution (see also Table IV).
The overall results confirm the inability of either the normal and lognormal distributions to ade-

quately represent the observed data in most cases. Other distributions are required.

4That is, only three of the links had a better than 0.1 probability that the normal distribution fitted the observed data,
whereas six of the links had a better than 0.05 probability of that. All other links had less than a 0.05 probability that
the normal distribution represented their observed data.

Figure 1. South Road and Glen Osmond Road study routes.
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4.2. Other distributions

Because the travel time distributions were generally right-skewed with long upper tails, the next stage
was to test other theoretical distributions that could better represent this phenomenon. This first re-
quired exploratory data analysis of the observed distributions, then comparisons with different distri-
bution models. Thus the Burr, Generalised Pareto, Weibull and Gamma distributions were all used
as candidate models.
In the first step, visualisation of the data was important. This was done by drawing histograms of

observed link travel times and by superimposing a theoretical p.d.f. on the graph. Some example
graphs are provided. Figure 2 shows the histogram for link 3 in the Glen Osmond data. Figure 3 shows

Table II. South Road link travel time mean, standard deviation and coefficient of variation.

Link name Link no. Link length (m) Mean (s) Standard
deviation (s)

Coefficient
of variation

Southern Expressway II–Penney Hill Rd 1 3019 142.1 3.5 0.025
Penney Hill Rd–Honeypot Rd 2 213 14.5 5.1 0.354
Honeypot Rd–Doctors Rd 3 944 71.6 15.2 0.212
Doctors Rd–Flaxmill Rd 4 1177 100.1 26.7 0.266
Flaxmill Rd–Cannington Rd 5 710 45.2 3.9 0.086
Connington Rd–O’Sullivan Beach Rd 6 442 37.3 13.5 0.362
O’Sullivan Beach Rd–Sheriff Rd 7 1165 117.9 29.5 0.250
Sheriff Rd–Southern Expressway I 8 4008 183.8 20.2 0.110
Panalatinga Road–Lander Road 9 745 45.6 14.5 0.317
Lander Road–Chandlers Hill Road 10 1965 96.4 9.0 0.094
Chandlers Hill Road–Black Road 11 595 60.2 24.5 0.407
Black Road–Majors Road 12 135 4.6 2.9 0.625
Majors Road–Seacombe Road 13 3097 169.5 23.1 0.136
Seacombe Road–Marion Road 14 323 26.9 16.4 0.608
Marion Road–Southern Expressway 15 592 72.0 56.0 0.778
Southern Expressway–Flinders Drive 16 416 43.1 16.8 0.391
Flinders Drive–Sturt Road 17 393 53.5 18.1 0.339
Sturt Road–Ayliffes Road 18 837 69.2 41.7 0.602
Ayliffes Road–Daws Road 19 2037 300.8 158.1 0.525
Daws Road–Edward Street 20 1625 216.4 80.3 0.371
Edward Street–Cross Road 21 1209 105.8 54.1 0.512
Cross Road–Anzac Highway 22 1561 262.3 104.7 0.399

Table I. Glen Osmond link travel time mean, standard deviation and coefficient of variation.

Link name Link no. Link length (m) Mean (s) Standard
deviation (s)

Coefficient
of variation

GOR: Queens Ln–Bevington Rd 1 1146 122.7 54.2 0.442
GOR: Bevington Rd–Fullarton Rd 2 1058 141.1 76.5 0.542
GOR: Fullarton Rd–Young St 3 458 38.5 21.2 0.552
GOR: Young St–Greenhill Rd 4 606 112.1 53.4 0.477
GOR: Greenhill Rd–Hutt Rd 5 331 33.0 21.1 0.640
Hutt Rd: GOR–South Tc 6 405 41.8 13.4 0.320
Hutt St: South Tc–Gilles St 7 165 23.2 13.5 0.583
Hutt St: Gilles St–Halifax St 8 150 16.5 7.3 0.446
Hutt St: Halifax St–Angas St 9 311 31.8 10.6 0.334
Angas St: Hutt St–Frome St 10 337 39.5 10.9 0.277
Frome St: Angas St–Wakefield St 11 165 45.7 26.4 0.578
Frome St: Wakefield St–Flinders St 12 165 26.7 17.2 0.644
Frome St: Flinders St–Pirie St 13 152 26.2 25.7 0.980
Frome St: Pirie St–Grenfell St 14 156 63.6 52.2 0.820
Frome St: Grenfell St–Rundle St 15 153 41.5 47.7 1.148
Frome St: Rundle St–North Tc 16 162 57.6 35.4 0.614

GOR, Glen Osmond Road.
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Table III. Results for the goodness-of-fit test for Glen Osmond link travel time data—normal and lognormal
distributions.

Link
Number

Kolmogorov–Smirnova Kolmogorov–Smirnovb (log data)

Statistic df Sig. Statistic df Sig.

1 0.222 176 0.000 0.129 176 0.000
2 0.172 176 0.000 0.108 176 0.000
3 0.329 176 0.000 0.260 176 0.000
4 0.157 176 0.000 0.162 176 0.000
5 0.395 176 0.000 0.355 176 0.000
6 0.159 176 0.000 0.169 176 0.000
7 0.227 176 0.000 0.201 176 0.000
8 0.248 176 0.000 0.207 176 0.000
9 0.262 176 0.000 0.230 176 0.000

10 0.142 176 0.000 0.145 176 0.000
11 0.115 176 0.000 0.136 176 0.000
12 0.181 176 0.000 0.154 176 0.000
13 0.264 176 0.000 0.201 176 0.000
14 0.157 176 0.000 0.198 176 0.000
15 0.273 176 0.000 0.188 176 0.000
16 0.103 176 0.000 0.105 176 0.000

aFitting normal distribution to the link travel times.
bFitting normal distribution to the logarithmic values of the link travel times.

Table IV. Results for the goodness-of-fit test for South Road link travel time data—normal and lognormal
distributions.

Link
Number

Kolmogorov–Smirnova Kolmogorov–Smirnovb (log data)

Statistic df Sig. Statistic df Sig.

1 0.127 47 0.057 0.132 47 0.040
2 0.320 47 0.000 0.302 47 0.000
3 0.220 47 0.000 0.189 47 0.000
4 0.135 47 0.031 0.125 47 0.063
5 0.239 47 0.000 0.203 47 0.000
6 0.286 47 0.000 0.245 47 0.000
7 0.134 47 0.033 0.124 47 0.067
8 0.177 47 0.001 0.162 47 0.003
9 0.248 47 0.000 0.208 47 0.000

10 0.193 47 0.000 0.181 47 0.001
11 0.126 47 0.061 0.065 47 0.200*

12 0.338 47 0.000 0.265 47 0.000
13 0.188 47 0.000 0.171 47 0.001
14 0.303 47 0.000 0.220 47 0.000
15 0.259 47 0.000 0.188 47 0.000
16 0.222 47 0.000 0.184 47 0.000
17 0.073 47 0.200* 0.125 47 0.062
18 0.349 47 0.000 0.279 47 0.000
19 0.091 47 0.200* 0.133 47 0.037
20 0.118 47 0.102 0.103 47 0.200*

21 0.275 47 0.000 0.238 47 0.000
22 0.120 47 0.090 0.093 47 0.200*

Significance values (Sig.) shown in italics are not statistically significant at the 5% level. Those marked with an asterisk (*) are
clearly insignificant.
aFitting normal distribution to the link travel times.
bFitting normal distribution to the logarithmic values of the link travel times.
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the histogram for link 5 in the South Road data. The theoretical curves in these figures are for the Burr
distribution, fitted to each observed histogram using maximum likelihood estimation. The two plots show
the inherent flexibility of the Burr distribution and its ability to replicate the long tails in the observed data.
Table V summarises the goodness-of-fit tests for the Glen Osmond data, for the Weibull distribu-

tion, Gamma distribution, Burr distribution and the Generalised Pareto distribution. The Gamma dis-
tribution was rejected for all links except link 16 (and then only accepted at the 0.01 significance level),
whereas the Weibull distribution was rejected for all links except link 11 (again, accepted only at the
0.01 significance level). The Generalised Pareto distribution was rejected for a majority (10 of 16) of the
links and was only accepted at 0.05 significance for two of the links. The Burr distribution was rejected for
six of the 16 links and was accepted at 0.05 significance for three links and at 0.01 significance for the
remaining seven links. Overall, it could therefore be seen as a plausible model for the link travel time data.
A confounding factor is that several of the links on this route showed evidence of bimodality, including
Glen Osmond links 4, 9, 10, 11, 12 and 14 for which the Burr distribution was rejected on statistical
grounds (Table V). Figure 4 shows the observed histogram for Glen Osmond link number 10, showing
indications of bimodality. The phenomenon of bimodality is explored in Section 4.3.
The results for the South Road data set were perhaps more conclusive (see Table VI). The Burr dis-

tribution fitted almost all of the links at the 0.05 significance level. Similar results were also found for

Figure 2. Histogram and fitted Burr distribution for link 3 Glen Osmond travel time data.

Figure 3. Histogram and fitted Burr distribution for link 5 South Road travel time data.
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the Generalised Pareto distribution. The Gamma and Weibull distributions were each rejected for 15 of
the 22 links and were only accepted at 0.01 significance for the other seven links.
Although previous studies [9,10] had suggested that the Gamma and Weibull distributions might fit

the travel time distributions, our data sets gave different results. At the 0.05 significance level, the
Gamma and Weibull distributions only fitted seven links of the South Road data set (see Table VI)
and one link of the Glen Osmond data set (see Table V).
On the basis of the two data sets, it is reasonable to conclude that the Burr distribution can represent

longitudinal travel time variability data and may be more useful in this regard than other distributions,
such as the Generalised Pareto, and certainly better than the lognormal, normal, Weibull and Gamma
distributions. The flexible form and attractive mathematical and computational characteristics of the
Burr distribution enhance its suitability and therefore likely applications. For instance, as its c.d.f. is
explicitly defined, percentile values can be computed directly.

Table V. Kolmogorov–Smirnov goodness-of-fit test results for the Gamma, Weibull, Burr and Generalised Pareto
distributions fitted to the Glen Osmond link travel time data.

Link
number

Glen Osmond

Gamma Weibull Burr Generalised Pareto

1 Rejected Rejected Accepted Rejected
2 Rejected Rejected Accepted at 0.01 Accepted at 0.01
3 Rejected Rejected Accepted at 0.01 Rejected
4 Rejected Rejected Rejected Rejected
5 Rejected Rejected Accepted at 0.01 Rejected
6 Rejected Rejected Accepted Rejected
7 Rejected Rejected Accepted at 0.01 Rejected
8 Rejected Rejected Accepted at 0.01 Rejected
9 Rejected Rejected Rejected Rejected
10 Rejected Rejected Rejected Accepted at 0.01
11 Rejected Accepted at 0.01 Rejected Accepted
12 Rejected Rejected Rejected Accepted at 0.01
13 Rejected Rejected Accepted at 0.01 Accepted at 0.01
14 Rejected Rejected Rejected Rejected
15 Rejected Rejected Accepted at 0.01 Rejected
16 Accepted at 0.01 Rejected Accepted Accepted

Figure 4. Histogram and fitted Burr distribution for link 10 Glen Osmond Road travel time data—indication of
bimodality?
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Tables VII and VIII show the estimated Burr distribution parameters for Glen Osmond and South
Road link travel time data sets. The parameter estimates were obtained using maximum likelihood.
These tables clearly show that the range of fitted c parameters for both data sets is quite large. For

instance the highest c value for the Glen Osmond data set is 79.05, whereas the lowest is 1.69. In this
case, the lowest value occurs for an extremely high value of k, which is an outcome of the maximum
likelihood computations and may therefore be seen as an outlier in that respect. The general range of
the estimated c values is (16, 45). The range for the k parameter, ignoring the ‘outlier’ for link 16, is
relatively small: (0.05, 0.12). Given the importance of the product ck in determining the statistical
properties of the Burr distribution, it is interesting to consider this product (see right hand column in
Table VII). Apart from the outlier, there is a high degree of consistency in the values of ck, with typical
values of about 3.0.
The fitted values of c and k for the South Road data set are shown in Table VIII. This data set has

two ‘outliers’ in terms of k values: links 17 and 20. Most of the fitted k values for the other links are in

Table VI. Goodness-of-fit test results (Kolmogorov–Smirnov) for the Gamma, Weibull, Burr and Generalised
Pareto distributions fitted to the South Road link travel time data.

Link
number

South Road

Weibull Gamma Burr Generalised Pareto

1 Accepted at 0.01 Accepted at 0.01 Accepted Accepted
2 Rejected Rejected Rejected Accepted at 0.01
3 Rejected Rejected Accepted Accepted
4 Accepted at 0.01 Accepted at 0.01 Accepted Accepted
5 Rejected Rejected Accepted Accepted
6 Rejected Rejected Accepted Accepted
7 Accepted at 0.01 Accepted at 0.01 Accepted Accepted
8 Rejected Rejected Accepted Accepted
9 Rejected Rejected Accepted Accepted
10 Rejected Rejected Accepted Accepted
11 Rejected Rejected Accepted Accepted
12 Rejected Rejected Accepted at 0.01 Rejected
13 Rejected Rejected Accepted Accepted
14 Rejected Rejected Accepted Accepted
15 Rejected Rejected Accepted Accepted
16 Rejected Rejected Accepted Accepted
17 Accepted at 0.01 Accepted at 0.01 Accepted Accepted
18 Rejected Rejected Accepted Accepted
19 Accepted at 0.01 Accepted at 0.01 Accepted Accepted
20 Accepted at 0.01 Accepted at 0.01 Accepted Accepted
21 Rejected Rejected Accepted Accepted
22 Accepted at 0.01 Accepted at 0.01 Accepted Accepted

Table VII. Parameters of the Burr distribution for Glen Osmond Road data, for those links fitted by the Burr
distribution.

Link Number Burr parameter

k c ck

1 0.05 8.96 0.45
2 0.11 16.13 1.77
3 0.09 44.71 4.02
5 0.06 52.81 3.17
6 0.04 79.05 3.16
7 0.06 27.74 1.66
8 0.12 25.15 3.02
13 0.05 29.16 1.46
15 0.06 20.93 1.26
16 42767.00 1.69 722276.23
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the range (0.04, 0.1) although there are three values exceeding 1.0. The fitted c values are typically be-
tween 16.0 and 50.0, with the values of the product ck generally being between 3.0 and 8.0. Thus, there
is some degree of consistency between the two data sets. It should be noted that the fitted values of c
and k are affected by the choice of the measurement unit for the independent variable, being seconds
for the observed link travel times in this case. As there is a wide range of link distances over the two
data sets (see Tables I and II) and thus a wide range in mean travel times between links, a degree of
variation in the distribution parameters is to be expected. In further research, we intend to attempt to
relate the c and k parameter values to road, environment and traffic variables, to produce a method
for selecting and applying suitable parameter values for applications of the Burr distribution to travel
time reliability assessments.
The case of link 2 in the South Road data set is interesting. This was the only link in that data set that

the Burr distribution did not fit, and the only distribution to fit the data from the link was the Gener-
alised Pareto distribution (Table VI), and then only at 0.01 significance. The link is short in length
(only 213m, see Table II). The travel times for this link are very skewed, with a strong modal fre-
quency at about 11 seconds and a very long tail with observations stretching out to a maximum of
30 seconds (mean observed travel time 14.5 seconds, standard deviation 5.1 seconds, sample size
n = 67). The data are decidedly unimodal, but the length of the tail inhibits the degree of fit of the can-
didate distributions. Figure 5 shows the fitted distributions plotted with the observed histogram. Whilst
the Burr distribution is not a good statistical fit, it is able to capture most of the shape of the observed
histogram and indeed matches the modal frequency.
The analysis presented earlier is for individual links in the route. Similar results were also found in

the assessment of travel time variability at the overall route level. In this case, the Weibull, Gamma,
Burr and Generalised Pareto distributions were fitted to the overall route travel times. Goodness-of-
fit tests were conducted, and the test results are shown in Table IX. These distributions were quite suc-
cessful in representing the observed route travel time distributions particularly in relation to positive
values and long tails. However, the goodness-of-fit tests indicated that only the Burr and Generalised
Pareto distributions gave promising results. The Weibull and the Gamma distributions did not fit the
Glen Osmond corridor at all. For South Road, however, the Weibull and Gamma distributions were
accepted. The Burr distribution fits both data sets well, further supporting the notion that this distribu-
tion could be a useful model of travel time variability. Figure 6 shows the Burr c.d.f. and the observed

Table VIII. Parameters of the Burr distribution for South Road data, for those links fitted by the Burr distribution.

Link Number Burr parameter

k c ck

1 2.470 58.249 143.88
3 0.099 46.133 4.57
4 0.068 48.187 3.27
5 0.258 49.391 12.74
6 0.191 16.979 3.24
7 0.035 94.399 3.30
8 0.062 109.490 6.79
9 0.097 51.734 5.02
10 0.097 81.603 7.92
11 1.066 5.644 6.02
12 0.251 13.191 3.31
13 0.044 161.350 7.10
14 0.171 16.699 2.86
15 0.083 16.752 1.39
16 0.054 42.015 2.27
17 49 424.000 3.061 151 286.86
18 0.068 70.856 4.82
19 4.828 2.595 12.53
20 13 791.000 3.050 42 062.55
21 0.036 74.759 2.69
22 1.656 4.852 8.03
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c.d.f. for the Glen Osmond route. Figure 7 shows the corresponding plots for South Road. The ability
of the Burr distribution to model the long upper tails of the observed distributions is evident in these
graphs.

Figure 5. Fitted theoretical distributions (Burr, Gamma, Generalised Pareto and Weibull) for the observed travel
time data for link 2 in the South Road data set.

Table IX. Goodness-of-fit tests for overall travel times on the two routes.

Route Significance
level

Significance
value

Computed Kolmogorov–Smirnov statistic

Weibull Gamma Generalised Pareto Burr

Glen Osmond 0.05 0.10150 0.16771 0.14573 0.09107 0.05778
0.01 0.11346 0.16771 0.14573 0.09107 0.05778

Rejected Rejected Accepted Accepted
South Road 0.05 0.16322 0.06134 0.07707 0.09000 0.05666

0.01 0.18252 0.06134 0.07707 0.09000 0.05666
Accepted Accepted Accepted Accepted

Figure 6. Burr distribution and observed cumulative density functions for the Glen Osmond route travel times.
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4.3. Bimodality

The issue of bimodality as suggested in Figure 4 is of interest and was considered for all those links in
the Glen Osmond data set, which could not be represented by a unimodal (Burr) distribution (as seen in
Table V). If f(x) is the p.d.f. of a bimodal distribution comprising two component unimodal distribu-
tions f1(x) and f2(x), then it can be described mathematically as

f xð Þ ¼ f1f1 xð Þ þ 1� f1ð Þf2 xð Þ

where f1 is the proportion of the overall distribution belonging to f1(x). The corresponding c.d.f. F(x)
is given by

F xð Þ ¼ f1F1 xð Þ þ 1� f1ð ÞF2 xð Þ

Determination of the split of observed values of x between the two component populations, of the
value of f1, and the resulting values of the parameters describing distributions f1(x) and f2(x) is a major
issue. One approach to test for bimodality is the Hartigan DIP test [16]. The DIP statistic measures the
maximum difference between an empirical c.d.f. and the unimodal c.d.f. that minimises that maximum
difference. It produces a probability that the observed data could come from that unimodal distribution
and can be used to test the null hypothesis that the data are unimodal. The test was applied to those links
in the Glen Osmond data set, which the Burr distribution did not fit, with a bimodal normal distribution
used as the theoretical model. It indicated that five of the 16 links (i.e. links 4, 9, 10, 11 and 12) in the
Glen Osmond data showed statistical evidence of bimodality at the 0.1 significance level (see Table X).
These tables show the probability of rejection of the null hypothesis, and the estimated means, standard
deviations and proportions of the component distributions.5

Statistical evidence is useful, but an explanation of the phenomenon of bimodality in travel time var-
iability distributions is also required. For the case of urban arterial roads, the influence of delays at traf-
fic signal may provide an explanation. For instance, experiencing two or more red signal phases at an
intersection may substantially increase link travel times. On already congested sections or routes, the
queuing delay then experienced by drivers could be similar to or even exceed the running time needed
to traverse the link, thus doubling or even tripling the total link travel time. On the other hand, expe-
riencing less queuing at signalised intersections will substantially reduce the total travel time. This

5However, it must also be noted that neither the Burr distribution nor the Bimodal Normal distribution fitted the observed
data for link 14 in the data set. Therefore, further investigation may be needed for that particular link.

Figure 7. Burr distribution and observed cumulative density functions for the South Road route travel times.
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result was found by Davis and Xiong [17], who also observed bimodality in travel time distributions
and were able to ascribe this to signal performance. We suspect that similar factors may apply in the
Adelaide data sets, and this is the subject of ongoing research.
According to Ko and Guensler [18], the mixing parameter of the Bimodal Normal distribution in

speed distribution analysis may be used to explain the state of traffic congestion. The first subgroup
in the bimodal distribution might represent congested traffic, and the second is then uncongested traf-
fic. A similar interpretation may also be applied to travel time analysis. The first subgroup of the dis-
tribution might represent freely flowing traffic or traffic near the free flow condition, whereas the
second subgroup illustrates congested traffic with very long travel times. Therefore, a vital step is to
determine the parameters for each data set. These parameters will describe the behaviour of the data
and can also indicate additional factors that might affect the shape of the travel time distribution. As
the bimodal travel time distributions mostly occurred in the Glen Osmond data set, the subsequent dis-
cussion focuses on that data set and in particular for those links for which the Burr distribution had
been rejected. The results of the maximum likelihood parameter estimation for these links are given
in Table X. In all cases, the first component group is that with the smaller mean value.
By examining the difference in the means and in the standard deviations of the two component

populations in the bimodal speed distribution, Jun [19] postulated how these differences could be used
to support the hypothesis of bimodality. This discussion could then lead to further tests to assess
whether the bimodal speed, and travel time distributions are actually built up by two different popula-
tions—the short and long travel time population. For instance, Jun [19] suggested that the mean speed
difference should be more than 32.2 km/hour (20 mph) in order to indicate a distribution based on two
separate populations. Consequently, this current study needs to establish what the mean and the stan-
dard deviation differences would be for a fully bimodal distribution of travel times.
The means of the second component group seems to be double or even four times higher than those

of the first group (see Table X). The standard deviations of the second component group are also much
larger than the standard deviations of the first group.
Additionally, the mixing parameter for the Glen Osmond Road data varies between 0.2 and 0.9. One

interesting finding is that the mixing parameter for link number 4 in Glen Osmond Road is 0.92, which
means that, for this link, 92% of the travel time data belong to the first component group and only 8%
belong to the second group (see Table X). For link 9, the second component group forms about a quar-
ter (23%) of the total population, whereas for links 10, 11 and 12, the second component group forms a
majority (between 61% and 78%) of the population.
The other factor that might induce bimodality in the urban road links is link length, as those links that

have larger probabilities of bimodality tend to be the shorter links. For instance, in the Glen Osmond
Road data set, links 9, 10 and 11, 12, 13 and 14 are short links with link lengths less than 320m.
The short link phenomenon may be seen in parallel with our first assumption that the bimodal travel

time might occur because some survey runs experienced two or more traffic signal cycles on the con-
gested short link, whereas the normal experience might require only one cycle. Thus, we can say that
the link length might be one contributing factor for the bimodal travel time distribution. The next sec-
tion checks whether the coordinated signal setting in urban areas might contribute to these phenomena
and discusses a possible way to overcome this.

Table X. Bimodality results for Glen Osmond link travel times, including DIP statistic, means and standard devia-
tions of component populations, and proportions.

Link
number

DIP
statistic

Probability Component population 1 Component population 2

Mean1
(s)

SD 1
(s)

Proportion
(f1)

Mean2
(s)

SD 2 (s) Proportion
(f2 = 1�f1)

4 0.0693 0.999 102.9 35.7 0.92 219.6 93.8 0.08
9 0.0618 0.990 26.9 2.7 0.77 47.5 11.5 0.23
10 0.0393 0.950 28.5 1.4 0.33 44.9 9.4 0.67
11 0.0370 0.900 13.5 1.5 0.22 54.9 22.7 0.78
12 0.0450 0.900 13.4 1.5 0.39 35.1 17.3 0.61
14 0.0910 – na na na na na na
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The data collected in this study came from two urban arterial roads. Arterial roads are operationally
and technically different to freeways, for which most previous data have been collected (e.g. [9] and
[20]). Traffic movement on urban arterial roads is affected by the traffic signal settings, parking and
bus stops. Additionally, each intersection has its own traffic signal settings based on road type, the
intersecting volumes including turning movements, and physical road capacity. Therefore, another fac-
tor that might influence the bimodal distribution is traffic signal setting.
Our second assumption is that the bimodality occurred because of the large differences in travel

times on short links depending on whether the test vehicle arrived during a green phase or during a
red phase at the downstream signals. Therefore, a second test is to merge some consecutive short links
into one longer link. We propose that the longer link will eliminate the observed effects of travel
through a number of intersections along the link and could even out the overall impacts of delays at
any one intersection.
Traffic signal settings, route data and link diagrams were obtained from the Transport SA Traffic

Control Centre. From these, we selected two or more consecutive links in the Glen Osmond Road data
set that travelled in the same direction without any right or left turn manoeuvres and then merged those
links into single links. In addition, we also considered the type of signal setting priority for the roads
and the link coordination system and checked whether those consecutive links were under the same
control system; if so, then we grouped those links into one single link.
The selected links in Glen Osmond Road were merged into three single links based on the data of

the coordinated signal setting. Table XI shows the intersection names and the controlling intersections
along the Glen Osmond Road study route.
With the controlled intersection data, the new link configuration is shown in Table XII. New bimod-

ality tests were conducted using the new link combination data set. A 0.90 probability of bimodality
was found for link combination 1, whereas there was only a 0.01 probability for link combination 2
(see Table XII.)
The probability of 0.90 for bimodality means that the bimodal distribution was still apparent for link

combination 1. For link combination 2, the 0.01 probability indicates that the bimodality was broken
up. Additionally, Figure 8 illustrates the resulting histogram for link combination 2, which clearly
shows the strong skew in the upper tail and is unimodal as observed for other sections of the travel time
route. Thus, new tests were conducted to fit the Burr distribution to these link combinations. Thus,
Table XII also shows the results of the goodness-of-fit tests. At the 0.05 significance level, link com-
bination 1 did not fit the Burr distribution, as expected from the bimodality analysis. On the other hand,
the Burr distribution provided a statistically significant fit for link combination 2.
Thus, the conclusion that can be drawn from this test is that the merged travel times might be helpful

in the data analysis for short links, which were under the same controlled signalised intersection, but

Table XI. Intersection names and controlling intersection for the Glen Osmond route.

Intersection no. Link no. Intersection name Controlling intersection Controlled by

TS 0374 1 Bevington Rd/Glen Osmond Rd TS 0093
TS 0093 2 Fullarton Rd/Glen Osmond Rd CI TS 0093
TS 0220 3 Young St/Glen Osmond Rd TS 0093
TS 0069 4 Greenhill Rd/Glen Osmond Rd TS 0093
TS 176 5 Hutt Rd/Glen Osmond Rd TS 0093
TS 3059 6 South Tc/Hutt Rd TS 3073
TS 3105 7 Gilles St/Hutt St TS 3073
TS 3073 8 Halifax St/Hutt St CI TS 3073
TS 3081 9 Angas St/Hutt St TS 3073
TS 3091 10 Frome St/Angas St not coordinated
TS 3069 11 Wakefield St/Frome St CI TS 3069
TS 3066 12 Flinders St/Frome St TS 3069
TS 3062 13 Pirie St/Frome St TS 3069
TS 3056 14 Grenfell St/Frome St TS 3069
TS 3038 15 Rundle St/Frome St TS 3069
TS 3037 16 North Tc/Frome St CI TS 3037

CI, controlled intersection.
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for some longer links such as link 3 and 4, the merger of two or more consecutive links did not change
the occurrence of bimodality. Therefore, future research using new methods to interrogate historical
data from urban traffic control systems [21] coupled with the continuous (time stamped) data from
the GPS runs will address this issue.

5. CONCLUSIONS

This paper has approached the question of travel time reliability by considering two separate sets of
longitudinal travel time data sets from arterial road routes. The search is for a tractable model that
can reasonably represent observed variations in day-to-day travel times and thus can provide a statis-
tical model for the analysis of travel time reliability. The observed travel time distributions are charac-
terised by very long upper tails and strong positive skew. Analysis of these data sets led to the
conclusion that the lognormal, Weibull and Gamma distributions, although having the characteristics
of positive skew and reasonably long upper tails, were unable to fully represent the observed data.
Therefore, the research focused on other continuous distributions that could accommodate those pat-
terns. The Burr distribution was considered as a leading candidate for travel time variability, with some
other distributions also suggested. The Burr and Generalised Pareto distributions emerged as reason-
able models, for both links and routes. However, in terms of overall performance, the Generalised Par-
eto was less able to represent the characteristics of the observed travel time distributions. The Burr
distribution was able to provide good overall representation of the observed data. Given the attractive
features of this distribution in terms of its mathematical tractability and its flexibility, this distribution
can be proposed as a useful model of variations in travel times. We believe that this finding has impor-
tant implications for the development and use of metrics for travel time reliability, which are likely to

Table XII. The link combinations for the Glen Osmond data set, the DIP statistic and the result of Kolmogorov–
Smirnov goodness-of-fit test.

Previous link no. Link combination DIP statistic Probability Goodness-of-fit
test at 0.05 significant

level (Burr)

3 1 0.044 0.90 Rejected
4
11 2 0.017 0.01 Accepted
12
13
14
15

Figure 8. Histogram and fitted Burr distribution for link combination 2.
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be based on considerations of travel time distribution percentiles [22], because of the significant skew
in the distributions. The Burr distribution is especially well able to represent the skew, and percentile
values can be easily computed for it.
However, for some cases, the Burr distribution fails to fully portray the travel time variability data,

especially for those links (such as found in the CBD), which are in grid systems and are short in length.
Travel time data for short links tend to be bimodal. Therefore, this study tries to look for the appropri-
ate bimodal distribution for those links and to examine potential factors that might affect the occur-
rence of bimodality. The initial results suggest the hypothesis that link length and coordinated
signalised intersection may be the factors that contributes to bimodality.
The findings and the result from the data analysis show us that bimodality in the travel time distri-

bution can be tested by using some existing procedures. Maximum likelihood estimation can be used
to generate the bimodal normal distribution to help us in exploring the behaviour of each travel time
distribution. What we had in this study is the case where the differences of two means and the differ-
ences of two standard deviations are quite large. For some links, the second mean of the link is twice of
the first mean, and for some other links, the second mean could reach triple or even four times the
value of the first.
The result show that the shorter links tend to have bimodal travel time distribution and these phe-

nomena will be broke up when those short links have been merged into one single longer link based
on the coordinated signal setting. The result is not end of the story as there is further scope to look
at factors such as the effect of the SCATS (Sydney Coordinated Adaptive Traffic System) traffic
control system on the travel time data. There will then be the issue of the development of suitable
models for bimodal travel time variability distributions, most likely using mixture models.
Additionally, further research is also required to develop appropriate general Burr parameters that

can characterise the variability of urban arterial road travel times and to relate those parameters to
environmental and operational factors for road corridors.
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