
Mathematical and Computational Applications, Vol. 16, No. 1, pp. 301-308, 2011. 
© Association for Scientific Research

MULTIPLE  TIME  SCALES SOLUTION  OF   AN  EQUATION WITH   
QUADRATIC AND CUBIC   NONLINEARITIES HAVING  FRAC-

TIONAL-ORDER  DERIVATIVE

Fadime  Dal
 Department  of  Mathematics , Ege  University , Izmir ,Turkey

fadimedal@hotmail.com

ABSTRACT- Nonlinear vibrations of quadratic and cubic system are considered. The 
equation of motion includes fractional order term. Multiple time scales (a perturbation 
method) solution of the system is developed. Effect of fractional order derivative term is 
discussed.  
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1. INTRODUCTION
           
           Due to rapid development of nonlinear science, many different methods were used 
to solve nonlinear problems. Perturbation methods are well established and used for over 
a century to determine approximate analytical solutions for mathematical models. 
Algebraic equations, integrals, differential equations, difference equations and integro-
differential equations can be solved approximately with these techniques. [1-4]. Frac-
tional derivatives appear in different applications such as   fluid mechanics, viscoelastic-
ity, biology [5-8]. The asymptotic  solution  of  van   der    Pol   oscilator  with  small  
fractional  damping was considered by Feng Xie and Xueyuan Lin  [9].
           Very recently, Pakdemirli et al. [10] proposed a new perturbation method to han-
dle strongly nonlinear systems. The method combines Multiple Scales and Lindstedt 
Poincare method. The new method, namely the Multiple Scales Lindstedt Poincare 
method (MSLP), is applied to free vibrations of a linear damped oscillator, undamped 
and damped duffing oscillator. MSLP (a  new  perturbation  solution)   was   applied  to
the  equation   with  quadratic  and  cubic  nonlinearities by Pakdemirli and Karahan 
[11] .  
           In this paper, multiple time scales method (a perturbation method) is used  to 
solve the equation  with  quadratic  and cubic nonlinearities including fractional-order  
derivative term. Multiple time scales solution   and   numerical   solutions   of  the  prob-
lem are compared.

2.  MULTIPLE TIME SCALES  (MS)  METHOD

             The equation of motion is
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with initial conditions
1)0( x ,  0)0( x   (2)

Where  the  fractional  derivative  xD   is   in  the  Caputo  sense  defined   as
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Fast and slow time scales are
tT 0  ,   tT 1 , tT 2

2         (3)

The time derivatives, dependent variable and fractional derivative are expanded 
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is  substituted into   equation  (1)
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The equations at each order are
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The solution at the first order is

      0000
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where A  and A  are complex amplitudes and their conjugates,  respectively.
Equation (11)   is substituted into (9)  and secular terms are eliminated

   0 0 0 022 2 2
0 1 0 1 0 1 12 2i T i TD x x i D A e cc A e AA cc              

(12)   
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Where )( 2TA   is  represented the complex amplitudes in polar form
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Rearranged   equation (12)
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Solution  of  the  differential   equation (13) is   defined  as  follows

ph xxx 111 
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The general   solution  is  
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Where  ibeB
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Applying the initial conditions yields    
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Let  us    consider  Eq.  (10)   and    use   formula
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Substituting  relationships  (16)  in  Eq.  (15), when we separate the real and the imagi-
nary part of the equation
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We obtain the equations  above equations .The  solution  of  Eq. (17)  is
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The   solution  of  Eq.  (18)    is
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Applying   initial  conditions   yield  
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Therefore   A    is   defined   as   follows
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The  solution  at  the  first  order  is
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The  solution  at  order     is 
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The initial  conditions  at  this  order  imply
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Final  solution    is  obtained  as
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Where  tT 0  ,   tT 1 , tT 2
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3.  COMPARISONS  WITH  THE  NUMERICAL SOLUTIONS

         We   consider   equation (1)  with  initial  conditions (2). In  view   of   the  varia-
tional   iteration  method  (VIM),    we  construct  the  following  iteration   formulation:
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Figure1 , Figure2   and Figure3   show multiple time scales solution of the system for
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1
   1    respectively.  Figure4  shows   

comparison  of  approximate  analytical  and (VIM)  numerical  solutions for  
2

1
 ,  

1.0 , 10  , 121  . As seen from figure4 , MS method is more suitable than 

VIM method. As time increases, VIM method fails in our problem.  Figure 5  shows  
comparison  of  approximate  analytical  and finite difference  method  numerical  solu-

tions for  
2

1
 ,  1.0 , 10  , 121  .

Figure1. Approximate  analytical   solutions (MS)  for   
2

1
 ,  1.0 , 10  , 

121 
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Figure2.  Approximate  analytical   solutions (MS)  for 
2

1
 ,  5.0 , 10  , 

121 

Figure3. Approximate  analytical   solutions (MS)    for 
2

1
 ,  1 ,  0 , 

121 
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Figure4. Comparison  of  approximate  analytical (MS)  and VIM numerical  solutions 

for  
2

1
 ,  1.0 , 10  , 121 
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Figure5. Comparison  of  approximate  analytical (MS)  and finite difference  method

numerical  solutions for  
2

1
 ,  1.0 , 10  , 121 

4.  CONCLUDING REMARKS

            In  this paper, multiple time scales method is successfully   applied to find the 
solution of the  equation   with   quadratic   and   cubic   nonlinearities  having   frac-
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tional   order derivative which corresponds to  unharmonic nonlinear oscillator. The  
fractional   derivative   is   considered in  the  Caputo  sense  which  is  more physical   
than  other derivatives [13]. The solution of equation  is made by using variational itera-
tion method  (VIM) and  Multiple scale  method  (MS). The  solutions  of  VIM, finite  
difference method  and  MS  methods  are   compared. MS method produced solutions 
with good agreement with the numerical solutions. It is  concluded  that fractional de-
rivative term effects as damping  due  to  fraction . That is, the amplitudes decrease by 
increasing time. 
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