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Introduction
In recent years, mixture model has gained more and more 
attention among practitioners and statisticians (McLachlan 
& Peel, 2000). Finite mixture models (FMMs) underpin a 
number of statistical techniques, one of which is growth 
mixture modeling (GMM), a technique becoming increas-
ingly popular in longitudinal studies due to its flexible 
analysis framework combining continuous and categorical 
latent variables (Bauer & Curran, 2004; B. O. Muthén, 2004; 
B. O. Muthén & Shedden, 1999). In a recent publication, 
“Handbook for Advanced Multilevel Analysis,” several 
researchers (B. O. Muthén & Asparouhov, 2011; Vermunt, 
2011) have pointed out the importance of combining multi-
level modeling with mixture models. Despite “the richness 
of detail that a multilevel growth mixture model can extract 
from the data” (B. O. Muthén & Asparouhov, 2011, p. 38), 
“many issues have not yet been fully resolved” due to the fact 
that “multilevel mixture modeling is a rather new area of sta-
tistical methodology” (Vermunt, 2011, p. 78). This article 
attempts to examine the impact of ignoring the higher level 
nesting structure in multilevel mixture models (MMMs) and 
helps to build the body of knowledge in multilevel mixture 
modeling.

Despite the flexibility provided by FMM, when research-
ers analyzed their data using FMM, they generally assumed 
that the participants were independent from each other even 
though it might not always be true. For example, in educa-
tional setting, the data structure is very likely to contain two 

or more levels (e.g., students nested within schools). 
Nevertheless, when researchers analyzed their data using 
FMM, they ignored the higher level nesting structure (i.e., 
schools) and analyzed the model by assuming that the stu-
dents were independent from each other (e.g., D’Angiulli, 
Siegel, & Maggi, 2004). In a literature search we conducted 
in PSYCINFO (from year 2000 to 2011) for empirical stud-
ies applying mixture modeling in different substantive areas, 
we have found only one recent study using MMM (Van Horn 
et al., 2008). Some of these studies did not need to use MMM 
because their data did not have the higher organization level. 
However, some studies used mixture modeling when they 
should have used MMM by ignoring the highest level of 
nesting (e.g., the school level) and mistakenly assume that 
individuals are independent from each other (reasons for 
doing so include lack of cluster ID, MMM’s model complex-
ity, and/or model convergence issues). In a recent simulation 
study conducted by Chen, Kwok, Luo, and Willson (2010), 
the authors have found that when modeling latent growth tra-
jectories, ignoring the highest level results in the redistribu-
tion of the variance from the ignored level (i.e., the 
organization/school level) to the adjacent level (i.e., the 
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individual/student level). The effects of ignoring clustering 
have not been studied in the finite mixture modeling setting. 
It is important to examine its impact and make applied 
researchers more aware of the consequences of not consider-
ing the higher organization level and use caution in their 
interpretation of statistical results when they had to ignore a 
higher level.

Purpose of the Study
The purpose of this article is to examine the impact of ignor-
ing a higher nesting structure in MMM on the accuracy of 
classification of individuals, and the accuracy as well as sta-
tistical inference (i.e., Type I error rate and statistical power) 
of the parameters for the model of each subpopulation.

Data structure including students nested within schools is 
considered. Two latent classes with known group member-
ships were generated and then analyzed for the true (MMM 
considering the higher level structure) and misspecified 
(FMM ignoring the higher level structure) models. Two sim-
ulation studies were conducted. In Study 1, the two latent 
classes were balanced in both sizes and variances, whereas in 
Study 2, the two latent classes were unbalanced in sizes and 
variances. Results were presented to show how the hit rate 
and the relative biases (RBs) for group mean estimates and 
the respective standard errors were influenced by ignoring 
the higher level nesting structure.

Brief Review of Multilevel Mixture Models (MMMs)
In this section, key concepts related to multilevel finite (nor-
mal) mixture models with continuous indicators are pre-
sented. The development of MMMs drew upon two lines of 
research. One component of MMM is finite mixture model-
ing (FMM), which assumes that the data under analysis is 
composed of a discrete number of components. FMM can 
handle situations where a single parametric family is unable 
to provide a satisfactory model for local variations in the 
observed data (McLachlan & Peel, 2000). FMM is similar to 
multiple group analysis; however, an important difference 
between mixture modeling and standard multiple group 
analysis is that in mixture modeling, the group membership 
is not observed or latent (B. O. Muthén, 2001; Vermunt & 
Magidson, 2005). This is why some researchers refer FMM 
as Finite Mixture Modeling (FMM), although statisticians 
often reserve the term FMM for the situation in which all 
response variables are categorical (Vermunt, 2007). In this 
article, we will use the term FMM to refer to mixture model 
with continuous response variables.

FMM has the capacity of modeling the unknown hetero-
geneous subpopulations and the random variation of the 
response variables within latent classes. However, FMM 
does not consider the situation of multilevel data in which 
individuals are nested within organizations. Hence, FMM 
cannot handle nonindependence of individuals due to cluster 

sampling. As an extension to FMM, the MMMs take the 
nonindependence of individuals into consideration by speci-
fying a model for each level of the multilevel data. The 
model for each level could be different, depending on 
whether we assume heterogeneity and/or model the random 
effects at the individual level and the organizational level. 
For example, at the individual level, we can specify a mix-
ture model that models individuals’ response patterns and 
classifies individuals into different subpopulations as well; 
whereas at the organization level, we can specify a model 
which only models the variance of organizations, but does 
not classify organizations into different subpopulations. It is 
also possible to specify a mixture model at the organization 
level. However, this article only addressed the more com-
mon MMM with classification at the individual level (e.g., 
students being classified into different subgroups within 
schools; patients being classified into different subtypes 
within clinics).

Study 1
Method

Data generation. In Study 1, data with two known sub-
populations under a two-level model were first generated 
with equal population sizes and variances. Then, the data 
were analyzed as a two-level model (i.e., true model) using 
multilevel mixture model (MMM) and as a single-level model 
(i.e., misspecified model) using FMM. The two-level model 
for data generation is shown below:

Level 1:

	 Y eij j j ij ij= + +β β0 1 subpopulation ,	     (1a)

with

	 e N oij ~ ( , ).σ
2

	 (1b)

Level 2:

	 β γ µ0 00 0j j= + , 	 (1c)

	 β γ1 01j = , 	 (1d)

with

	 µ τ0 00j N~ ( , ),0 	 (1e)

where subpopulationij was a dichotomized variable with 0 
and 1 representing two different subpopulations.

Suppose Level 1 is the student level and Level 2 is the 
school level. There were 40 schools, and within each school 
there were 20 students. The number of students in each sub-
population was 400, as the mixing proportion was set to be 
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50% versus 50%. Within each school, there were 20 students 
coming from two subpopulations, 10 at-risk versus 10 non-
at-risk. Altogether, there were 800 students within each rep-
lication for data generation. The number of higher level units 
was set to be 40 given that the recommended minimum num-
ber of higher level units for MMMs is 30 (L. K. Muthén, 
2003; B. O. Muthén, 2005).

In this two-level model, a total of four parameters needed 
to be specified: two fixed effect coefficients (i.e., γ00 and γ01) 
and two variances of the random effects (i.e., σ2 and τ00). 
Before specifying the population parameters in the condi-
tional model, a random intercept model in which there are no 
subpopulations is presented as follows:

Level 1:

	 Y eij j ij= +β0
* , 	 (2a)

with

	
e N oij

* *~ ( , ),σ
2

	 (2b)

Level 2:

	 β γ µ0 00 0j j
* * *= + 	 (2c)

with

	 µ τ0 000j N* *~ ( , ). 	 (2d)

The variance of the random effect at Level 1 was speci-
fied following Raudenbush and Liu’s (2001) criteria, namely, 
σ

2 1* = .
For τ00

*, the intraclass correlation (ICC) formula  

ICC = +τ σ τ00
2

00( )  was used to obtain the values  
corresponding to small- and medium-effect size. By fixing 
ICC equal to .10 as a small ICC which is very common for 
studies in education (Hox, 2002) and .20 as a medium ICC, 
the values for a small τ00

* (.111) and a medium τ00
* (.250) 

were obtained.
According to Snijders and Bosker (1999), adding a pre-

dictor (i.e., subpopulationij) at Level 1 only contributes to the 
variance of the Level 1 random errors but does not contribute 
to between-level variance. The formulas for calculating the 
within and between variances when there is multilevel struc-
ture in the data are σ σ

2 2
within =  and σ τ σ

2
00

2
between n= +( / ) , 

where n is the number of students per school.
Using these formulae for calculation, a small (0.161) and 

a medium (0.300) σ
2
between  for the random intercept model 

was obtained. After adding subpopulationij as a predictor at 
Level 1, ßij was actually the difference between the two sub-
populations within each school (cluster), and γ01 was the 
average difference between these two subpopulations across 
all clusters. The effect size R2 was used to characterize the 
difference between the two subpopulations with small, 

medium, and large effect sizes being 0.1, 0.3, and 0.5 according 
to Cohen (1988, 1992). R2 = .5 meant that 50% of the variance 
between the two subpopulations could be explained by their 
group membership. Therefore, the larger the R2, the larger the 
difference between the two subpopulations.

Using the R2 information, small, medium, and large ßij val-
ues could be calculated and was 0.632, 1.095, and 1.414, respec-
tively. The corresponding σ2 in the conditional model for small, 
medium, and high levels of group difference was 0.9, 0.7, and 
0.5. τ00 for the conditional model could be solved using equation 

σ τ σ τ σ
2

00
2

00
2

between n n= + = +( / ) ( / )* * , because ICC 

magnitude stayed the same across the random intercept and 
the conditional models. For ICC = .1, τ00 was 0.116, 0.126, 
and 0.136 for small, medium, and large effect sizes, respec-
tively; for ICC = .2, τ00 was 0.255, 0.265, and 0.275 for 
small, medium, and large effect sizes, respectively.

After fixing γ00 to 1, the mean for Subpopulation A and the 
mean for Subpopulation B were calculated using Equation 
(1a). The mean of Subpopulation A was 1 in all conditions, 
and the means for Subpopulation B were 1.632, 2.095, and 
2.414 at different levels of R2.

In summary, by specifying R2(0.1, 0.3, and 0.5) and ICC 
(.1 and .2) values, and also setting δ2 = 1, γ 00 1= , the popula-
tion parameter values for the other fixed effect coefficient 
(i.e., γ01) and the two variances of the random effects (i.e., σ2 
and τ00) were obtained.

The simulation used a 3 (effect sizes—amount of variance 
explained by group membership) × 2 (magnitude of ICC) fac-
torial design to generate the data. A total of 500 replications 
were generated for each condition using SAS 9.1, yielding a 
total of 3,000 data sets. Each data set was then analyzed by a 
true model (MMM considering the higher/cluster level, type = 
two-level mixture) and a misspecified model (FMM ignoring 
the higher/cluster level, type = mixture) using Mplus 4.2 
Mixture routine (L. K. Muthén & Muthén, 2006-2007).

Analysis. For each condition, valid replications for data 
analysis were selected because among the replications with 
converged results, there were latent classes with very few 
students (i.e., 1 or 2). A valid replication was defined as one 
of the two subpopulations (or classes) with class size at least 
equal to or larger than 6% of the total sample size (i.e., 48 out 
of 800). This 6% criterion was based on the average percent-
age of sample size for the smallest class in published studies 
using FMM found in PsycINFO database.

The accuracy of classification of individuals, and the 
accuracy as well as the test of significance (i.e., Type I error 
rate and statistical power) of the parameter estimates of the 
model for each subpopulation were then evaluated.

Hit rate is the percentage of at-risk/non-at-risk students 
correctly classified as at-risk/non-at-risk. The true and mis-
specified models were evaluated by comparing the hit rate 
difference between the two models.

The group mean parameter estimates from the true and 
misspecified models were summarized across the valid 
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replications for each of the six conditions. The RB for each 
parameter estimate was calculated using the following 
equation:

	
B

est pop

pop

( ) ,θ
θ θ

θ
=

−

where θest  is the mean of a parameter estimate across the 

valid replications and θpop is the true parameter value. RB 
equal to zero indicates an unbiased estimate of the parame-
ter. A negative RB indicates an underestimation of the 
parameter (i.e., the estimated value is smaller than the true 
parameter value), whereas a positive RB indicates an over-
estimation of the parameter (i.e., the estimated value is 
larger than the true parameter value). The cutoff value of 
0.05 recommended by Hoogland and Boomsma (1998) was 
used for acceptable RB of parameter estimates.

The RB of estimated standard errors was computed using 
the following equation:

	
B S

S S

S

False True

True

( ) ,
_ _

_
θ

θ θ

θ

=
−

	 (4)

where S Falseθ _  is the mean of the estimated standard 

errors of the group mean parameter estimate across the valid 

replications in the misspecified model, and S Trueθ−
 is the 

standard deviation of the parameter estimate across the valid 
replications in the true model within a particular design con-
dition. The standard deviation was obtained after fitting the 
correctly specified model to the data (i.e., the model consid-
ering the higher level nesting structure), and thus represents 
the “true” sampling variation, or standard error, that would 
have been achieved had the model been properly specified. 
Hoogland and Boomsma (1998) recommended a cutoff 
value of 0.10 for acceptable RB of estimated standard errors.

ANOVAs were conducted to determine the contribution 
of the two design factors (i.e., R2 and ICC) and their interac-
tion effect, with η2 (i.e., η

2 = SS SSEffect Total ) as the effect 
size indicator. η2 was used instead of the significance test 
because with the large number of records, the sum of square 
error was substantially reduced and any tiny effect could be 
detected as significant using the F test. Therefore, λ2 01≥ .  was 
adopted as the effect size indicator to filter out the effects trivial 
in magnitude and to evaluate the impact of design factors.

Results
Hit rate. Table 1 presents the number of valid replications 

in Study 1 and the average hit rate under true and misspeci-
fied models across valid replications. The results show that 
as group difference increased, the hit rate increased for both 
true and misspecified model. Besides, within the same design 

condition, the hit rate under true model is always higher than 
that under misspecified model. As ICC increased, the differ-
ence in hit rate between true and misspecified models 
increased.

ANOVA results indicate that only R2, F(2, 2257) = 
1,2217.44; p < .001; η2 = .91, had substantial impact on the 
true model hit rate, which increased as R2 increased. 
However, for the misspecified model, both R2, F(2, 2257) = 
5,904.61; p < .001; η2 = .83, and ICC, F(1, 2257) = 142.551; 
p < .001; η2 = .01, had impact. The hit rate under misspeci-
fied model increased as R2 increased but decreased as ICC 
increased. For the difference in hit rate between true and 
misspecified models, there was an interaction effect between 
R2 and ICC, F(2, 2257) = 24.55; p < .001; η2 = .02. As R2 and 
ICC increased, the difference in hit rate between true and 
misspecified models increased.

Relative Bias (RB) of group mean estimates. Table 2 presents 
the mean RB of group mean estimates across valid replica-
tions under true and misspecified models. There was an 
underestimate of Class 1 (the smaller mean) mean and an 
overestimation of Class 2 (the larger mean) mean under both 
true and misspecified models when R2 = 1. When R2= .3 and 
.5, the mean RBs under both models were close to zero, 
except for the mean RB for Class 1 was underestimated 
slightly when ICC = .2.

Table 1. Hit Rate of True and False Models in Study 1

Conditions Hit rate

R2 ICC
Valid 

replications
True 
(%)

False 
(%)

Differ 
(%)

.1 .1 258 61 61 1

.1 .2 217 61 60 2

.3 .1 411 73 70 3

.3 .2 390 73 68 4

.5 .1 496 84 81 3

.5 .2 491 84 78 6

Note: ICC = intraclass correlation; Differ = true model hit rate – false 
model hit rate.

Table 2. Relative Bias of Group Mean Estimates in Study 1

Conditions True False

R2 ICC Class 1 (%) Class 2 (%) Class 1 (%) Class 2 (%)

.1 .1 −23 15 −24 17

.1 .2 −23 16 −28 20

.3 .1 −5 3 −5 3

.3 .2 −6 3 −9 4

.5 .1 −2 1 0 0

.5 .2 −3 1 −1 0

Note: ICC = intraclass correlation.

ˆ

ˆ
ˆ

ˆ

ˆ

ˆˆ

ˆˆ

ˆ ˆ

ˆ
ˆ ˆ

ˆ
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Table 3. Relative Bias of  Variance Estimates in Study 1

Conditions True False

R2 ICC σ2 (%) τ00 (%) σ2 (%)

.1 .1 −20 −9 −11

.1 .2 −20 −5 0

.3 .1 −5 −16 11

.3 .2 −6 −7 26

.5 .1 −1 −16 27

.5 .2 −3 −9 53

Note: ICC = intraclass correlation.

ANOVA results showed that only R2, Fs(2, 2257) = 
323.481 and 606.988; ps < .001; η2s = .22 and .35 for Class 
1 and Class 2, respectively, had substantial impact on the RB 
of group mean estimates under true model, which decreased 
as R2 increased. Similar results were found for misspecified 
model, Fs(2, 2257) = 366.814 and 681.945; ps < .001; η2s = 
.24 and .38 for Class 1 and Class 2, respectively.

Relative Bias (RB) of variance estimates. Table 3 presents the 
mean RBs of variance estimates of the true and misspecified 
model. For the true model, the mean RB of most Level 1 and 
Level 2 variance estimates were within ±10%, whereas for 
the misspecified model, there was a trend of overestimation 
in Level 1 variance estimates.

ANOVA results indicated that R2, F(2, 2257) = 506.515; p 
< .001; η2 = .31, had substantial impact on the RB of Level 1 
variance estimates under true model, and ICC, F(1, 2257) = 
32.515; p < .001; η2 = .01, had an impact on Level 2 variance 
estimates under true model. For the misspecified model, 
there was an interaction effect between R2 and ICC, F(2, 
2257) = 43.726; p < .001; η2 = .014.

Relative Bias (RB) of standard errors of group mean esti-
mates. Table 4 presents the mean RBs of standard errors 
for group mean estimates under the misspecified model. 
There was an inflation of standard errors for group mean 
estimates under the misspecified model. ANOVA results 
show that R2, Fs(2, 2257) = 10.017 and 13.931; ps < .001; 
η2s = .009 and .012 for Class 1 and Class 2, respectively, was 
the major source of impact when RBs of the standard errors 
for group mean estimates were the dependent variables.

Study 2
Method

Data generation. To extend the findings from Study 1, 
which was based on the balanced design (i.e., the two classes 
had exactly same number of observations and variance 
across clusters), Study 2 was conducted by taking the unbal-
anced sample size and variance (i.e., unequal class size for 

the two subpopulations) into account along with other design 
factors as considered in Study 1. There were two imbalance 
types, Imbalance Type 1 and Imbalance Type 2. Under 
Imbalance Type 1, large size was associated with large vari-
ance in Group 1 and small size was associated with small 
size in Group 2; under Imbalance Type 2, large size was 
associated with small variance in Group 1 and small size was 
associated with large size in Group 2. The group size and 
variance varied at Level 1 for the two latent classes. A large 
group size is a group of 15 students, whereas a small group 
size is a group of 5 students. A larger variance group has a 
variance 3 times of the variance of the smaller variance 
group, so that the variance between the two latent groups 
was distinguishable. Equation (5) was used to calculate the 
variances of each individual group based on the size of each 
group. The value of S2

p, which was the pooled Level 1 vari-
ance of the two latent classes, was set to be 0.9, 0.7, and 0.5, 
respectively, because the variance accounted for by group 
membership was 0.1, 0.3, and 0.5 in Study 1.

	 S
n s n s

n np
2 1 1

2
2 2

2

1 2

1 1

2
= − + −

+ −
( ) ( )

	 (5)

The simulation used a 3 (amount of variance explained by 
group membership) × 2 (magnitude of ICC) × 2 (imbalance 
type) factorial design to generate the data. A total of 500 rep-
lications were generated for each condition using SAS 9.1, 
yielding a total of 6,000 data sets. Each data set was then 
analyzed by a true model (MMM considering the higher/
cluster level) and a misspecified model (FMM ignoring the 
higher/cluster level) using Mplus 4.2 Mixture routine (L. K. 
Muthén & Muthén, 2006-2007).

Analysis. Similar to Study 1, valid replications were 
selected, with hit rates and RBs of parameter estimates 
under the 12 conditions for both true and misspecified mod-
els calculated and examined. ANOVAs were conducted to 
determine the contribution of the design factors and all pos-
sible interactions.

Table 4. Relative Bias of Standard Errors of Group Mean 
Estimates in Study 1

Conditions False model SE Bias

R2 ICC SE1 (%) SE2 (%)

.1 .1 9 17

.1 .2 11 8

.3 .1 20 31

.3 .2 21 20

.5 .1 3 9

.5 .2 13 13

Note: ICC = intraclass correlation.
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Results

Hit rate. Table 5 presents the number of valid replications 
for Study 2 and the average hit rate under true and misspeci-
fied models. Similar to the results found in Study 1, as group 
difference increased, the hit rate increased for both true and 
misspecified models. Besides, the hit rate under true model 
was always higher than that under misspecified model within 
the same condition. As ICC increased, the difference in hit 
rate between true and misspecified models increased. In 
addition, Imbalance Type 2 (i.e., large variance associated 
with small class) always had higher hit rates than Imbalance 
Type 1 (i.e., large variance associated with large class) when 
all other conditions remained the same.

ANOVA results indicated that there was an interaction 
effect between the magnitude of R2 and imbalance type, F(2, 
3642) = 1,028.61; p < .001; η2 = .15 for true model; F(2, 
3642) = 359.02; p < .001; η2 = .08 for misspecified model, 
for both the true and misspecified models when the hit rate 
was the dependent variable. The hit rate increased for both 
imbalance types as R2 increased. However, When R2 was 
low, the difference between the two imbalance types was 
larger than when R2 was high. The hit rate for Imbalance 
Type 2 was higher than that for Imbalance Type 1. Under the 
misspecified model, when other conditions stay the same, hit 
rate was higher when the ICC value was smaller, F(1, 3642) = 
79.92; p < .001; η2 = .01.

There was an interaction effect between the magnitude of 
R2 and imbalance type on the hit rate difference between true 
and misspecified models, F(2, 3642) = 22.56; p < .001; η2 = 
.01. The estimated mean hit rate difference between true and 
misspecified models increased for both imbalance types as 

R2 increased. Hit rate under true model was higher than that 
under the misspecified model. However, at higher levels of 
R2, the difference in hit rate for Imbalance Type 1 is larger 
than that for Imbalance Type 2. Besides, when other condi-
tions stayed the same, difference in hit rate was larger 
when the ICC value was larger, F(1, 3642) = 110.85; p < 
.001; η2 = .03.

Relative Bias (RB) of group mean estimates. Table 6 presents 
the mean RBs of group mean estimates under true and mis-
specified models. There was bias outside the range of ±10% 
for both the true and misspecified models. ANOVA results 
indicated that there was an interaction effect between R2 and 
ICC, Fs(2, 3642) = 449.637 and 92.023; ps < .001; η2s = .15 
and .04 for the two classes in the true model; Fs(2, 3642) = 
253.900 and 45.950; ps < .001, η2s = .09 and .02 for the two 
classes in the misspecified model, when the RBs of Class 1 
and Class 2 were the dependent variables separately. The 
mean RB decreased for both imbalance types as R2 increased. 
There were more biases under Imbalance Type 1 than Imbal-
ance Type 2. There tended to be more biases for Class 1 
(smaller mean) mean estimate than that for Class 2 (larger 
mean).

Relative Bias (RB) of variance estimates. Table 7 presents the 
mean RBs of variance estimates of the true and misspecified 
model. Because the Level 1 variances for two groups were 
estimated separately in the true and the misspecified models, 
there were two σ2s for each model. For the true model, the 
mean RBs for Level 2 variance estimates were within or 
close to ±10%, and there was no η2 01≥ .  when RB of τ00 
was the dependent variable. For Level 1 variance, there was 
underestimation for σ2

1 and overestimation for σ2
2 under 

Imbalance Type 1, whereas there was less biases for 

Table 5. Hit Rate of True and False Models in Study 2

Conditions Average hit rate

Imbalance R2 ICC
Valid 

replications
True 
(%)

False 
(%)

Differ 
(%)

1 .1 .1 134 52 51 1
1 .1 .2   98 53 49 3
1 .3 .1 320 72 67 6
1 .3 .2 276 72 63 10
1 .5 .1 431 87 82 6
1 .5 .2 341 87 76 11
2 .1 .1 176 77 76 1
2 .1 .2 146 77 75 3
2 .3 .1 401 83 81 1
2 .3 .2 356 83 79 3
2 .5 .1 496 87 85 2
2 .5 .2 479 88 83 4

Note: ICC = intraclass correlation; Differ = true model hit rate – false 
model hit rate. Imbalance Type 1: Class 1—large size large variance, Class 
2—small size small variance. Imbalance Type 2: Class 1—large size small 
variance, Class 2—small size large variance.

Table 6. Relative Bias of Group Mean Estimates in Study 2

Conditions
True model class 

mean bias
False model class 

mean bias

Imbalance R2 ICC
Class 1 

(%)
Class 2 

(%)
Class 1 

(%)
Class 2 

(%)

1 .1 .1 −64 −5 −66 −5
1 .1 .2 −64 −3 −69 −2
1 .3 .1 −23 −3 −33 −7
1 .3 .2 −24 −3 −44 −8
1 .5 .1 −2 1 −6 −1
1 .5 .2 −3 1 −14 −3
2 .1 .1 −3 0 −3 0
2 .1 .2 −3 2 −4 1
2 .3 .1 1 15 1 14
2 .3 .2 −1 14 −3 10
2 .5 .1 0 4 1 6
2 .5 .2 0 5 1 6

Note: ICC = intraclass correlation. Imbalance Type 1: Class 1—large size 
large variance, Class 2—small size small variance. Imbalance Type 2: Class 
1—large size small variance, Class 2—small size large variance.
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Imbalance Type 2. ANOVA results indicated that there was 
an interaction effect between R2 and imbalance type, Fs(2, 
3642) = 68.793 and 293.125; ps < .001; η2s = .035 and .126, 
respectively.

For the misspecified model, there was a trend of overesti-
mation in σ2

2 under both imbalance types, whereas there was 
both underestimation and overestimation of σ2

1 only under 
Imbalance Type 1. ANOVA results indicated that there was 
an interaction effect between R2 and imbalance type, Fs(2, 
3642) = 57.494 and 34.857; ps < .001; η2s = .027 and .012, 
respectively. In addition, ICC has a substantial impact on σ2

2 
overestimation, F(1, 3642) = 367.945; ps < .001; η2s = .065.

Relative Bias (RB) of standard errors of group mean estimates. 
Because the Level 1 variances were estimated separately, 
there were two RBs of standard errors under each model. RBs 
of SE1 are for the large variance groups and RBs of SE2 are 
for the smaller variance group under both imbalance types. 
Again, as shown in Table 8, there was a tendency of inflation 
of standard errors under the misspecified model under most 
conditions. ANOVA results indicated that imbalance types, 
Fs(1, 3642) = 99.10 and 651.57; ps < .001; η2s = .03 and .13, 
and ICC, Fs(1, 3642) = 82.85 and 60.81; ps < .001; η2s = .02 
and .01, were the two major contributing factors, although 
there was a slight interaction effect between them for SE1. 
The misspecified model had more inflation of standard errors 
under Imbalance Type 1 than Imbalance Type 2. Besides, 
within the same imbalance type, bias was higher at higher 
level of ICC.

Discussion
Study 1

When a higher level structure in cross-sectional data is 
ignored, the variance at the higher level is redistributed to 

the lower level, thus affecting the hit rate and group mean 
and standard error estimates.

Hit rate. R2 is an important factor influencing hit rate. For 
both the true and misspecified models, hit rate increases 
when the R2 increases, which means that as group difference 
becomes larger, the classification under both models will 
become more accurate and this is quite reasonable.

The difference between true and misspecified model is 
that for true model, ICC magnitude does not affect hit rate 
much within the same design. Whereas for misspecified 
model, ICC magnitude affects the hit rate, and the hit rate is 
higher when ICC is smaller. Under the misspecified model, 
the Level 2 variance is ignored in model estimation, and more 
variance is ignored at higher ICC. Obviously ignoring vari-
ance at Level 2 will decrease classification accuracy, and the 
more variance ignored, the less accurate the classification.

Relative Bias (RB) in group mean estimates. The difference 
in RB for group mean estimates between true and misspeci-
fied models are all within ±5%, which indicates that the true 
and misspecified models do not differ tremendously in the 
estimates of the group means. In other words, there was no 
substantial difference on the group mean estimates between 
the true and misspecified models.

Relative Bias (RB) in standard error estimates. There is an 
inflation of standard errors for group mean estimates when a 
higher level nesting structure is ignored. This inflation of 
standard errors under the misspecified model is due to the 
redistribution of Level 2 variance to Level 1. When ICC is 
larger, misspecified model has more inflation of standard 
errors when all other conditions stay the same.

Study 2
After adding one more design factor—imbalance type—the 
findings in Study 2 related to R2 and ICC remain consistent 

Table 7. Relative Bias of Variance Estimates in Study 2

Conditions True False

Imbalance R2 ICC σ2
1 (%) σ2

2 (%) τ00 (%) σ2
1 (%) σ2

2 (%)

1 .1 .1 −26 50 −7 −16 78
1 .1 .2 −29 47 −7 −7 110
1 .3 .1 −16 18 −12 −7 71
1 .3 .2 −16 14 −8 2 117
1 .5 .1 −2 −4 −11 17 67

1 .5 .2 −5 −3 −11 28 133
2 .1 .1 −6 −13 −11 −1 2
2 .1 .2 −7 −13 −10 2 17
2 .3 .1 −17 0 −8 −9 24
2 .3 .2 −18 −1 −5 1 43
2 .5 .1 −8 −1 −7 0 37
2 .5 .2 −9 0 −5 11 74

Note: ICC = intraclass correlation. Imbalance Type 1: Class 1—large size 
large variance, Class 2—small size small variance. Imbalance Type 2: Class 
1—large size small variance, Class 2—small size large variance.

Table 8. Relative Bias of Standard Errors of Group Mean 
Estimates in Study 2

Imbalance R2 ICC SE1 (%) SE2 (%)

1 .1 .1 −21 17
1 .1 .2 14 33
1 .3 .1 14 20
1 .3 .2 32 32
1 .5 .1 47 63
1 .5 .2 75 90
2 .1 .1 2 −5
2 .1 .2 4 −18
2 .3 .1 −13 −19
2 .3 .2 0 −8
2 .5 .1 −21 −1
2 .5 .2 −16 16

Note: ICC = intraclass correlation. Imbalance Type 1: Class 1—large size 
large variance, Class 2—small size small variance. Imbalance Type 2: Class 
1—large size small variance, Class 2—small size large variance.
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with findings in Study 1. Therefore, the following discussion 
focuses on the influence of imbalance type.

Hit rate. When all other conditions stay the same, the hit 
rate under Imbalance Type 2 is higher than that under Imbal-
ance Type 1. In addition, the difference in hit rate between 
true and misspecified models is smaller for Imbalance Type 
2, in which large group size is associated with smaller vari-
ance and small group size associated with larger variance. 
This means that under Imbalance Type 2, the misspecified 
model’s performance is relatively better than the misspecified 
model under Imbalance Type 1. This result is not surprising 
because when a group has smaller variance, it is easier to 
identify them as coming from the same group. In Imbalance 
Type 2, when large size is associated with smaller variance, 
the participants within this group have a higher chance of 
being classified as the same group. Compared with Imbal-
ance Type 1, where smaller group size is associated with 
smaller variance, although the participants within this group 
have a higher chance of being classified as the same group, 
they are still a smaller percentage of all participants compar-
ing with that in Imbalance Type 2. This is why in general the 
Imbalance Type 2 has higher hit rates than Imbalance Type 1.

Relative Bias (RB) in group mean estimates. In general, the 
RBs under Imbalance Type 2 are smaller than that under 
Imbalance Type 1. For the same reason mentioned before, 
for Imbalance Type 2, it is easier for both the true and mis-
specified models to classify the participants into the correct 
group, therefore resulting in more accurate estimate of the 
group mean, whereas for Imbalance Type 1, there are more 
RBs under different levels of R2, most likely resulting from 
the wrong classification of participants into wrong groups.

Relative Bias (RB) in standard error estimates. When a higher 
level nesting structure is ignored, the standard errors of the 
fixed effects (i.e., the means of the two latent classes) tend to 
be inflated under Imbalance Type 1 but have less bias or 
underestimation under Imbalance Type 2. This may result 
from either the misclassification of participants, or the infla-
tion of Level 1 variance, or both.

Conclusion
Summary of Findings

This simulation study investigated the impact of ignoring a 
higher level nesting structure in multilevel mixture modeling 
on hit rates, the estimated latent class means, and the corre-
sponding standard errors. We examined the impact of three 
potential factors, including the magnitude of latent class 
differences, the ICC between the lower and higher levels of 
data, and the unbalance types under the true and misspeci-
fied models.

Our results indicate that first, ignoring a higher level struc-
ture may result in less accurate classification of individuals to 

the correct class the individual belonged to. When the vari-
ance and size of the two classes in the generated samples are 
balanced, the true model has higher hit rates than the mis-
specified model, and the difference between true and mis-
specified models is affected by group differences and the 
ICC. When there is unbalanced group size and variance, the 
true model still has higher hit rates than the misspecified 
model; in addition, the hit rate is higher when larger size is 
associated with smaller variance and smaller size is associ-
ated with larger variance compared with when larger size is 
associated with larger variance and smaller size is associated 
with smaller variance.

Second, ignoring a higher level structure will result in 
bias in the group mean estimates for the true and misspecified 
models, but the difference in bias between true and misspeci-
fied models is not that large. The difference between true and 
misspecified models is especially small when the group dif-
ference is small, or when the ICC is lower, or when smaller 
variance is associated with larger size.

Third, ignoring a higher level structure will cause the 
variance at the higher level structure to be redistributed to 
the lower level and result in the inflation of standard errors 
for estimated group means, which in turn, results in an 
inflated Type I error rate. The inflation of standard errors is 
especially obvious when ICC is at a higher level or when 
larger variance is associated with larger size and smaller 
variance is associated with smaller size.

Recommendations
These findings have practical implications for researchers. 
According to the findings of the study, when ICC is higher, 
or when large variance is associated with large size and small 
variance is associated with small size, or when R2 is large, 
misspecified model is less accurate in classification of par-
ticipants, has more RB in parameter estimates, and has less 
statistical power to detect significant effects. In real data 
analysis, researchers seldom know in advance the true 
parameter values (i.e., the difference between groups, the true 
variance and size of each latent class) and the class member-
ship. Therefore, to have more accurate classification and 
parameter estimates, and more statistical power in detecting 
significant effect, it is important to model the nesting struc-
ture and use multilevel mixture modeling. However, there are 
also situations when it is difficult to take into account the 
nesting structure, such as the lack of identifiers on all possi-
ble levels of nesting in data (Moerbeek, 2004) and the diffi-
culty in achieving convergence in model estimation (Van 
Landeghem, De Fraine, & Van Damme, 2005). If this is the 
case, then researchers should be cautious when they interpret 
the findings, especially when they have a marginally signifi-
cant test result because it might be a significant result if the 
researchers considered the nesting structure of the data.
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Limitations and Suggestions  
for Future Research

In this study, we only examined the impact of ignoring a higher 
level structure in mixture model and only two-level structure 
of the data is considered. In longitudinal study, the data usually 
contain three levels or more (i.e., repeated measures nested 
within students nested within schools). In addition, the total 
sample size in the simulation studies was set to 800 and the 
cluster size was set to 20. We can change the cluster size and 
latent class size to see how sample size affects the hit rate and 
bias of parameter estimates. Another limitation is that, in real-
ity, some data structure is not strictly hierarchical, they are 
cross-classified in the sense that students come from varied 
combinations of higher level nesting factors such as schools 
and neighborhoods. Researchers have found that ignoring the 
cross-classified structure will result in bias in standard error 
estimates although the fixed effects estimates were not affected 
(Luo & Kwok, 2006; Meyers & Beretvas, 2006; Van Landeghem, 
De Fraine, & Van Damme, 2005). However, there is no soft-
ware available in the area of latent variable modeling to take 
into account the cross-classified structure in multilevel mixture 
modeling. More research and advances in software is needed 
for the area of multilevel mixture modeling.
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