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SUMMARY

In this paper, we propose an improved traffic model for simulating train movement in railway traffic. The
proposed model is based on optimal velocity car‐following model. In order to test the proposed model, we
use it to simulate the train movement with fixed‐block system. In simulations, we analyze and discuss the
space–time diagram of railway traffic flow and the trajectories of train movement. Simulation results
demonstrate that the proposed model can be successfully used for simulating the train movement in railway
traffic. From the space–time diagram, we find some complex phenomena of train flow, which are observed
in real railway traffic, such as train delays. By analyzing the trajectories of train movement, some dynamic
characteristics of trains can be reproduced. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With computer, communication, and control technologies developing, some new signaling control
systems and automatic train protection equipment are applied in modern railway traffic. Meanwhile,
new issues and challenges are arising: how to optimize the utilization of existing resources and how to
analyze and evaluate the theoretical control algorithm for train movement. In order to help planners to
solve these problems, it is necessary to employ computer‐based simulation tools [1]. Recently, a
number of studies have been done in this field [2–6]. Among these studies, computer‐based simulation
models can be classified into three types [1,7], that is, the basic model, the time‐based model, and the
event‐based model. The basic model is a reasonable choice when the length of track conductor loop is
small. The time‐based approach is easy to design and build, but it makes a high computational
demand. The event‐based model can save computational effort, but it reduces accuracy. To establish a
satisfied simulation model that meets practical requirements becomes more and more important for
studying railway traffic.
Car‐following model is a famous traffic model in studying road traffic flow, which is a good choice

for describing the behavior of individual driver. Car‐following model has a long history and has been
used to study various traffic phenomena observed in real road traffic [8,9]. Many car‐following models
have been proposed, including the early car‐following models [10–12] and some recent improvements
[13–16]. One of the advantages of the car‐following model is that the analytical structure in the model
can be examined. In 1995, Bando et al. [13] proposed an important car‐following model, called
optimal velocity model, which has attracted much attention. Lately, based on such a model, many
works have been done, which extended the original optimal velocity model.
Based on the car‐following model proposed by Bando et al. [13], in this paper, we suggest an

improved car‐following model, which is suitable for simulating train movement in railway traffic.
Here, some realistic driver behaviors and influences of tracked trains are considered. To our
knowledge, this work explicitly shows this effect for car‐following model for the first time. The paper
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is organized as follows: in Section 2, we introduce the optimal velocity car‐following model. The
principle of train control system is introduced in Section 3. In Section 4, we outline the proposed car‐
following model. The numerical and analytical results are presented in Section 5. Finally, conclusion
of this work is presented in Section 6.

2. OPTIMAL VELOCITY MODEL

The car‐following model describes the motion of a vehicle following its leader vehicle without making
lane change. In the car‐following model, a follower tries to maintain a space gap behind its leader. A
classical car‐following model was proposed by physicist Pipes [10]. In order to account for time lag,
Chandler et al. [11] suggested an improved car‐following model,

x
::
n t þ Tð Þ ¼ λ ẋnþ1 tð Þ− ẋn tð Þ½ � (1)

Here, xn(t) is the position of vehicle n at time t, T is a response time lag, and λ is the sensitive
coefficient. For a more realistic description, Newell [12] presented the optimal velocity car‐following
model,

ẋn t þ Tð Þ ¼ V opt Δxn tð Þð Þ (2)

Where Vopt (Δxn(t)) is called optimal velocity function, and Δxn(t) = xn + 1(t)−xn(t) is the headway of
vehicle n at time t. More than 30 years later, Bando et al. [13] suggested a famous optimal velocity
model.
Using the optimal velocity car‐following model, the behavior of a driver is captured by a

simple differential equation. According to such a differential equation, the acceleration and the
deceleration of a vehicle are mainly dependent on the distance between two successive vehicles
and the relaxation time τ. Because the optimal velocity car‐following model can be derived
analytically and because of its simplicity, it has been widely used. However, in realistic traffic, a
driver needs to consider more situations around him or her. In order to reproduce traffic as
realistically as possible, some complex models are proposed, but they are at the cost of a large
number of parameters, or they lose their realistic properties in deterministic limit. So far, a great
amount of efforts has been done to improve the optimal velocity car‐following model and make it
suitable for simulating various realistic traffics. In this paper, our aim is to improve existing car‐following
model for railway traffic.

3. THE PRINCIPLE OF THE TRAIN CONTROL SYSTEM

Train control system plays a central role in railway traffic. Usually, it is used to decide how a train
accelerates/decelerates under the safety restriction and other considered constraints. Fixed‐block
system (FBS) is an important train control system in railway traffic, which has been widely used on
modern railway for more than 1 century. On a fixed‐block equipped system, the track is divided into a
number of blocks or discrete areas. The length of blocks depends on the maximum velocity, the
braking rate, and the number of signaling aspects. In the FBS scheme, the presence of a train within a
physical block is usually detected by the operation of electrical “track circuits.” Signaling aspects are
switched to allow train movements adjacent to or into vacant blocks as circumstance dictates. At any
time, one block of track can only be occupied by no more than one train.
With the FBS, train movement is strongly related to the color of the signaling light in front of it: (i)

when the color of signaling light in front of one train is red, this train is not allowed to pass through the
site where this signaling light is located; (ii) when the color of signaling light in front of one train is
green, this train can travel with the maximum velocity; and (iii) when the color of the signaling light in
front of one train is other colors, such as the yellow, this train can only be allowed to travel with
limited velocity.
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The train movement control system is used to supervise the train movement velocity according to
the positions of other trains, the safety protection distance, the station route, and so on. Here, a key
step is on how to determine the relationship curve between the train’s allowable velocity and distance.
According to the relationship curve, based on the position of the current train, the driver/train
equipment decides to accelerate/decelerate. In the proposed model, we attempt to use car‐following
model to determine such a relationship curve.

4. THE PROPOSED MODEL

In Ref. [13], Bando et al. proposed a famous optimal velocity car‐following model, which is as follows,

x
::
n tð Þ ¼ Vopt Δxn tð Þð Þ− ẋn tð Þ

τ
(3)

Where the optimal velocity function Vopt is taken as Vopt (Δxn(t)) = (vmax/2){tanh[Δxn(t)−xc] + tanh
[xc]}. xc is called the safety distance, and vmax is the maximum velocity of vehicles. Based on such a
car‐following model, we propose a new model for simulating train movement in FBS. In the theory of
optimal velocity car‐following model, the velocity function Vopt represents the driver’s desired
velocity. In the proposed method, Vopt is regarded as the driver’s desired velocity in the process of
train movement. Here, we improve the optimal velocity function Vopt and make it suitable for
describing the dynamic characters of train.
In formula (3), 1/τ indicates how strongly the driver responds to the information coming from its

leader vehicle. In a road traffic system, the driver directly receives the information from its leader car.
However, in a railway traffic system, the driver/train equipment receives relevant information from a
control center. In general, the control center needs a period to receive information from other trains
and then send relevant information to the current train. Therefore, the relaxation time τ in railway
traffic systems is larger than that in road traffic systems.
In an FBS, trains traveling on a same track line do not act directly. The interaction between two

successive trains is carried out by the signaling lights among them. Theoretically, the distance between
two successive trains is at least larger than the length of one block. Sometimes the following train
needs to stop in front of the signaling light, and sometimes it is only allowed to run through the
signaling light with a limited velocity. According to the principle of FBS, in this paper, we proposed
an improved car‐following model for simulating train movement. Here, we chose a three‐aspect FBS
system as our simulation system. Our improvement is focused on the optimal velocity function
presented in formula (3). The new optimal velocity function Vopt (Δxn(t)) is defined as follows,

Case 1: If the color of the signaling light in front of train n is green, then

V opt Δxn tð Þð Þ ¼ vmax (4)

Case 2: If the color of the signaling light in front of the train n is yellow, then

V opt Δxn tð Þð Þ ¼ vy−vr
� �

tanh Δxn tð Þ½ � þ vrf g (5)

Case 3: If the color of the signaling light in front of the train n is red, then

V opt Δxn tð Þð Þ ¼ vr=2ð Þ tanh Δxn tð Þ−sm½ � þ tanh sm½ �f g ð6Þ

Here, vy is the limited velocity under the yellow light condition. vr is the limited velocity under
the red light condition. sm is called the safety margin distance in train control system. Δxn(t) is the
distance from train n to the signaling light in front of it. Equation (4) is used to determine the
allowable velocity of the current train when the color of the signaling light in front of the current train
is green. In this case, the current train can travel with the maximum velocity vmax. Equation (5) is used
to determine the allowable velocity of current the train when the color of the signaling light in front of
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the current train is yellow. As Δx(t) is larger, the current train can travel with the limited velocity vy.
However, as Δx(t) is smaller, the current train must decelerate. If only the current train passes through
the position where its leader signaling light locates, it can travel with the limited velocity vr. In other
words, as Δx(t) = 0, Vopt(Δx(t)) = vr. Equation (6) is used to determine the allowable velocity of the
current train when the color of the signaling light in front of the current train is red. As Δx(t) is larger,
the current train can travel with the limited velocity vr. However, as Δx(t) is smaller, the current train is
not allowed to pass through the position where its leader signaling light locates. Here, we introduce
the parameter sm so that if Δxn(t) = 0, then Vopt(Δx(t)) = 0.
It should be pointed out that Equations (4–6) are all based on the optimal velocity function

Vopt(Δx(t)) defined by Bando et al. (i.e., Ref. [13]). From the expression of Vopt(Δx(t)) used in Ref. [3],
we can give different expression of Vopt(Δx(t)). When the color of the signaling light in front of train n is
green, train deceleration can be neglected. In this case, Vopt(Δx(t)) = vmax, that is, Equation (4).When the
color of the signaling light in front of train n is yellow, xc = 0. In this case, we give V

opt (Δxn(t)) = (vy−vr)
{tanh[Δxn(t)] + vr}, that is, Equation (5). When the color of the signaling light in front of train n is red,
replacing xc by sm, we give Vopt(Δx(t)) = (vr/2){tanh[Δxn(t)−sm] + tanh[sm]}, that is Equation (6).
In the three‐aspect FBS, after Equation (4) is executed, the next equation to execute is Equation (4)

or Equation (5). After Equation (5) is executed, the next executed equation must be Equation (6).
There is no correlation between Equation (4) and Equation (5) or Equation (6). However, between
Equation (5) and Equation (6), there exists a joint. In Equation (5), as Δx(t) = 0, Vopt(Δx(t)) = vr. In
Equation (6), as Δxn(t) is larger, V

opt(Δx(t)) is also taken as Vopt(Δx(t)) = vr.
The dynamic behavior of train movement near a station is complex. When train n prepares to travel

into a station, if the station in front of train n is occupied by another train, then train n must keep away
from the station. Otherwise, this train can travel into the station directly. In the former case, the
distance between train n and the station is at least the length of one block. In the latter case, the
optimal velocity Vopt is taken as

Vopt xsð Þ ¼ vmax tanh coe xsð Þ½ � (7)

xs is the distance between train n and the station. coe is an adjustable parameter; it is mainly used to
control the acceleration and the deceleration of the train. As train n arrives at the station, its velocity is
set to zero. After the station dwell time Td, it leaves the station. Boundary condition used in the
proposed method is open: (i) when the color of the first signaling light is green, a train with the
velocity vmax is created at departure station; this train immediately travels according to the proposed
equation model; and (ii) at arrival station, train simply moves out of the system.

5. NUMERICAL SIMULATIONS

We use the proposed equation model to simulate the train movement in FBS. However, formula (3)
must be rewritten. At first, by changing the time derivative, the proposed equation is simplified to a
discrete formula. Then, we iterate the discrete equation. Basic step is that at each time, for all trains,
we use the current velocities and positions of trains to calculate the velocities and sites of these trains
at the next time step. The following traffic situations are dealt with the following: (i) rail line has the
single‐track sections; and (ii) one station is designed at the middle of the system.
The different expressions of optimal velocity functions may lead to the acceleration/deceleration

discontinuity, especially the acceleration/deceleration change from Case 1 to Case 2. In order to avoid
unrealistic change of train acceleration/deceleration, we need choose a suitable value for the relaxation
time τ. For example, when the difference between the chosen values of the parameters in Case 1 and
Case 2 is larger, τ should take a larger value. In this case, from formula (3), we can infer that the
change of train acceleration/deceleration is small. This ensures that the train velocity changes
smoothly. A system of L= 1000 is considered, which is divided into 10 blocks. The iteration time step
is Ts = 1000. The velocities vmax, vy, and vr are respectively taken as vmax = 10, vy = 6, and vr = 2. The
value of sm is set to be sm= 10.
In order to investigate some complex phenomena of train flow, we study the space–time diagram of

the railway traffic flow. Simulation results indicate that when the station dwell time Td is large, train
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delays begin to emerge. Figure 1 shows the space–time diagram of a railway traffic flow for coe=0.01.
Here, we plot 1000 sites in 500 consecutive time steps. The horizontal direction indicates the direction in
which trains move ahead. The vertical direction indicates time. In Figure 1, the positions of trains are
indicated by dots. From Figure 1, we can clearly observe the processes of train movements. All trains
start from the departure site, that is, the site l=1, and then arrive at the station, that is, the middle site
l=500. After the station dwell time Td, they leave the station. When they arrive at the arrival site, that is,
the site l=1000, they leave the system. Before the station, the train delays form and propagate backward.
In Figure 1(a), as the simulation evolution proceeds, the train delays disappear, but in Figure 1(b), as the
simulation evolution proceeds, the lengths of the delay times increase. The reason is that when τ is small,
the accelerations and decelerations of trains are large. In this case, the train delays can quickly propagate
backward so that the train delays can be easily reduced.
When a train passes through a station, its dynamic behavior is complex. In this case, it needs to stop

to enable passengers to board and alight. Figure 2 shows the local space–time diagram, which displays
the positions and velocities of the trains near the station. Here, numbers represent the velocities of
trains. The parameters used in the equation model are same as that used in Figure 1(a). From Figure 2,
we can clearly see how trains change their velocities and maintain the safety stopping distance among
them. In Figure 2, as station P is occupied by train A, train B is not allowed to travel into the first
block in front of station P. When train B arrives at the block boundary (i.e., the site l= 400), it needs to
stop at this boundary. Similarly, train C also stops at the block boundary (i.e., the site l= 300). These
are the characteristic behaviors of train movements under the FBS condition. In this paper, we focus
on the case where the station dwell time is large. Under such a condition, we can observe the complex
behavior of train movement.
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Figure 1. Local space–time diagram of railway traffic flow for Td = 50. (a) τ= 5, (b) τ= 10.
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Figure 2. A diagram displaying the positions and velocities of trains.
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Among all the constraints of train movement, safety distance is the most important factor. When the
color of the signaling light in front of one train is red, it is not allowed to travel toward the physical
block in front of it. One physical block is only occupied by one train. In order to make the train travel
smoothly, the distance between two successive trains is at least larger than the length of the physical
block. Using the proposed model, we measure the distribution of the distance headway Δsn. Here, Δsn
is defined as the distance from the current train n to its leader train n + 1. Figure 3 shows the
distribution of the distance headway at the time t= 1000. Here, the solid line denotes the measurement
results, and the dotted line denotes the length of one physical block. At the time t= 1000, there are four
trains traveling on the single line. From Figure 3, it is obvious that the measurement results are all
larger than the length of one physical block. In other words, these trains can travel safely.
When a train travels from a departure station to its arrival station, it needs to change its velocity

continuously. Sometimes it accelerates or decelerates, and sometimes it travels at the inertia motion.
Figure 4 shows how the velocity varies with the simulation time t. Here, this tracked train departs from
the site i=1 at the time t=500. In Figure 4, when the tracked train travels toward the station, sometimes
it travels with the limited velocity vr, and sometimes it stops at a site in front of the station. When the
tracked train arrives at the station, its velocity is zero; that is, it stops at the station. After the station dwell
time Td, it accelerates continuously until it has a maximum velocity vmax. The simulation results indicate
that the proposed model is an effective tool for simulating train movement under the FBS condition.
In railway traffic, train can only decrease (or accelerate) step by step. The deceleration and

the acceleration of a train are limited between the region [−1.5m/s2, 2m/s2]. Figure 5 presents
the accelerations and decelerations of all trains in simulations. From Figure 5, we can see that the
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Figure 3. Distribution of the distance headway for Td = 10 and τ= 5.
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Figure 4. How the velocity of one tracked train varies with the evolution time for Td = 50, τ= 5, and coe= 0.01.
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accelerations of all trains are between the region [0m/s2, 2m/s2], and the decelerations of all trains are
between the region [−1.5m/s2, 0m/s2]. In the proposed equation model, the relaxation time τ can be
used to control the region of the acceleration and deceleration. When the parameter τ is small, the
region of the acceleration and deceleration is larger. On the contrary, when the parameter τ is large, the
region of the acceleration and deceleration is small.
When trains travel toward station, the parameter coe expressed in formula (7) is used to change the

acceleration/deceleration rate. Figure 6 places how the velocity varies with the simulation time near
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Figure 5. Accelerations and decelerations of all trains for Td = 50, τ= 5, and coe = 0.01.
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Figure 6. A diagram displaying the positions and velocities for Td = 50. (a) τ= 5 and coe= 0.01, (b) τ= 5 and
coe = 1, (c) τ= 10 and coe = 0.006, (d) τ= 15 and coe = 0.0005.
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the station. The numerical simulation result shown in Figure 6(a) is obtained for coe= 0.01, and the
result shown in Figure 6(b) is obtained for coe= 1. Comparing Figure 6(a) with Figure 6(b), we can
obviously see that the train decreases gradually in Figure 6(a), but it decreases abruptly in Figure 6(b).
For different values of parameter τ, we need to select a reasonable value of coe. When τ is larger, coe
should take a smaller value. On the contrary, when vmax is smaller, coe can take a larger value.
Figure 6(c) and Figure 6(d) show the results for various τ and coe.

6. CONCLUSIONS

In conclusion, an improved optimal velocity car‐following model is used for simulating train
movement in FBS. After such an improved model is discretized, we iterated it to simulate the train
movement under open boundary condition. The numerical simulation results indicate that the
proposed model can well describe the train movement in FBS. The proposed equation model provides
a new approach to further analyze and evaluate the theoretical control algorithm of train control
systems.
However, the traffic situations considered in this paper are simplified. In real railway traffic, rail

lines have double‐track sections, stations have several platforms, and there are at least two types of
trains traveling on the same rail line. In addition, train movement is affected by other trains, which
come from other track sections. In fact, these problems can be solved by modifying the basic traffic
situation. We think that the proposed equation model is worthy of further study.
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