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Abstract: In this study, the authors study the problem of smart meter deployment optimisation for appliance load monitoring, that is, to
monitor a number of devices without any ambiguity using the minimum number of low-cost smart meters. The importance of this
problem is due to the fact that the number of meters should be reduced to decrease the deployment cost, improve reliability and decrease con-
gestion. In this way, in future, smart meters can provide additional information about the type and number of distinct devices connected,
besides their normal functionalities concerned with providing overall energy measurements and their communication. The authors present
two exact smart meter deployment optimisation algorithms, one based on exhaustive search and the other based on efficient implementation
of the exhaustive search. They formulate the problem mathematically and present computational complexity analysis of their algorithms.
Simulation scenarios show that for a typical number of home appliances, the efficient search method is significantly faster compared to the
exhaustive search and can provide the same optimal solution. The authors also show the dependency of their method on the distribution of
the load pattern that can potentially be in a typical household.
Nomenclature
N

This is an ope
Attribution Li
number of devices

L
 number of meters

M
 2N−1
A
 An M ×N matrix containing all possible M
combinations of devices that are active (1) or inactive
(0). Each row of A shows the devices that are active
at the same time and connected to the same meter
p
 An N × 1 vector containing the average power of each
device
Δp
 An N × 1 vector containing power deviation for each
device, that is, the power of the device can vary from
p−Δp to p + Δp
z = Ap
 An N × 1 vector containing average power for all
possible device combinations
Δz = AΔp
 An N × 1 vector containing power deviation for all
possible device combinations
Ã
 An L × N matrix whose rows are the number of
meters and whose columns are the number of devices
zk
 kth element of z

Δzk
 kth element of Δz

ãi
 ith row of Ã

ãj
 jth column of Ã

ãji
 jth element of ãi

AT
 transpose of A

I
 identity matrix
1 Introduction

Increasing energy demand and dwindling natural resources have put
the energy demand on improving its efficiency. This has led to
active research on finding solutions in which the users and genera-
tors are aware of where and how the power is being used [1]. The
research has provided ways to improve the current power grid,
which carries power from central generators to end users. The
smart grid is one such improvement, allowing for two-way flow
of electricity and information, compared with the current grid that
is based on one-way flow of electricity [2]. Smart grid integrates
communication technology and monitoring devices in the tradition-
al grid. This allows for the provision of real-time energy
n access article published by the IET under the Creative
cense (http://creativecommons.org/licenses/by/3.0/)
consumption to the utility office as well as the users [3]. Smart
meter is one such monitoring device in a smart grid system that
can allow active participation of the consumer to manage power de-
livery and reduce its cost [4].

A smart meter is a digital energy meter that measures energy con-
sumption and enables two-way and real-time communication
between the consumers and the generator [5]. The smart meters cur-
rently available in the market can only provide the cumulative
energy consumed by a whole house [6]. However, to make
time-of-day usage charges and demand response more effective, in-
dividual appliance load monitoring is needed. The smart meters
should have cognitive capabilities that allow them to determine
which devices contribute to which consumption [6]. This capability
can help the consumer participate fruitfully in the demand response
programme. In this programme, a user may be contacted by the
utility office to reduce his/her electricity consumption to save
money. If the user knows how much each device is contributing
to the electricity consumption, he/she may be able to correctly
select and switch off the devices that would lead to a reduction in
the electricity consumption.

2 Related work

Two research approaches for appliance load monitoring have
emerged: the first approach is to use total signal information col-
lected from meters, and then identify individual devices from the
total signals based on signal processing and pattern recognition
approaches. This approach requires collecting signatures of the
devices [7] and extensive prior learning to recognise a load signa-
ture and to maintain a database [8]. This is known as non-intrusive
load monitoring. Research on load monitoring using the power
meter readings from a whole household was carried out in
[9–20]. These approaches either work with high sampling rates,
which require expensive hardware and cannot distinguish loads
having similar transient behaviour or have poor performance in
the presence of certain kinds of loads [20].

The second approach (called naive approach later in this paper) is
to connect low-cost smart meters to each appliance in the house-
hold. These low-cost meters are energy monitoring devices with
communication ability. However, such a strategy would lead to de-
ployment of a large number of meters, leading to increasing costs,
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congestion and decreased reliability. Consequently, research on
deploying a number of low-cost smart meters less than the total
number of devices was presented in [21, 22]. In these references,
it is shown that taking into account load patterns for different
devices, we can deploy smart meters using an approximate ap-
proach. This approach leads to a number of meters that can be no
more than twice the number of meters obtained using the exact ap-
proach. The exact approach consists of checking each device indi-
vidually for similarity between measurements with any other device
or a set of devices. Devices with similar measurements are con-
nected to separate meters, which enables unambiguous monitoring
of devices. This method neither requires any training based on load
patterns nor requires deployment of high-cost high-frequency smart
meters. However, the computational time becomes very high with
increasing number of devices and it is important to reduce the com-
putational time for developing realistic and practically realisable
solutions.
In this paper, we present a smart meter deployment optimisation

scheme. The novel contributions of our work are:

† We present the smart meter deployment problem as a constrained
optimisation problem. We show that this optimisation problem can
be seen as minimising the number of rows of a matrix such that a
number of constraints are satisfied. This matrix shows the connec-
tions between different devices and meters.
† We first present an exact search method, and show that it can be
divided into two problems. We then present an efficient approach to
solve the first problem. The approach does not make use of any
approximation.
† We compare the number of computations required by exact
search and efficient approaches, and show that the efficient ap-
proach requires less computations.
† We show by means of simulations that our approach takes less
time and has the same performance compared to the exact approach.
We further show the dependency of our method on the type of dis-
tribution of the load pattern.

We would like to emphasise that the proposed algorithm can be
used for deploying low-cost smart meters in such a way that their
normal functions related to energy measurements and communica-
tions are further supplemented by providing information about the
types and number of devices that are active at a certain time. This is
applicable in the future deployment of smart meters with enhanced
capabilities.

3 Smart meter deployment optimisation problem
formulation

We use X, x and x to represent a matrix, a vector and an element of a
vector, respectively. When xi≥ 0 for all components i of a vector x,
we use x≥ 0. The function diag(ã) converts the vector ã to a diag-
onal matrix, that is, ãI .

3.1 Explanation of main variables

Let A be a matrix that shows all possible combinations of devices
that are connected together to the same meter. A ‘1’ indicates that
a device is switched active, whereas a ‘0’ indicates that it is
switched inactive. The size of A in M ×N, where M = 2N− 1. The
size of A is M ×N. The mean power corresponding to N devices
is shown by a vector p, whereas Δp shows the power deviation cor-
responding to N devices. The maximum and minimum powers can
vary from p + Δp to p− Δp. The vectors p and Δp have dimensions
N × 1. The mean power corresponding to all possible combinations
of devices connected together is shown by z, whereas Δz = AΔp
shows the power deviation corresponding to all possible combina-
tions of devices connected together. These vectors have dimensions
M × 1.
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3.2 Aim of the optimisation problem

We intend to find the minimum number of meters that can be used
to monitor N devices. The resulting solution to this problem can be
expressed by matrix Ã. It shows the combination of devices that are
connected to each of the meters. Its size is L ×N, where L is the
number of meters. Each row of the solution matrix Ã shows the
devices connected to a single meter.
3.3 Example

The meters should be connected to devices in such a way that there
is no ambiguity of measurements, that is, no combination of devices
connected to the same meter should generate similar measurements.
As an example, consider two devices having mean powers 3 and 10
with deviations ±2 and ±3, that is

p = 3
10

[ ]
2×1

and Dp = 2
3

[ ]
2×1

(1)

The matrix showing all possible combinations of devices that can
be connected to an individual meter is given as

A =
1 0
0 1
1 1

⎡
⎣

⎤
⎦

3×2

(2)

Now the mean power and power deviation are given as

z =
3
10
13

⎡
⎣

⎤
⎦

3×1

and Dz =
2
3
5

⎡
⎣

⎤
⎦

3×1

(3)

It is evident that the measured powers can vary from z− Δz to z +
Δz. Now when the second device is active or both devices are
active, we cannot decide with a single meter which combination
is active. This is so that the power values can overlap, for
example, if the measured power is 10 units, this power corresponds
to the second device and both devices are active at the same time.
Therefore, we need to use a minimum of two meters in this case
to measure power without any ambiguity. In this case, the selected
monitoring matrix Ã is

Ã = 1 0
0 1

[ ]
2×2

(4)
3.4 Optimisation problem

As a general rule, if the devices connected to the ith meter are given
by ãi, then to ensure that there is no overlap with the measurement
corresponding to the kth combination, the following test is carried
out [21]

|ãip− zk | . (ãiDp+ Dzk ) (5)

It can be seen that by minimising the number of rows of Ã, we can
minimise the number of meters, provided there is no overlapping of
measurements in all the combinations of the devices that are con-
nected to the meters. The resulting optimisation problem is the
minimisation of the number of rows L of the matrix Ã. It can be
access article published by the IET under the Creative Commons
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formulated formally as

min L
subject to:

C1:|ãip− zk | . (ãiDp+ Dzk ),
∀k = 1, . . . , 2N , i = 1, . . . , L

C2:ãji [ {0, 1},
∀i = 1, . . . , L, j = 1, . . . , N

C3:1 ≤ L ≤ N

C4:
∑N
j=1

ãji ≥ 1, ∀i = 1, . . . , L

C5:
∑L
i=1

ãji = 1, ∀j = 1, . . . , N

(6)

where the five constraints C1–C5 are described as follows:
Fig. 1 Brute force solution for smart meter deployment problem

This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
† C1 ensures that there is no ambiguity for measurements corre-
sponding to ãi, where ãi corresponds to the ith row of Ã.
† C2 ensures that the entries of Ã are either 0 or 1.
† C3 ensures that there is at least one meter and the
maximum number of meters is not more than the total number of
devices.
† C4 ensures that the ith meter is connected to at least one
device.
† C5 ensures that the jth device is connected to only one meter and
all devices are monitored by meters.

The above problem is a binary integer optimisation problem as all
the variables are binary. The problem is non-linear because of the
presence of C1. The presence of the non-linear constraint makes
the problem complicated to solve as traditional binary integer pro-
gramming methods cannot be applied. In the following section, we
present a two-step solution to this problem.
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4 Solution of the optimisation problem

4.1 Brute force solution

A brute force solution to the problem formulated in (6) can be
obtained by checking the measured power corresponding to the
selected combination in A against power corresponding to all the
remaining combinations in A. Any combination that gives ambigu-
ity in measurement is removed. The combination that results in the
minimum number of meters is retained. The implementation of the
solution can be divided into two steps:
Step 1: Identification of combinations without conflicts: The imple-
mentation of the first step is shown in Algorithm 1 (see Fig. 1). This
algorithm consists of M iterations. At each iteration, the following
main steps are carried out:
† One row of A is selected, represented by vector �a.
† To avoid unnecessary computations, only those combinations
that have devices active in the current combination are subsequently
selected.
Fig. 2 Combination selection
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† The mean power and power deviations for the combinations in �A
are calculated and stored in vectors �z and D�z, respectively.
† The measured power corresponding to �a is compared against
measured powers given in �A. This comparison is based on (5).
This is carried out in lines 11–19 of (Fig. 1).
† If the condition given by (5) is not violated, �a is selected, other-
wise it is discarded. This selection is given by vector ã that has a
size of M × 1, and the ith element ãi denotes the combination
number. This is shown in lines 20–24. Those combinations that
do not have any measurement ambiguities are stored in Ãt . This
is carried out in line 27. The result Ãt is used as input to the next
algorithm for selection of combinations such that the number of
meters is minimised.

Step 2: Minimising the number of meters: The second step is given
in Algorithm 2 (see Fig. 2). In this algorithm, a combination of the
rows of Ãt is selected such that the number of rows L is minimum
and constraints C3–C5 are satisfied. The algorithm consists of the
following steps:
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)



Fig. 3 Efficient solution

This is an open access article published by the IET under the Creative
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† Different number of rows from Ãt are selected to make a combin-
ation. The number of rows is increased gradually, starting from 1,
which means that we first check if it is possible to monitor all the
devices using a single meter. If this is not possible, we check for
two-row combinations of Ãt , that is, we check if all the devices
can be monitored using two meters. The process of generating
single and multiple row combinations in Ãt is shown by lines
4–9. The variable i defines the number of rows that should be
considered together. The total number of such constraints is given
by Ñ i and ν contains the row number of these combinations. The
matrix C contains each of the combinations in Ãt that should be
checked for constraint satisfactions, for example, if i = 1, each
row of Ãt will be checked to see if constraints C3–C5 are satisfied.
Similarly, i = 2 means that two rows at most will be checked for
constraint satisfaction to see if any one of them satisfies the
constraints.
† Lines 12–24 check if constraints C3–C5 are satisfied. Line 13
checks C4 and C5, while specifically line 16 checks C3.
† Once a constraint is satisfied by a combination, it is stored in Ã
and the number of rows is stored in L. The programme is stopped
once all the constraints are satisfied.
4.2 Efficient solution

The brute force algorithm is computationally expensive. For a large
number of devices, the number of computations can be very large
requiring significant computing resources. To deal with this issue,
we propose an efficient algorithm. The details of this algorithm
are shown in Algorithm 3 (see Fig. 3). The variable i refers to the
number of active devices considered in one iteration. The matrix
�A denotes the selected combinations that have i active devices,
whereas �na is the total number of combinations present in �A. The
description of the above-mentioned two steps is as follows:

Step 1: Verifying lower level combinations: This step is shown in
lines 7–26 that carries out iterations ranging from 1 to the total
number of combinations in �A. Different steps involved in this algo-
rithm are as follows:

† The jth row of A is stored in �a.
† The matrix Â contains all the combinations that have at least one
and up to the total number of active devices in �a.
† The measurements corresponding to �a are stored in zc and Δzc
and the measurements corresponding to combinations in Â are
stored in vectors z and Δz. The measurement corresponding to �a
is compared against the measurements corresponding to each com-
bination in Â. This is carried out in lines 17–23.
† If the measurement corresponding to �a has a conflict with any of
the combinations in Â, the combination corresponding to �a is
removed from A, for example, if �a = [ 0 0 1 1 ], that is, the
third and fourth devices are active, we compare it with combina-
tions in Â that are

Â = 0 0 0 1
0 0 1 0

[ ]
2×4

(7)

The comparison of �a with Â checks if there is a conflict at the
lower level, that is, the devices that make up the combination �a.
If there is a conflict, it means that any combination of devices
that contains first and second devices in active positions should
be removed, for example, if �a gives a conflict, then [0 1 1 1] and
[1 0 1 1] are not feasible combinations and are removed from A.
Once all the combinations in Â are verified, the second step of
the algorithm is carried out.
Step 2: Verifying higher-level combinations: In this step, all the
combinations that have i non-zero active devices are selected in �A
Commons J Eng, 2015, Vol. 2015, Iss. 4, pp. 116–124
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and the combinations are checked to see if they have any conflicts in
measurements. This is carried out in lines 28–44. Following are the
main steps:

† The measurements corresponding to �A are stored in vectors z
and Δz.
† Lines 33–43 compare measurement corresponding to each meas-
urement in �A with the measurements corresponding to remaining
combinations in �A.
† If there is a conflict, the combinations giving conflicting mea-
surements are combined in vector a′.
† All the combinations having the conflicting measurements given
by a′ are removed from A. This ensures that any higher-level com-
bination that is made up of devices including the conflicted combin-
ation is removed. In fact, this step removes any conflicting
higher-level combination based on a′, for example, consider a two-
device combination �A given as

�A =

0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

6×4

(8)
Each row in �A is compared with all the remaining rows in �A. If
there is a conflict, all the rows in A that have the active devices
giving the conflict are removed from A, for example, if
�a1 = [ 0 0 1 1 ] has a conflict with �a2 = [ 0 1 0 1 ], all
the rows in A having first, second and third devices as active are
removed from A. The remaining combinations are stored in a
matrix Ãt .
Step 3: Minimising the number of meters: The resulting matrix At

from the previous step is used in Fig. 2 to select a combination
that minimises the number of meters.

4.3 Computational complexity

The number of computations can be calculated by considering that
if there are k number of active devices, the total number of combi-
nations that can have 1 to k number of active devices is given as

Mk =
N !

k!(N − k)!
(9)

We further consider the number of comparisons as a criterion for
computational complexity.

1. Brute force method: This can be considered as picking up one of
the 2N− 1 combinations from A, identified henceforth as current
combination.
† If there are k active devices in a current combination, the total
number of combinations to be compared for overlapping measure-
ments with the current combination is 2k − 1. Subsequently, the
total number of comparisons is 2k − 2+ 2k − 3+ · · · + 1. For
Mk combinations that contain k active devices, the total number
of checks is (2k − 2+ 2k − 3+ · · · + 1)×Mk .
† The total number of comparisons is carried out for number of
active devices ranging from 1 to N, that is, k varies from 1 to N.
For single active device combinations, that is, k = 1, these compar-
isons are (N − 1+ N − 2+ · · · + 1) as there are N single active
device combinations.
† The total number of comparisons is

∑N
k=2

∑2k−1

n=2

(2k − n)×Mk +
∑N−1

n=1

(N − n)
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2. Efficient solution: This can be considered as selecting a current
combination with increasing the number of active devices and car-
rying out comparisons in two steps as detailed previously:

† When only combinations with a single active device are selected,
there is only the first kind of comparison. The number of compar-
isons is N− 1 for the first selected combination, N− 2 for the
second selected combination and so on. The total number of such
comparisons is N − 1+ N − 2+ · · · + 1.
† Starting from two and more than two active devices, the total
number of such comparisons can be calculated by considering
two stages:

(i) If k is the number of active devices, the total number of
combinations that contain 1 or all the k devices acti-
vated is given by 2k− 1. Subsequently, the compari-
sons in the first stage are given by (2k− 2) ×Mk.

(ii) The comparisons in the second stage are given by
Mk − 1+Mk − 2+ · · · + 1.

† When the total number of active devices is N, there is only the
second kind of comparison. In this case, the number of comparisons
is given by (2N− 2) ×N, as the total number of such combinations is
given by N.
† The total number of comparisons is

∑N−1

k=2

(2k − 2)×Mk

+
∑Mk−1

n=1

(Mk − n)+ (2N − 2)× N

The computational complexity of the efficient solution is the
worst-case scenario, as we do not consider the removal of any com-
binations that give conflicting measurements. This can lead to
further reduction of computational complexity. It can be seen that
the efficient solution leads to significant computational savings
compared with the brute force method. The total number of compu-
tational savings is given as

∑N
k=2

∑2k−1

n=3

(2k − n)×Mk −
∑Mk−1

n=1

(Mk − n)

5 Simulation results

In this section, we present simulation results for the smart meter de-
ployment optimisation problem. We compare results obtained using
the exhaustive search and efficient methods. We also compare the
performance of the efficient search method with respect to different
distributions.

5.1 Comparison of number of meters obtained using both
methods

First, we compare both approaches with a selected load pattern. For
the sake of clarity, the number of devices is chosen as N = 4, and the
load pattern is illustrated in Fig. 4.

Fig. 1 based on exhaustive search consists of 15 iterations. The
output of Fig. 1 is used by Fig. 2 to determine the solution. The
output of the exhaustive search method is shown as follows

Ã = 1 0 1 0
0 1 0 1

[ ]
2×4

(10)

The result in Fig. 5 shows that in total two meters are required.
Next, we show the results of the steps using the efficient search
method. Fig. 3 consists of four iterations. At the end of the first
access article published by the IET under the Creative Commons
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Fig. 5 Connections corresponding to (10)
iteration, the result is given as

Ãt =

0 0 0 1
0 0 1 0
0 1 0 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 0 1
1 0 1 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8×4

(11)

which means that seven combinations have been eliminated at this
stage. This matrix is used in the next iterations. At the end of all the
iterations, the result is

Ãt =

0 0 0 1
0 0 1 0
0 1 0 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

7×4

(12)

where the final result after application of Fig. 2 to Ãt is the same as
in (10).

Next, we simulate varying numbers of devices, ranging from 5 to
15, as this is a reasonable number for a typical home. We choose
arbitrary load pattern and calculate the number of meters required
to monitor the devices. We use both exhaustive search and efficient
search methods and the results are shown in Table 1. It can be seen
that both methods give similar numbers of meters ranging from 2 to
4, which means that the efficient search method is able to perform as
well as exhaustive search. We also compare the savings in terms of
price and number of meters obtained using our method. The esti-
mated price of a smart meter is $200 [23], whereas based on the
price of the energy meter [23], we estimate the price of a
low-cost smart meter as $20. Note that this is a conservative esti-
mate; the actual price for a low-cost smart meter can be <$20
[24]. The saving ratio is calculated as the ratio of the cost of the cal-
culated number of low-cost smart meters to the cost of a single high-
cost smart meter. The maximum saving ratio is 0.4, which means
that we can at least save 60% deployment cost using our method.
The number ratio with respect to naive approach is calculated as
the ratio of the calculated number of smart meters to the total
number of devices being monitored. The maximum number ratio
Fig. 4 Load pattern for the example

This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
is 0.4, which means that we can deploy at least 60% less meters
compared with the naive approach, subsequently leading to a cost
saving of 60%.

5.2 Comparison of computation time compared with exhaustive
search

Next, we compare the computational times of both approaches. The
load patterns are chosen arbitrarily as in the preceding section. The
time taken is averaged over a number of iterations and the result is
shown in Fig. 6. It can be seen that the efficient method takes less
time compared with the exhaustive search method. For a number of
devices <13, the time taken by both approaches is approximately
similar. However, for a large number of devices, the increase in
computation time using the efficient approach is much less than
that obtained using the exhaustive search approach. In fact, the ef-
ficient search is 100 times faster than the exhaustive search method,
which shows that the efficient search approach can be used for prac-
tically optimising a larger number of devices.

5.3 Computational time with respect to different distributions

First, we select a load pattern having a normal distribution. Load
patterns with such distributions are shown to be generated by
actual measurements [25, 26]. The mean of the distribution is
selected as 200, and the variance is chosen as (200/3)2, (100/3)2

and (50/3)2. The results using the efficient search are shown in
Fig. 7. It can be seen that the computation time increases with in-
creasing variance. The reason is that with an increase of variance,
the number of appliances with overlapping measurements decreases
as the load patterns are chosen from a large range of values. As we
have shown earlier, the exhaustive search removes combinations
with overlapping measurements in each iteration. Hence, more
devices are removed from the combination at each iteration,
which reduces the number of comparisons in subsequent iterations,
subsequently speeding up the process.

We also compare the results for uniformly and exponentially dis-
tributed load patterns. The latter distribution represents the case
Table 1 Comparison of existing references

Number of appliances 5 7 9 11 13 15
Total number of meters obtained
using brute force method

2 2 3 3 3 4

Total number of meters obtained
using efficient method

2 2 3 3 3 4

Saving ratio with respect to
high-frequency smart meter

0.2 0.2 0.3 0.3 0.3 0.4

Number ratio with respect to
naive approaches

0.4 0.29 0.33 0.27 0.23 0.27
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Fig. 6 Comparison of computational time against number of devices using
both methods

Fig. 9 Computational time for efficient search against number of devices for
different distributions

Fig. 8 Computational time against number of devices for different var-
iances in uniform distribution
where the load patterns are very concentrated, whereas the former
distribution represents the case of evenly distributed load patterns
[22]. We chose these distributions as they represent opposite varia-
tions with respect to the normal distribution and can be used to
show the effects of the degree of concentration of load patterns
on the performance of the algorithms. Results similar to normal dis-
tribution are obtained when load patterns are simulated with
uniform distribution, as shown in Fig. 8. However, in this case,
the change in the computation time with respect to variance is
less compared with the normal distribution. We further compare
our results for load pattern distributed according to exponential dis-
tribution. The mean of the distribution is chosen as 200. Fig. 9
shows a comparison of the results with the three distributions.
We can see that load patterns with normal distribution take the
most time to obtain an optimisation solution, as in this case the
values of different load patterns are distributed in a larger range.
The times taken for normal and exponential load patterns are
almost similar. For comparison, we show the computation time
taken with the three distributions using exhaustive search in
Fig. 10. As expected, the computation time compared with the ef-
ficient search is greater and similar trend can be observed as in
Fig. 9 with respect to different distributions; however, in this case
the computation time difference between different distributions is
less. The reason may be that unlike the proposed efficient search
that saves computations by iteratively removing combinations that
Fig. 7 Computational time against number of devices for different var-
iances in normal distribution
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can produce a conflict at subsequent iterations, the exhaustive
search compares all the possible combinations to find the optimisa-
tion solution.
Fig. 10 Computational time for exhaustive search against number of
devices for different distributions
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6 Conclusions

In this paper, we examined the problem of smart meter deployment
optimisation for appliance load monitoring. We formulated the
problem mathematically and presented two algorithms to solve
the problem: the first one is the exact exhaustive search method,
whereas the second one is based on efficient implementation of
the exact search method. We carried out a computational complex-
ity analysis of the algorithms and showed that the efficient imple-
mentation requires less computation. We also carried out
simulations that show that the performance of the efficient
method is the same as the exact approach in terms of number of
meters, and it takes less time to give a solution. We also showed
the dependency of our method with respect to different load
pattern distributions. We found out that load patterns with normal
and exponential distributions lead to higher computation time.
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