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SUMMARY

Built upon the previous studies, this paper incorporates both bilateral taxi–customer search frictions and
congestion externalities into the economic analyses of the equilibrium properties of taxi markets. We take
account of congestion externalities by adopting a realistic distance-based and delay-based taxi fare structure.
We first investigate comparative static effects of regulatory variables of taxi fare and fleet size on the market
and then examine the properties of the Pareto-efficient solutions for simultaneous maximization of social
welfare and taxi profit in the congested market. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Traditionally, economic analyses of taxi markets are made by economists under various types of
regulation such as entry restriction and price control. Most studies have used aggregate models with
the basic assumptions that the demand for taxi rides is a decreasing function of the expected fare
and the expected customer waiting time; expected customer waiting time is decreasing with the total
vacant taxi-hours; and the cost of operating a taxi is constant per hour [1–6].
In most large cities, taxis contribute significantly to traffic congestion. Unfortunately, most previous

economic analyses of taxi services are generally based on a constant average taxi ride time or distance
and ignored the effects of traffic congestion. The only economic and network analysis of taxi services
with congestion externalities was made by Wong et al. [7] and Yang et al. [8], where a realistic taxi
fare structure including both a distance-based charge and a delay-based charge is adopted in investigat-
ing the nature of equilibrium and regulation in the taxi market.
Recently, Yang et al. [9] used a meeting function to spell out the search and meeting frictions that arise

endogenously as a result of the spatial feature of the area and the customer-taxi moving decisions on
networks. They proved the existence of the stationary competitive equilibrium achieved at fixed fare prices
when the demand of the customer matches the supply of taxis or there is market clearing at the prevailing
searching and waiting times in every meeting location. Yang and Yang [10] further offered some new inter-
esting insights into the properties of the equilibrium of taxi services considered by economists by explicitly
taking into account the bilateral customer-taxi searching and meeting in an aggregate taxi market. They
considered a general meeting function, in which the meeting rate increases faster (slower) than linearly with
proportionate increases in the number of unserved customers and vacant taxis, thereby dictating increasing
(decreasing) returns to scale of production of customer-taxi meetings.
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Built upon the work by Yang et al. [8] and Yang and Yang [10], this paper investigates the equilib-
rium properties of taxi markets by incorporating both bilateral taxi–customer search frictions and con-
gestion externalities, which is clearly a more realistic representation of actual taxi markets. The paper
is organized as follows. In the next section, we introduce the essential elements and the basic analytical
model required to characterize taxi services with search frictions and congestion effects, and examine
comparative static effects of regulatory variables of taxi fare and fleet size on the market. In Section 3,
we examine the properties of the Pareto-efficient solutions for simultaneous maximization of social
welfare and taxi profit. The situation with constant returns to scale in the meeting function is particu-
larly considered for illustration. A numerical example is given in Section 4 to elaborate the analytical
results. General conclusions are given in Section 5.

2. THE MODEL

2.1. Basic assumptions

We consider a one-hour modeling period of an aggregate market in a stationary equilibrium state as set
out in [10]. Suppose each taxi takes only one customer; the rate of meetings between customers and
taxis depends on the size of two pools: the number of unserved customers and the number of vacant
taxis at a given instant. Clearly, the number of unserved customers any time, denoted by N c, is given
by N c =w cQ, where wc and Q are respectively average customer wait/search time, and customer arrival
rate or customer demand into the market per unit time (one hour). The number of vacant taxis,
denoted by Nvt, is given by Nvt =wtTvt, where w t is the average taxi wait/search time expected for
picking up each customer and Tvt is the arrival rate or supply of vacant taxis into the market per unit
time. Thus, the meeting rate mc–t between customers and taxis is given as a function of N c and Nvt

as follows:

mc�t ¼ M Nc; ;Nvtð Þ ¼ M wcQ;wtTvtð Þ (1)

where @ mc–t/@ Nc> 0 and @ mc–t/@ Nvt> 0 in their domain Nc≥ 0, Nvt≥ 0. Furthermore, mc–t! 0 as
either Nc! 0 or Nvt! 0. Note that in a stationary equilibrium state with market clearing, we always
have

Q � Tvt � mc�t ¼ M wcQ;wtTvtð Þ (2)

In an aggregate market, the meeting rate between customers and taxis may increase faster (slower)
than linearly with proportionate increases in the number of unserved customer and the number of
vacant taxis, which reflects increasing (decreasing) returns to scale of the production of customer-taxi
meetings. Let a1 and a2 be the elasticity of the meeting rate with respect to the number of unserved
customers and the number of vacant taxis, respectively, at a given instant in time:

a1 � @M

@Nc

Nc

M
¼ @M

@Nc

wcQ

M
¼ wc @M

@Nc

� �
(3)

a2 � @M

@Nvt

Nvt

M
¼ @M

@Nvt

wtTvt

M
¼ wt @M

@Nvt

� �
(4)

\where the equalities in the brackets in Equations (3) and (4) hold in a stationary equilibrium state, and the
second equality in the brackets stems from identity relation (2). It is generally expected that 0< a1, a2≤ 1.
The meeting function that is homogeneous of degree a1 + a2 is said to exhibit increasing, constant, or
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decreasing returns to scale if a1 + a2> 1, a1 + a2 = 1, and a1 + a2< 1, respectively.a In addition, we say that
the bilateral meeting function is symmetric if a1� a2. Otherwise, it is asymmetric with an asymmetric
factor a2/a1. The technical properties of the meeting function such as the returns to scale play an essential
role in determining the many different aspects of market equilibrium [10].
As congestion externalities are now taken into account, we use a realistic taxi fare structure consisting

of three components: a flag fall or a constant initial flat charge, a distance-based charge, and a delay-
based charge [8]. Let P0 denote the initial flag-fall charge per ride (dollars), bd the fare charge per occu-
pied unit distance (dollar per kilometer), bt the fare charge per delay hour (dollar per hour), L the average
taxi ride length (kilometer; assumed to be a given constant), T the average taxi ride time (hour; conges-
tion dependent), and T0 the average taxi ride time without congestion (hour; assumed to be a given
constant).
The total trip fare P (dollars) is given by

P ¼ P0 þ bdLþ bt T � T0
� �

(5)

where T�T0≥ 0. Let k and t denote the value of customer waiting time and in-vehicle ride time. Then
the full trip price, denoted by m, for a taxi ride is given by m=P+ kwc + tT. The demand function is
assumed to be a strictly decreasing and differentiable function of the full trip price:

Q ¼ f mð Þ ¼ f Pþ kwc þ tTð Þ (6)

where f 0 = df/dm< 0 over m> 0.
The taxi utilization or occupancy rate U is defined as the portion of occupied service time and is

given by

U ¼ TQ

N
0 < U < 1:0ð Þ (7)

Note that, for an average taxi ride time T, the taxi fleet size N, number of vacant taxis Nvt, number of
occupied taxis No, and customer demand Q are related to each other by

No ¼ QT (8)

Nvt ¼ N � QT (9)

With U= TQ/N, we have Nvt = (U� 1� 1)TQ from Equation (9). Substituting Nvt into Equation (1)
together with Q=mc–t, we have

Q ¼ M wcQ;
1
U
� 1

� �
TQ

� �
(10)

For given T, Equation (10) can be solved for waiting time wc as a function of the customer demand
Q and the taxi utilization rate U [10]. Namely,

aIt is worth mentioning that the taxi market does in fact often have increasing returns to scale (Manski and Wright, 1976;
Shroeter, 1983) [2], which is common in many queuing processes and public transit systems (Mohring, 1972). That is, a
simultaneous increase in the arrival rate and the number of servers will, if not disparate, decrease the customer waiting
time and increase the server utilization rate [10].
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wc ¼ Wc Q;Uð Þ (11)

It is also shown that theWc
U ¼ @wc=@U > 0, but the sign ofWc

Q ¼ @wc=@Q depends on the returns
to scale (a1 + a2) in the meeting function.
Naturally, the in-vehicle travel time for a given average length of taxi ride is given as a function of

the vehicle density on the road. Here, our focus is on the impact of change in taxi fleet size on traffic
congestion and hence taxi services. For simplicity, we ignore normal traffic, and the taxi ride time is a
function of the number of vacant and occupied taxis only: b

T ¼ t Nvt;Noð Þ (12)

Let t1 and t2 denote the partial derivatives of T in function (12) in Nvt and No, respectively. We have
t1> 0 and t2> 0.
We now revisit taxi fare structure (5) with congestion effects. In view of P0 + bdL in Equation (5)

being constant for a given average ride distance L, we now use Pf to denote this fixed component of
taxi fare: Pf =P0 + bdL. Therefore, in the presence of congestion externalities, the total taxi fare per ride
P is a function of three components: fixed fare charge Pf, hourly delay charge bt, and average taxi ride
time T. Namely,

P ¼ p Pf ; bt; T
� �

(13)

Let p1, p2, and p3 denote the partial derivatives of P in Pf, bt, and T in function (13), respectively.
We have p1> 0, p2> 0, and p3> 0.

2.2. Comparative static effects of regulatory variables

In the presence of congestion externalities, with the distance and delay-based taxi fare structure, we
now have three market regulatory variables of constant fare charge Pf, delay-based charge rate bt,
and taxi fleet size N. These regulatory variables are regarded as independent variables.
For simplicity, we assume that both vacant and occupied taxis have about the same marginal impact

on traffic flow (or running speed) in the considered cruising taxi market, namely, t1 = t2. From Yang
et al. [8], we have the following results:

@P

@Pf
¼ p1 > 0 (14)

@P

@bt
¼ p2 > 0 (15)

@P

@N
¼ t1p3 > 0 (16)

bNormal trafffic is taken into account by assuming a fixed demand and the same moving speed as taxis subjec to endog-
enous congestion [10]. Nonethelerss, such a consideratoion in the current context makes the analysis analytically
intractable.
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@T

@Pf
¼ @T

@bt
¼ 0 (17)

@T

@N
¼ t1 ¼ t2 > 0 (18)

With a general bilateral searching and meeting function, which characterizes the search frictions
between vacant taxis and unserved customers, we now look at the effects of the regulatory variables
on customer waiting time. Taking the partial derivatives of wc in (11) with respect to Pf, bt, and N,
respectively, and utilizing Equations (17) and (7), we obtain

@wc

@Pf
¼ Wc

Q

@Q

@Pf
þWc

U

T

N

@Q

@Pf
þ Q

N

@T

@Pf

� �
¼ Wc

Q

@Q

@Pf
þWc

U

T

N

@Q

@Pf
(19)

@wc

@bt
¼ Wc

Q

@Q

@bt
þWc

U

T

N

@Q

@bt
þ Q

N

@T

@bt

� �
¼ Wc

Q

@Q

@bt
þWc

U

T

N

@Q

@bt
(20)

@wc

@N
¼ Wc

Q

@Q

@N
þWc

U

T

N

@Q

@N
þWc

U

Q

N

@T

@N
�Wc

U

TQ

N2
(21)

where @ Q/@ Pf, @ Q/@ bt, and @ Q/@ N are given as follows,

@Q

@Pf
¼ f

0 @P

@Pf
þ kf

0 @wc

@Pf
þ tf

0 @T

@Pf
(22)

Substituting Equations (14), (17), and (19) into (22), we can obtain

@Q

@Pf
¼ Nf

0
p1

N � kNf 0Wc
Q � kTf 0Wc

U

(23)

Similarly, we have

@Q

@bt
¼ Nf

0
p2

N � kNf 0Wc
Q � kTf 0Wc

U

(24)

@Q

@N
¼ � kUf

0
Wc

U

N � kNf 0Wc
Q � kTf 0Wc

U

þ Nf
0
p3 þ tNf

0 þ kQf
0
Wc

U

N � kNf 0Wc
Q � kTf 0Wc

U

� @T
@N

(25)

According to Yang et al. [8], we have these results: @ Q/@ Pf< 0 and @ Q/@ bt< 0 in Equations (23)
and (24), respectively. However, Equation (25) describes the aggregate impact of taxi fleet size on
customer demand in two opposite manners, which is different from [9,10], in which the congestion
externalities are ignored. From [10], we can conclude that the first term of the right-hand side in
Equation (25) is always positive, which means that if everything else is equal, increase in taxi fleet
size will reduce customer waiting time and thus increases customer demand [8]. As @ T/@ N> 0,
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Wc
U ¼ @wc=@U > 0, the second term of the right-hand side is always negative, which represents the

negative impact of congestion on customer demand arising from the entry of one additional
taxi into the market. From this equation, we thus conclude that customer demand is not always
increasing with taxi fleet size because of the congestion effects.

3. PARETO-EFFICIENT SOLUTION

In this section, we consider the choice of taxi fleet size and fare structure to maximize social welfare S
and total taxi profit Π simultaneously, or we seek Pareto-efficient solution of taxi services, which
naturally gives rise to a bi-objective maximization problem.
Assuming a constant hourly operation cost c (dollar per hour) for both vacant and occupied taxis and

a predetermined constant taxi fare charge, Pf =P0 + bdL,c then we have the following bi-objective
maximization problem:

max
bt;Nð Þ2Ω

S bt;N
� �

Q
bt;N
� �

 !
(26)

where Ω= {(bt,N) : bt≥ 0,N≥ 0} as defined before. Social welfare is the sum of the customer surplus
and the producer surplus. Different from [8], here we ignored the additional congestion delay cost to
normal traffic arising from taxi movements for simplicity. Regarding Q, wc, and T as implicit functions
of (bt,N), we have the social welfare given by

S bt;N
� � ¼ Z Q

0
f�1 zð Þdz� kQwc � tTQ� cN (27)

The total taxi profit is given by

Y
bt;N
� � ¼ PQ� cN ¼ Pf þ bt� T � T0

� �� �
Q� c� Nvt þ Noð Þ (28)

We can apply the so-called e-constraint method [11] to derive the Pareto-optimality conditions.
Suppose that bt�;N�� �

is a Pareto-optimal solution and (Q*,T*) denotes the corresponding customer
demand and average taxi ride time, then we have the following nonlinear programming problem:

max
bt;Nð Þ2Ω

S bt;N
� � ¼ Z Q

0
f�1 zð Þdz� kQwc � tTQ� cN (29)

subject to

Y
¼ P f þ bt� T � T0

� �� �
Q� cN≥ Pf þ bt�� T� � T0

� �� �
Q� � cN� (30)

cNote that Pf is the corresponding taxi fare in the absence of congestion effect and thus is assumed to be already deter-
mined when the market does not exhibit congestion. Only the delay-based hourly charge rate is determined when con-
gestion is built into the market. This would make a sensible comparison of the market cases with and without traffic
congestion.
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Now we form the following Lagrange function:

L bt;N
� � ¼ Z Q

0
f�1 zð Þdz� kQwc � tTQ� cN

þ l Pf þ bt� T � T0ð Þ� �
Q� cN � Pf þ bt�� T� � T0ð Þ� �

Q� � cN�� � (31)

where l≥ 0 is the Lagrange multiplier. Applying the first-order optimality conditions with respect to
bt, @ L/@ bt = 0, and utilizing Equations (20) and (24), we have

f
0
P ¼ kf

0
QWc

Q þ kf
0
UWc

U � l
1þ l

Q (32)

From @ L/@ N= 0 and substituting Equation (32) in the result, we have

kWc
U

U2

T
¼ cþ tQþ kWc

U

Q2

N

� �
@T

@N
(33)

Equation (33) is the general result of the Pareto-efficient solution with congestion externalities. The
equation implies that if @ T/@ N= 0, namely, if there is no congestion effect, we havekU2Wc

U ¼ cT. We
thus arrive at the same results as in Yang and Yang [10], who concluded that when there are constant
returns to scale in the meeting function, the customer waiting time will reduce to a function of taxi
utilization rate alone, and the taxi utilization rate and customer waiting time are constant along the
Pareto-efficient frontier. If the congestion effect cannot be ignored, the taxi utilization rate and
customer waiting time are clearly not constant, even with constant returns to scale in the meeting
functions.
Here, we show that, with constant returns to scale in the meeting functions, taxi utilization rate is no

longer a constant along the Pareto-efficient frontier from social optimum (SO) to monopoly optimum
(MO) in the presence of congestion externalities. For both increasing and decreasing returns to scale,
we are unable to establish the results analytically. However, as demonstrated later through numerical
example, similar results can be obtained.
Considering constant returns to scale, from [10], we have

Wc
U ¼ a2

a1

wc

1� Uð ÞU > 0 (34)

The meeting function is said to exhibit constant returns to scale if a1 + a2 = 1. In this case, we
always have Wc

Q ¼ 0 [10], and customer waiting time reduces to a function of taxi utilization rate
alone as

wc ¼ z
U

1� U

� �a2
a1

(35)

where z, z> 0, is a constant that can be determined once the meeting function is specified explic-
itly. Substituting Equations (34) and (35) into (33), we can solve for the Pareto-efficient taxi
utilization rate as follows:
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U ¼ 1þ kz a2
a1

1� N
T
@T
@N

� �
cT þ tQT @T

@N

 !a1 !�1

¼ 1þ kz a2
a1

1� eTN
� �

cT þ tQT @T
@N

 !a1 !�1

(36)

where eTN ¼ N=Tð Þ @T=@Nð Þ > 0 denotes the elasticity of the average taxi ride time with respect to
the taxi fleet size.
From Equation (36), we can see that if @ T/@ N= 0 or eTN ¼ 0 (without congestion effect), we can

obtain the following constant taxi utilization rate as given in [10]:

U ¼ 1þ a2
a1

kz
cT0

� �a1� ��1

(37)

However, with congestion effects or @ T/@ N> 0, we can readily see that, for a given number of taxi
fleet size N on the Pareto-efficient frontier, the Pareto-efficient taxi utilization rate with congestion
effects will be greater than the counterpart in the absence of congestion effect. In other words, for
Pareto-efficient taxi services, traffic congestion tends to increase taxi utilization rate.
To look at how taxi utilization rate varies from SO to MO along the Pareto-efficient frontier with

congestion effects, we simply consider a linear traffic flow model v = a� bk, where speed v is a
linear function of traffic density k with parameter a, b> 0; and traffic density is assumed to be
given by k ¼ N=�L, where �L is the total road length in the network. With this assumption of linear
traffic flow model and T=L/v where L is the average length of taxi rides defined before, we can
easily obtain

eTN ¼ a

b

�L

N
� 1

� ��1

(38)

Thus, eTN increases with taxi fleet size N. If we further assume that traffic is operating within the
normal flow regime, or equivalently, 0< a/2≤ v< a, we can easily prove that 0 < eTN≤1.
Yang and Yang [10] proved that taxi fleet size N and customer demand Q decrease along the

Pareto-efficient frontier from SO to MO in the absence of congestion effect. One would expect that
this is true as well in the presence of (mild) congestion effects, and therefore, from Equation (36), the
Pareto-efficient taxi utilization rate decreases along the Pareto-efficient frontier from SO to MO when
the meeting function exhibits constant returns to scale. This can be contrasted with the corresponding
observation of constant taxi utilization rate in the absence of congestion externalities in [10]. We will
further verify this observation by numerical examples.

4. A NUMERICAL EXAMPLE

In this section, we present a numerical example to illustrate the findings obtained so far. The demand
function is specified to be of the following negative exponential form:

Q ¼ f mð Þ ¼ f Pþ kwc þ tTð Þ
¼ ~Q exp �a P0 þ bdLþ bt T � T0ð Þ þ kwc þ tT

� �� 	 (39)

where ~Q is the potential customer demand per hour and assumed to be ~Q ¼ 1:0� 105 (trip per hour).
With reference to the calibrated data of Hong Kong [4], we take L= 30 (kilometer), t = 35 (HKD
per hour), k= 60 (HKD per hour), and a = 0.03 (1/HKD). The hourly operation cost per taxi is assumed
to be c = 50 (HKD per hour). To characterize the congestion effects, we adopt a linear speed-density
function: v= a� bk, where k ¼ N=�L and �L (kilometer) is the total length of the roads in the network.
Here we note again that we have simply ignored normal vehicle flow because our focus is on the
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impact of congestion on taxi services.d The parameter values are assumed to be a = 100 (kilometer per
hour), b = 0.67 (square kilometer per hour), and �L ¼ 500 (kilometer). Additionally, we have T= L/v and
T0 = L/a. Therefore, the average running speed of vehicles on the network is given by v ¼ a� bN=�L,
which is a simplified version of Yang et al. [8] by assuming zero normal traffic demand.e

We first verify some observations from analysis of comparative static effects. Assuming a
fixed component of taxi fare Pf =P0 + bdL= 50 (HKD) and a fare charge per one-hour delay bt = 84
(HKD per hour), Figures 1 and 2 show the change of customer demand and customer waiting time with
taxi fleet size. As observed in Figure 1, customer demand first increases with taxi fleet size and then
decreases with further increase in taxi fleet size. This is clearly due to the congestion effect. When taxi
fleet size is small or congestion is insignificant, increase in taxi fleet size reduces customer waiting time
and thus induces more demand, but further excessive increase will bring about severe congestion and
thus increases taxi ride time and fare and thereby reduces customer demand. Furthermore, from
Figure 2, customer waiting time always decreases with taxi fleet size even in the presence of congestion
effects regardless of the returns of scale of the bilateral meeting functions.
Figures 3–5 portray the iso-social welfare and iso-profit contours within the two-dimensional space

of the taxi utilization rate and taxi fleet size. The Pareto-optimal solution sets together with the SO and
MO solution are clearly identified and depicted in the figures. The corresponding representative
numerical solutions with or without congestion externalities for the MO and SO are presented in
Tables 1–3, respectively. From Tables 1–3, we can observe that the taxi fare with congestion increases,
taxi fleet size with congestion decreases, and customer waiting time with congestion increases under
both SO and MO solutions. More important, taxi utilization rate with congestion increases under both
SO and MO solutions because of the congestion effects. Customer demand and social welfare all de-
crease under SO and MO solution if we take congestion effects into account. The social welfare
decreases can be attributed mainly to both the increased journey time and the reduced customer surplus
(reduced customer demand). It is worth to note that the taxi profits associated with the MO and SO ex-
hibit an opposite trend of change with congestion effects in the cases of increasing and constant returns
to scale, although it is not intuitively obvious whether taxi profits would increase or decrease with con-
gestion effects, because taxi fare increases but customer demand decreases and taxi fleet size decreases
at SO. Nevertheless, the changes of taxi profits at SO with and without congestion effects in the cases
of increasing and constant returns to scale are consistent with the theoretical observations made in
[[8,10]] and in the current study.
As found in previous studies [10], taxi services at SO are associated with a negative, zero, and pos-

itive profit under increasing, constant, and decreasing returns to scale, respectively; and thus taxi ser-
vices should be subsidized in the case. This is indeed true in the absence of congestion externality.
Nevertheless, with the congestion effects, the SO price charged per taxi ride exceeds the corresponding
marginal cost. Taxi profit becomes positive even in the case of increasing return to scale. However, in
spite of higher markup pricing over marginal cost in the monopoly market, the total monopoly profit
decreases with the congestion effects because of reduced customer demand. These observations are
also consistent with the findings in [8].
From Figure 3, with increasing returns to scale, taxi utilization rate decreases monotonically as

moving from the SO to the MO along the Pareto-efficient contract curve (Pareto-efficient set), similar
to that observed in [10]. Nonetheless, the change in taxi utilization from SO to MO is
0.7922� 0.7034= 0.0888with congestion, larger than that 0.7581� 0.6879= 0.0702without congestion.
From Figure 4, with constant returns to scale, contract curve is no longer a straight line, which

contrasts with the constant taxi utilization rate (or straight line) without congestion externalities
[10]. Consistent with our theoretical observation in Section [7], because of congestion effects, taxi utili-
zation rate actually decreases monotonically as moving from the SO to the MO along the Pareto-efficient
contract curve.

dIt is worth mentioning that normal vehicle movements are not considered in our execution of numerical analysis. In
reality, normal vehicle journey time also increases with degree of congestion and thus taxi fleet size, even if its demand
is fixed. This means that our analysis actually underestimated the congestion externality of taxi services.
eValues of parameter selected in the example do not necessarily represent the Hong Kong situation but are simply for
illustrative purpose.
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Figure 2. Customer waiting time versus taxi fleet size with constant and non-constant returns to scale.
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Figure 1. Customer demand versus taxi fleet size with constant and non-constant returns to scale.
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Figure 3. Pareto solution set under increasing returns to scale with congestion effects.
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Figure 4. Pareto solution set under constant returns to scale with congestion effects.
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Figure 5. Pareto solution set under decreasing returns to scale with congestion effects.

Table I. The SO and MO solutions with increasing returns to scale.

Solution variable and
performance measure

Monopoly optimum Social optimum

Without congestion With congestion Without congestion With congestion

Taxi fare (HKD) 50.6145 53.5017 16.1166 25.3955
Taxi fleet size (104 veh) 0.5685 0.5250 1.5490 1.2050
Customer waiting time (h) 0.1134 0.1240 0.0775 0.1020
Taxi utilization rate 0.6879 0.7034 0.7581 0.7922
Customer demand (104 person/h) 1.3035 1.1490 3.9143 2.6682
Taxi profit (105HKD/h) 3.7550 3.5018 �1.4365 0.7510
Social welfare (106HKD/h) 0.8100 0.7319 1.1611 0.9645
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For Figure 5, with decreasing returns to scale, taxi utilization rate increases monotonically as
moving from the SO to the MO along the Pareto-efficient contract curve (Pareto-efficient set). Al-
though this is still consistent with the case without congestion, the increase in taxi utilization from
SO to MO is 0.6615� 0.5734 = 0.0881 with congestion in comparison with 0.6388� 0.5329 = 0.1059.
In summary, traffic congestion increases taxi utilization rate at Pareto-efficient solution inclusive

of both SO and MO solutions. Meanwhile, traffic congestion also tends to make taxi utilization rate
lower when moving from SO to the MO along the Pareto-efficient frontier, or it tends to rotate the
Pareto-efficient contract curve in the clockwise direction.

5. CONCLUSIONS

In this paper, we investigated an aggregate taxi market by incorporating both bilateral taxi–customer
search frictions and congestion externalities into the analyses. With a realistic distance-based and
delay-based taxi fare structure, we first investigated comparative static effects of regulatory variables
on the market. These market regulatory variables include constant fare charge, delay-based charge rate,
and taxi fleet size. It is shown that customer demand is not always increasing with taxi fleet size if
congestion effect is taken into account.
We examined the properties of the Pareto-efficient solutions for simultaneous maximization of

social welfare and taxi profit in the congested market. In contrast with previous observations, we
proved that taxi utilization rate decreases along the Pareto-efficient frontier from SO to MO with
constant returns to scale, Pareto-efficient utilization rate with congestion effect is greater than its
counterpart without congestion effect.

6. LIST OF SYMBOLS

N number of taxis in service or taxi fleet size
No number of occupied taxis anytime
Nvt number of vacant taxis anytime

Table II. The SO and MO solutions with constant returns to scale.

Solution variable and
performance measure

Monopoly optimum Social optimum

Without congestion With congestion Without congestion With congestion

Taxi fare (HKD) 53.8245 56.4866 20.4776 28.4291
Taxi fleet size (104 veh) 0.5046 0.4700 1.3720 1.1000
Customer waiting time (h) 0.0912 0.0953 0.0913 0.1027
Taxi utilization rate 0.7324 0.7531 0.7325 0.7832
Customer demand (104 person/h) 1.2320 1.1055 3.3500 2.4484
Taxi profit (105HKD/h) 4.1082 3.8948 0.0000 1.4607
Social welfare (106HKD/h) 0.8214 0.7580 1.1167 0.9622

Table III. The SO and MO solutions with decreasing returns to scale.

Solution variable and
performance measure

Monopoly optimum Social optimum

Without congestion With congestion Without congestion With congestion

Taxi fare (HKD) 73.4803 74.7191 54.4499 55.8908
Taxi fleet size (104 veh) 0.2924 0.2810 0.5407 0.5090
Customer waiting time (h) 0.1428 0.1393 0.2192 0.2144
Taxi utilization rate 0.6388 0.6615 0.5329 0.5734
Customer demand (104 person/h) 0.6226 0.5963 0.9604 0.9065
Taxi profit (105HKD/h) 3.1130 3.0503 2.5260 2.5216
Social welfare (106HKD/h) 0.5188 0.5038 0.5727 0.5543
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Tvt arrival rate or supply of vacant taxis into the market per unit time (one hour).
Q customer demand into the market per unit time (one hour).
Nc number of unserved customers any time
wc average customer wait/search time
wt average taxi wait/search time expected for picking up each customer
mc� t meeting rate between customers and taxis per unit time (one hour)
P0 initial flag-fall charge per ride (HKD)
bd fare charge per occupied unit distance (HKD/km)
bt fare charge per delay hour (HKD/h)
L average taxi ride length (km) (assumed to be a constant)
T average taxi ride time (h) (congestion-dependent)
T0 average taxi ride time without congestion (h) (assumed to be a constant)
Pf fixed component of taxi fare, Pf=P0 + bdL
c constant hourly operation cost ($/h) for both occupied and vacant taxis
a1 elasticity of meeting rate with respect to the number of unserved customers
a2 elasticity of meeting rate with respect to the number of vacant taxis
k value of customer waiting time
t value of in-vehicle ride time.
m full trip price for a taxi ride, m=P+ kwc + tT
U taxi utilization or occupancy rate
S total social welfare
Π total taxi profit
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