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Abstract: Based on the LuGre friction model, a sliding mode adaptive controller is presented to compensate for the friction in the servo
system. The terminal switching function is selected as the sliding mode surface, which can make the error of the system converge to the equi-
librium point in finite time. The main analytical result is a stability theorem for the proposed controller which can achieve asymptotical stability
of the closed-loop system. Furthermore, the transient performance of the system is analytically quantified. To support the theoretical concepts,
the authors present dynamic simulations for the proposed control scheme.
1 Introduction

Friction is a complex non-linear phenomenon, which affects the
performances of the servo system. If the controller of a system is
designed without compensation for friction, it will lead to many
bad phenomenon, such as bigger tracking error, limit cycle, stick-
slip crawling movement and so on. Hence, it is very necessary to
compensate for the friction for high-precision position control.
Up to now, the control schemes proposed to compensate for the

non-linear friction in the servo system can be classified into model-
free and model-based ones. In numerous friction models, such as
Coulomb model, Stribeck model, Dahl model [1], LuGre model
[2], Leuven model [3] and so on. The LuGre model is more close
to the real friction phenomenon, hence it is widely used [4–7].
Based on the LuGre model, people adopt many compensation
methods for designing the controller. For example, in [8], Kwatny
et al. designed the controller for compensating for friction by the
variable structure control. In the literature [9], the controller is
designed by the adaptive control and the neural network approxima-
tions, based on the LuGre friction model. In [10], Wang et al.
adopted a neural adaptive control scheme to design the control con-
troller and combined it with the leakages. In [11], Lee et al. raised a
new method which utilised a proportional-derivative (PD) control
structure and an adaptive estimation of the friction based on an ob-
server for compensating for friction. Nakkarat and Kuntanapreeda
[12] designed a non-linear controller by using a backstepping ap-
proach, which guaranteed the convergence of the tracking error.
In [13], a sliding mode control with double boundary layer for
robust compensation of payload mass and friction was put
forward. In [14], Armstrong et al. compensated friction by the non-
linear proportional-integral-derivative control for the adaptive
control. In [15], a precise friction control was designed by using
the friction state observer and sliding mode control with recurrent
fuzzy neural networks. In [16], Han and Lee presented an adaptive
dynamic surface control scheme combined with sliding mode
control to compensate for friction and backlash non-linearities.
In this paper, under some assumptions, a composite friction

control system is proposed, which consists of the LuGre model, a
dual friction observer, a terminal sliding mode surface and an adap-
tive controller. The dual friction observer can estimate the unmeas-
urable friction state variable of the LuGre model, which is used to
approximate the non-linear friction efficiently. The terminal sliding
mode surface is selected in order to make the error of the system
converge to the equilibrium point in finite time and improve the
convergence speed of the system. The main analytical result is a sta-
bility theorem for the proposed controller, which can achieve
asymptotical stability of the closed-loop system by the Lyapunov
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stability analysis. Furthermore, the transient performance of the
system is analytically quantified. The effectiveness of the proposed
control scheme and the good robustness of the system are verified
by simulation results.

2 Dynamics of the servo system with friction

The dynamic equation of the mechanical and electrical servo system
is as follows

J ẍ = u− f − d (1)

where J is the unknown moment of inertia, x is the displacement of
the system, u is the control input, f is the friction force and d is the
unknown external disturbance, respectively. Based on the LuGre
friction model, the friction force is described as [2]

f = s0z+ s1ż+ s2ẋ (2)

where σ0, σ1 and σ2 are the stiffness coefficient, the damping coef-
ficient, viscous friction coefficient, respectively. The unmeasured
average deflection of the bristles is presented as follows

ż = ẋ− ẋ| |
g(ẋ)

z (3)

where the function g(ẋ) describes the Stribeck effect and is given by

g(ẋ) = fc + (fs − fc)exp(− (ẋ/ ẋs )
2) (4)

where fc, fs and ẋs are the coulomb friction force, the static friction
force and the Stribeck velocity, respectively. Combined with
(2)–(4), (1) can be arranged to

J ẍ = u− s0z+ s1
ẋ| |

g(ẋ)
z− bẋ− d (5)

where β = σ1 + σ2.
The objective of the proposed control scheme is to design the

control law which can ensure that the tracking error converges to
zero asymptotically, that is to say, the system output x tracks the
expected trajectory xd.

3 Robust adaptive control

3.1 Controller design

For the development of control laws, some realistic assumptions are
as follows:

Assumption 1: the external disturbance d is bounded.
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Assumption 2: the expected trajectory xd and its first second-order
derivative are piecewise continuous and bounded.
Assumption 3: the estimated parameters σ0, σ1, β and J are
unknown, positive and bounded.

To achieve the control objective, the following error variable
between the system output x and the expected trajectory xd is
defined

e = x− xd (6)

A terminal switching function [17] is selected as the sliding mode
surface

s = ė+ b1e
q/p (7)

where β1 > 0, q and p are all positive odd and q < p.
The terminal sliding mode can improve the convergence

performance of the system and make the tracking error of the
system converge to the equilibrium point in finite time.

Since the parameter σ is unknown, the average deflection of the
bristles z cannot be measured directly and the two parameters have a
bilinear relation, a dual observer [5] is designed

˙̂z0 = ẋ− ẋ| |
g(ẋ)

ẑ0 +t0

˙̂z1 = ẋ− ẋ| |
g(ẋ)

ẑ1 +t1

⎧⎪⎪⎨⎪⎪⎩ (8)

where both z0 and z1 are the estimation of the unmeasured friction
state z, t0 and t1 are the dynamic compensation terms which can be
designed later. Combined with (3) and (8), the derivative of the dual
observer error can be written as

˙̃z0 = − ẋ| |
g(ẋ)

z̃0 −t0

˙̃z1 = − ẋ| |
g(ẋ)

z̃1 −t1

⎧⎪⎪⎨⎪⎪⎩ (9)

where z̃0 = z− ẑ0 and z̃1 = z− ẑ1. The adaptive law of the system
is designed

u = ŝ0 ẑ0 − ŝ1
ẋ| |

g(ẋ)
ẑ1 +b̂ ẋ+ d̂ − Ĵ uc (10)

where uc = ks− ẍd +b1q
p e(q−p)/pė; k is a positive constant; Ĵ , ŝ0,

ŝ1, b̂ and d̂ are the estimations of J, σ0, σ1 β and d, respectively.
That is to say (̃·) = (·)− (̂·). Now, we specify the following
update laws

˙̂s0 = −r0 ẑ0 s (11)

˙̂s1 = r1
ẋ| |

g(ẋ)
ẑ1 s (12)

˙̂b = −r2ẋs (13)

˙̂d = −r3s (14)

˙̂J = r4ucs (15)

where r0, r1, r2, r3 and r4 are positive designed parameters.

3.2 Stability proof

The time derivative of the sliding mode surface s is given by

ṡ = ë+ b1q

p
e(q−p)/pė (16)

On substituting (5) and (10) into (16), the dynamic equation of the
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J ṡ = −s0 z̃0 − s̃0 ẑ0 +s1
ẋ| |

g(ẋ)
z̃1 + s̃1

ẋ| |
g(ẋ)

ẑ1 −b̃ẋ− d̃

− J uc + ẍd −
b1q

p
e(q−p)/pė

( )
+ J̃ uc

(17)

To prove the stability of the servo system with the proposed
scheme, the Lyapunov function is selected

V = J

2
s2 + 1

2r0
s̃2
0 +

1

2r1
s̃2
1 +

1

2r2
b̃
2 + 1

2r3
d̃
2 + 1

2r4
J̃
2

+ 1

2
s0z̃

2
0 +

1

2
s1z̃

2
1

(18)

The time derivative of V is

V̇ = Jsṡ− 1

r0
s̃0

˙̂s0 −
1

r1
s̃1

˙̂s1 −
1

r2
b̃ ˙̂b − 1

r3
d̃ ˙̂d

− 1

r4
J̃ ˙̂J + s0 z̃0 ˙̃z0 +s1 z̃1 ˙̃z1

(19)

By applying (9) and (17) to (19), we have

V̇ = s −s0 z̃0 − s̃0 ẑ0 +s1
ẋ| |

g(ẋ)
z̃1 + s̃1

ẋ| |
g(ẋ)

ẑ1 −b̃ẋ− d̃ + J̃ uc

( )
− Js uc + ẍd −

b1q

p
e(q−p)/pė

( )
− 1

r0
s̃0

˙̂s0 −
1

r1
s̃1

˙̂s1

− 1

r2
b̃ ˙̂b − 1

r3
d̃ ˙̂d − 1

r4
J̃ ˙̂J + s0 z̃0 − ẋ| |

g(ẋ)
z̃0 −t0

( )
+ s1 z̃1 − ẋ| |

g(ẋ)
z̃1 −t1

( )
(20)

(20) can be rearranged as

V̇ = − s̃0 ẑ0 s+
1

r0
˙̂s0

( )
+ s̃1

ẋ| |
g(ẋ)

ẑ1 s−
1

r1
˙̂s1

( )
− b̃ ẋs+

˙̂b

r2

( )

− d̃ s+ 1

r3
˙̂1

( )
+ J̃ ucs−

1

r4

˙̂J

( )
+ s0 z̃0 − ẋ| |

g(ẋ)
z̃0 −t0 − s

( )
+ s1 z̃1 − ẋ| |

g(ẋ)
z̃1 −t1 +

ẋ| |
g(ẋ)

s

( )
− Js uc + ẍd −

b1q

p
e(q−p)/pė

(
(21)

Designing the dynamic compensation terms in (8)

t0 = −s (22)

t1 =
ẋ| |

g(ẋ)
s (23)

On applying (22) and (23) into (8), they are clear that the relation
between ˙̃z0 and s is linear and the relation between ˙̃z1 and s is non-
linear. Hence, we can have the first estimation of z which has more
accurate estimation error than that of the second one.

Remark 1: in practical application, we can also choose t0 = − γ0s
and t1 = g1

ẋ| |
g(ẋ)s. By adjusting the values of γ0 and γ1, we can

improve the flexibility of the system, which does not change its
overall performance.

By applying the estimation error of the dual observer (9) and the
adaptive laws (11)–(15) to (21), we obtain

V̇ = −kJs2 − s0
ẋ| |

g(ẋ)
z̃20 − s1

ẋ| |
g(ẋ)

z̃21 (24)
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Since k, J, σ0, σ1,
ẋ| |

g(ẋ) are all positive, we have

V̇ ≤ −kJs2 ≤ 0 (25)

From (18) and (24), the Lyapunov function V is differentiable and
has the finite limit when t→∞. Owing to the tracking error (6), the
terminal sliding mode surface (7), the dual observer error (9) and
(24), V̈ exists. Hence, V̇ is uniformly continuous. Then, according
to (25) and by using the Barbalat lemma, we conclude lim

t�1 s| | = 0,
which further implies that lim

t�1 e| | = 0 in view of (7).
By enlarging the right side of (24), we have

V̇ ≤− kJs2 − s0
ẋ| |

g(ẋ)
z̃20 − s1

ẋ| |
g(ẋ)

z̃21 + s̃2
0 + s̃2

0

+ s̃2
1 + ŝ2

1 + b̃
2 + b̂

2 + d̃
2 + d̂

2 + J̃
2 + Ĵ

2

(26)

On substituting equations (̃·)+ (̂·) = (·) and
(̃·)2 + (̂·)2 = (·)2 − 2(̃·)(̂·) into (26), we have

V̇ ≤− kJs2 − s0
ẋ| |

g(ẋ)
z̃20 − s1

ẋ| |
g(ẋ)

z̃21 + s2
0 − 2 s̃0 ŝ0 +s1

2

− 2 s̃1 ŝ1 +b2 − 2b̃b̂ + d2 − 2d̃d̂ + J 2 − 2J̃ Ĵ

(27)

On using the following inequalities

− s̃0 ŝ0 ≤ − 1

2
s̃2
0 +

1

2
s0

2 (28)

− s̃1 ŝ1 ≤ − 1

2
s̃1

2 + 1

2
s1

2 (29)

− b̃b̂ ≤ − 1

2
b̃
2 + 1

2
b2 (30)

− d̃d̂ ≤ − 1

2
d̃
2 + 1

2
d2 (31)

− J̃ Ĵ ≤ − 1

2
J̃
2 + 1

2
J 2 (32)

we have

V̇ ≤− kJs2 − s0
ẋ| |

g(ẋ)
z̃20 − s1

ẋ| |
g(ẋ)

z̃21 − s̃2
0 − s̃2

1

− b̃
2 − d̃

2 − J̃
2 +2s0

2 +2s1
2 +2b2 + 2d2 + 2J 2

(33)

From (18) and (33), we can obtain

V̇ ≤ −l1V + l2 (34)

where λ1 > 0 and λ2 > 0, and they are defined as

l1 = min 2k, 2r0, 2r1, 2r2, 2r3, 2r4,
2 ẋ| |
g(ẋ)

{ }
(35)

l2 = 2s2
0 + 2s2

1 + 2b2 + 2d2 + 2J 2 (36)

Therefore V satisfies

0 ≤ V (t) ≤ V (0)exp(− l1t)+
l2
l1

(1− exp(− l1t)) (37)

where

V (0) = J

2
s(0)2 + 1

2r0
s̃0 (0)

2 + 1

2r1
s̃1 (0)

2 + 1

2r2
b̃(0)

2

+ 1

2r3
d̃(0)

2 + 1

2r4
J̃ (0)

2 + 1

2
s0 z̃0 (0)

2 + 1

2
s1 z̃1 (0)

2

(38)
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From (18) and (37), we have

s| | ≤
����������������������������������������������
2

J
(V (0)exp(− l1t)+

l2
l1

(1− exp(− l1t)))

√
(39)

s̃0

∣∣ ∣∣ ≤ ������������������������������������������������
2r0(V (0)exp(− l1t)+

l2
l1

(1− exp(− l1t)))

√
(40)

s̃1

∣∣ ∣∣ ≤ ������������������������������������������������
2r1(V (0)exp(− l1t)+

l2
l1

(1− exp(− l1t)))

√
(41)

b̃
∣∣ ∣∣ ≤ ������������������������������������������������

2r2(V (0)exp(− l1t)+
l2
l1

(1− exp(− l1t)))

√
(42)

d̃
∣∣ ∣∣ ≤ ������������������������������������������������

2r3(V (0)exp(− l1t)+
l2
l1

(1− exp(− l1t)))

√
(43)

J̃
∣∣ ∣∣ ≤ ������������������������������������������������

2r4(V (0)exp(− l1t)+
l2
l1

(1− exp(− l1t)))

√
(44)

By using the equation (·̃)∣∣ ∣∣ = (·)∣∣ ∣∣− (·̂)∣∣ ∣∣∣∣ ∣∣, we can draw several
conclusions about the parameters error

lim
t�1 ( ŝ0 )

∣∣ ∣∣ ≤ s0

∣∣ ∣∣+ ������
2l2r0
l1

√ )
(45)

lim
t�1 ( ŝ1 )

∣∣ ∣∣ ≤ s1

∣∣ ∣∣+ ������
2l2r1
l1

√ )
(46)

lim
t�1 (b̂ )

∣∣ ∣∣ ≤ b
∣∣ ∣∣+ ������

2l2r2
l1

√ )
(47)

lim
t�1 (d̂)

∣∣ ∣∣ ≤ d| | +
������
2l2r3
l1

√ )
(48)

lim
t�1 (Ĵ )

∣∣ ∣∣ ≤ J| | +
������
2l2r4
l1

√ )
(49)

Remark 2: from (36), the size of λ2 can be adjusted by σ0, σ1, β, d
and J which are the fixed arguments of the system. To decrease the
convergence region of the estimation error, we can adjust the value
of λ1, which is related to k, r0, r1, r2, r3, r4 and

ẋ| |
g(ẋ).

In summary, we obtain the following results.

Theorem 1: given the desired trajectory xd, the terminal sliding
mode surface (7), the control law (10) and the adaptive laws
(11)–(15) applied to the system (1) with the friction (2) ensure
that all the closed-loop signals are uniformly ultimately bounded.
Furthermore, the tracking error e converges to a ball, whose
radius can be freely adjusted in known form by the design para-
meters (7) and (39).

Remark 3: According to (45)–(49), the boundary of the parameters
can be adjusted by the design parameters J, r0, r1, r2, r3, r4, λ1, λ2
and the original value V(0). λ2 and J are the fixed arguments of the
system. From a practical perspective, the more prior parameter
knowledge we have, the more higher tracking accuracy we can
obtain. If we accurately estimated the bounds of z, σ0, σ1, β, d
and J, we can chose their original value close to z, σ0, σ1, β, d
and J, respectively. Meanwhile, by choosing appropriate values
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of k, r0, r1, r2, r3, r4 and
ẋ| |

g(ẋ), we can have a very accurate tracking
precision.
Fig. 4 Tracking error without disturbance
4 Simulation results

In this section, the results of the proposed control scheme applied to
the servo system with the non-linear friction via simulation are pre-
sented. The parameters of the LuGre model and the motor are as
follows σ0 = 0.5, σ1 = 0.3, σ2 = 0.1, Fc = 0.285, Fs = 0.335,
ẋs = 0.01, TL = 0.8, J = 1.6 and the given reference signal is
xd = 2 sin (π/3t). To verify the good robustness of the proposed
control scheme, we perform some simulation experiments under
the absence of disturbance. Figs. 1 and 2 show the tracking per-
formance of the system with disturbance, which prove that the
tracking error with disturbance is bounded by the presented
Fig. 2 Tracking error with disturbance

Fig. 3 Tracking performance without disturbance

Fig. 6 Control input without disturbance

Fig. 5 Control input with disturbanceFig. 1 Tracking performance with disturbance

Fig. 7 Estimation of the dual observer with disturbance

This is an open access article published by the IET under the Creative Commons
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Fig. 8 Estimation of the dual observer without disturbance
scheme. Figs. 3 and 4 show the tracking performance of the system
without disturbance, which are better than the ones with disturb-
ance. Figs. 5 and 6 show the control input of the system with dis-
turbance and without disturbance, respectively. Figs. 7 and 8
show the estimation of the dual observer with disturbance and
without disturbance, respectively. Figs. 6 and 8 also prove that
the first estimation of z has more accurate estimation error than
that of the second one. In conclusion, the simulation results prove
the feasibility and the good robustness of the controller.

5 Conclusion

This paper has presented an adaptive control solution for non-linear
friction in the servo system, which is under some realistic assump-
tions. The good steady-state performance and transient performance
are proved by the Lyapunov theory. The simulation results show the
good robustness and precise position tracking performance of the
system.
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