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Abstract: For the first time, the authors have investigated the analysis of the room-temperature operation of single-electron transistor (SET) for
periodic symmetric functions (PSFs). They demonstrate that in SETs due to the Pauli exclusion principle the distance between current peaks
against bias voltage in coulomb oscillations will be asymmetric. Also, because the separated energy levels have unequal tunnel-barrier resist-
ance, different tunnelling current rates are obtained for each level. So, the unequal peak-to-valley current ratio (PVCR) will be observed in the
coulomb oscillations, and therefore the operation of room-temperature of silicon SET-based PSFs is impossible.

1 Introduction

Attempt to integrate sub-10 nm scaled complementary metal—
oxide—semiconductor (CMOS) devices will face physical limita-
tions in the near future. To tackle this problem several ideas have
been proposed, where one of the most promising tends to use the
Coulomb blockade mechanism in conducting island/tunnel junction
systems to accurately control the current in single-electron devices
[1-6]. The single-electron transportation regime is a direct result of
the addition of an electron to the island. The average number of
electrons on the island can change discretely due to quantum mech-
anical effects and electron—electron interactions. The electron add-
ition energy, E,, associated with changing the charge on the island
can be defined as the energy involved in adding a single electron
and is generally written as the sum of two contributions. The first
contribution is the energy gap between the quantised energy
levels, AE, which is the energetic cost of promoting an electron
on the island from the highest occupied energy level to the lowest
unoccupied energy level. The second contribution is the charging
energy, E., which accounts for the Coulomb interactions on the
island. A common approximation for the electron—electron
fsinteractions on the island is to define a classical total capacitance,
Cs, which can be calculated as E, = e*/Cy [1-6].

Single-electron transistors (SETs) have been widely studied
because of their unique multifunctionality with ultra-low power dis-
sipation and scalability down to the sub-nanometre regime and
several SET modelling approaches have been proposed in the litera-
ture [4-8]. However, almost Coulomb blockade and Coulomb oscil-
lation manner have fully explored the inherent SET characteristics,
and also the temperature effect is usually ignored in the design.

Thermal variations stifle most of the single-electron effects and
ruin the ideal transport mechanism barring k3T < E,. In this condi-
tion, during operation at room-temperature, the electron addition
energy, E,, may be as large as a few electron-volts (eV) that can
be implemented by diminishing the size of the SET island to less
than a few nanometres. Reduction in the size of island below ~2
nm can lead to a drastic improvement in the performance of a room-
temperature SET. At this scale, the total island capacitance Cs may
be ~0.5 aF or even smaller, with single-electron charging energies
Ec> kgT ~26 meV at room-temperature. Hence, SETs with islands
of about 2 nm in size are more encouraging than islands >2 nm.
Moreover, the effects of the discrete energy levels of islands on
SET may become important, especially at room-temperature.

The metallic islands of about 2 nm and quantum dots (QDs) of
about 10 nm in size have an energy-levels spacing, AE, which is typ-
ically smaller than the charging energy. This means that only a
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discrete electron charge reveals in the conductance as a result of the
Coulomb repulsion of individual electrons (£, = E¢). Therefore, the
blockade behaviour is notable since K37 < E. which is known as
the classical Coulomb blockade regime (Orthodox theory). For quant-
isation of energy levels of the non-metallic islands (QDs smaller than
10 nm in size) and ultra-small nanoparticles (metallic islands smaller
than 2 nm in size), AE will be comparable with the charging energy
E.. This leads to E,=E_+ AE. In this situation, the blockade behav-
iour is notable at higher temperatures as the quantum Coulomb block-
ade regime [9-17]. Therefore, we can identify three temperature
regimes: (i) e?/Cs << kgT, where the discreteness of charge cannot
be discerned. (i) AE<<kzT<<e*/Cs, the classical or metallic
Coulomb blockade regime, where many levels are excited by
thermal variations. (i) k37 << (AE, €*/Cs), the quantum Coulomb
blockade regime, where only one or a few levels contribute in trans-
port. SETs are typically analysed using Orthodox theory (the classical
Coulomb blockade regime), where quantisation of energy levels in the
island is entirely ignored. It should be noted that this assumption is
valid only for the metallic islands of about 2 nm and QDs of about
10 nm in size. Therefore, the quantum Coulomb blockade regime
should be considered in calculating the transport characteristics of 2
nm or <2 nm silicon (Si) QD-based SET.

Periodic symmetric functions (PSFs) based on SET fully utilises
Coulomb oscillation effect. SETs based PSF implementation is
based on a two-SET complementary structure [18]. This class of
functions is of particular interest as numerous computer arithmetic
operations belong to it, e.g. parity, counting, and addition [19].
Moreover, digital converter operation can be described as a PSF
[20]. Though PSF based on SETs has shown good advantages
such as high integration density, ultra-low power dissipation, and
extremely simple structure, but a serious problem will be remained.
PSF based on the SETs are validated only within lower-temperature
operation. So, for the first time, this paper has challenged the per-
formance of the SETs based PSF operating at the room-temperature.

This paper is organised as follows. In Section 2, the modelling
theory and the voltage—current characteristics of 2 nm islands
based SET are presented. The challenges of the room-temperature
operation of PSF based on SETs are stated at Section 3. Finally,
conclusion is brought in Section 4.

2 Modelling and simulation methodology
2.1 Change in the free energy of the system
Schematic of an equivalent circuit of an SET is shown in Fig. 1,

where an island is surrounded by drain, source, and gate electrodes.
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The all mentioned electrodes are coupled to the island, capacitively.
Any change in the applied potential of each of the SET electrodes,
enforces an electrostatic energy variation of the island. Only the
electrodes of source and drain are coupled to the island by tunnel-
ling capability, so transportation of electron is allowed only
between the island and these two electrodes. Therefore, the
number of electrons in the island, n, is well defined. We assume
that all electron—electron interactions in the island or on the electro-
des can be parameterised by the total capacitance Cy and it does not
depend on different charge states of the island. Considering into
account that the total capacitance with an r-diameter island equals
Cs=4neye,r, one can measure the exact value of the source,
drain, and gate capacitors using the equation Cy=Cs+ Cyq+ C,.

Helmholtz’s free energy is responsible of electron transportation
through an SET, and is defined as difference between the total
energy stored in the SET and the work is required to be done by
the power sources [5, 6]. When, the amount of the electrons
changes from n to n+ 1, the free energy of the system changes
from F(n) to F(n+1). The variation in the free energy can be
expressed as

AF(n, n+1)=F(n+1)— F(n) (1)

In the Orthodox theory which is commonly used for describing the
SET devices operation based on islands where energy quantisation
is ignored (The metallic islands of about 2 nm and QDs of about 10

nm in size.), the variation of free energy, AF, for electrons during
electron tunnelling from the ‘initial’ to the ‘final’ regions equals
to the electrostatic energy contributed by Helmholtz’s free
energy. By introducing energy quantisation for islands, energy
gaps between the quantised energy levels should be added to AF.
An analytical model for SETs considering the discrete quantum
energy states is proposed by two different groups, Miyaji et al.
[21] and Dan and Mahapatra [22]. Implicit in their discussion is
the assumption that energy-levels degeneracy and the Pauli exclu-
sion principle (the spin degeneracy of the energy level) can be
ignored. The first assumption is valid because, under realistic con-
ditions of room-temperature operation of QD-based SETs, the inter-
actions usually involve just the first energy levels (ground state and
first excited state). The second assumption is the influence of
spin-up and spin-down degenerate energy levels in deriving the
AF equations for n —n+1 transitions has not been considered.
Here, we have no reason to distinguish spin polarisation, and there-
fore we assume that both configurations contribute in equal part to
the state occupation. However, spin-dependent transport occurs in
the presence of ferromagnetic electrodes [23, 24]. This assumption
causes an unrealistic intuition with respect to the position of each
current peaks. That is why, the Pauli’s exclusion principle should
considering into AF. The modified equations will become

AFy = o [CaVus+ Clys —ne = 5| = NAE  2-1)
’ CZ 2
e e

AF,, = T[_CdVds — CV s+ e — 5] —NAE  (2-2)

AP, = é [(CS + COVyg = CyV gy + ne — ;] — NAE (2-3)

e

AFy, = :
)

[—(CS + CVgs + CgV — e — 5] — NAE
2-4
where N equals to
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Fig. 1 Equivalent circuit model for an SET device
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Here, e is the electron charge, Cs is the total island capacitance with
respect to ground (equals to Cg + Cp + Cs), n denotes the number of
electrons in the island, and s, 7, and d refer to the source, island, and
drain regions, respectively.

In [21, 22], Miyaji et al. and Dan and Mahapatra also assumed
equal broadening for all energy levels; however, this assumption
cannot be included because, as illustrated in the next section, differ-
ent energy levels are associated with distinct energy broadenings
when coupled with electrodes.

2.2 Tunnelling rates across the tunnel junctions

Si SETs are appearing to be more promising than metallic SETs for
their possible integration with CMOS and requirements for
CMOS-compatible processes. SETs are normally studied on the
basis of the Orthodox theory, but one cannot neglect the energy
quantisation in a small island (metallic islands smaller than 2 nm
and QDs smaller than 10 nm in size), and also it is extremely im-
portant to study the effects of energy quantisation on Si SET
circuit performance.

In this paper, SIMON Monte Carlo simulator has been used [25].
Simulation of energy quantisation effect in SIMON is not so
straightforward such as simulation of metallic SETs where energy
quantisation was ignored. SIMON simulates the discrete energy
levels of the island as Lorentzian-shape functions, whose height
H and width W parameters are related to the energy dependence
of the transmission probability, which depends on the tunnel-barrier
resistance [22]. Also assumed that the single-electron charging
energy, E., and the energy-levels spacing, AE, are two separate
processes.

The Orthodox theory describes charge transport under the influ-
ence of Coulomb blockade and its expression for single-electron
tunnelling rate across the junction is [4, 6]

1 —AF
@Ry [1 — exp (AF [kyT)]

T(n, n+1)= )

Here, Ry is the resistance of the tunnel junction involved in the tun-
nelling (or tunnel resistance), and AF is the corresponding variation
in the electrostatic energy of the circuit when an electron tunnels on/
off the island. For islands with discrete energy levels, in order to
calculate the total tunnelling rate one typically starts from Fermi’s
Golden Rule (as followed in Orthodox theory). However, it is not
possible to consider the tunnelling transmission probability, T;z
to be constant at all energy levels given the energy-level broadening
concept. A realistic point of view requires different broadening
levels for each discrete energy level. This can be modelled by in-
cluding the contribution of a Lorentzian function in the tunnelling
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transmission probability as follows [26]

(v./2)’

T, ((E) = a 5

wE)=2 e, E 5 1) 5)
where £, (n=0, 1, 2, ...) are discrete energy levels (due to quant-
isation) in the island, determined by solving the Schrodinger equa-
tion, and y,, which describes the half-width of the local density of
states peak, is a parameter related to the ‘escape frequency’ of an
electron on the island (a term used to denote the amount of broad-
ening for any particular energy state). The transmittance strength
parameter, a,,, with (0 < a,, < 1), allows us to classify tunnel barriers
according to their transparency, i.e. height and width. Using this
formulation, deriving the tunnelling rate expression from first prin-
ciples (as followed in Orthodox theory) for the realistic case of in-
finite number of energy states, leads to the same expression (4),
with the tunnelling resistance term changing into

2
. Y,/2
RdTlscrete — ( R%rthodox x ns?hodox) / |: a, ( i; ) 2:| (6)
(E - En) + ('Yn/z)
orthodox

In this equation, R} and R*™ represent the Orthodox theory
tunnelling resistance for islands with continuous energy levels and
the tunnelling resistance for islands with discrete energy levels, re-
spectively. Z?}‘h°d°x also stands for the Orthodox theory transmis-
sion probability, which has a constant value.

According to (6), H and W parameters are used to determine the
tunnel-barrier resistance in the quantum Coulomb blockade regime
in SIMON. W represents the broadening size of any clear energy
level in an island (y,) and determines the tunnelling transmission
probability spectrum, and H used to determine the final height of
the probability spectrum.

2.3 Calculation of the V—I characteristics

Now, we sweep the gate voltage and calculate the drain current
(transconductance) as a function of V, for 2nm Si QD-based
SET (Fig. 2). The values of the parameters used in simulations
are given in Table 1.

It is obvious from Fig. 2 and Table 1 that the transconductance
plot would be tracked precisely with the one obtained by experi-
mental investigation, as illustrated in [10].

We found that in the linear response regime (i.e. Vys << AE/e, e/
Cs) to an electrochemical potential, transconductance is changed
linearly by the gate voltages proportional to o (=C4/Cs) factor.
The a-factor relates the peak spacing in the gate voltage to the add-
ition energy: E,(n) = ea(V;*' — V') where V] and V;*" are the
gate voltages of the nth and (n + 1)th Coulomb peaks, respectively.

Iaina)

i . .

6 8 10 12
Vg(V)

Fig. 2 Drain current against gate voltage of a 2 nm Si QD-based SET
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Table 1 Parameters used in the simulation

2 nm Si QD-based SET parameters Unit Value
C,, source junction capacitance F 1.71x107"
Cjy, drain junction capacitance F 1.71x107%°
Cg, gate capacitance F 0.92x107"
Cs, island total capacitance F 434x107"
Rrorthodox> Orthodox tunnelling resistance Q 1.5x10°
AE, levels spacing eV 0.43

H, height multiplication factor - 1

W, first energy-state broadening eV 0.0005
W,, second energy-state broadening eV 0.005
W3, third energy-state broadening eV 0.06
W,, fourth energy-state broadening eV 0.12
Vgs, drain—source voltage A% 0.05

T, temperature K 300

So, the corresponding gate voltage difference between any two
current peaks, with respect to the number of electrons in the QD,
can be calculated as

" Cs (e e
A peak:q(@) :Fg n odd
7
n CE e (
peak = Fg (C_E + AE) n even

As illustrated in Fig. 2 and (7), the distance between current peaks
are unequal. The reason for this phenomenon is the Pauli’s exclu-
sion principle. Also Fig. 2 states that the magnitude of the current
peak increases with improvement in the number of electrons in
the QD. This may be due to the exponential dependence of
energy level broadening on the height and the width of the potential
barrier (i.e. the tunnel-barrier resistance). On the other hand, the
height of the tunnel barrier degrades by the electric field of the
gate, and consequently a corresponding enhancement in the broad-
ening of energy level has occurred (i.e. unequal energy levels
broadening), which leads to an exponential growth in tunnelling
probability [see, (6)]. Therefore, the current peaks become
broader and higher by enlargement in the V,, i.e. the unequal
peak-to-valley current ratio (the unequal peak-to-valley current
ratio (PVCR)). Our description matches completely with the experi-
mental results [10—16]. The two first current peaks, attributed to the
up-spin and down-spin energy states of the ground level, are much
lower than the third and the fourth energy states, which are related
to the two energy states (up-spin and down-spin) of the first excited
level. Therefore, PVCR due to the ground level is smaller than the

10 T T T T

Id (nA)

Ve(Vv)

Fig. 3 Drain current against gate voltage of the 2 nm metal island-based
SET
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excited level. This is well known to be the smearing out of the
Coulomb blockade condition by tunnel-barrier lowering effect.

To show differences between the results of simulation with
broadening and without broadening on each energy level, we
have drawn the drain current against gate voltage of the 2 nm me-
tallic island-based SET in Fig. 3.

It is obvious that current peak magnitudes are constant in 2 nm
metallic island because the tunnelling transmission probability is
considered as constant at all energy levels. However, in Si QD
with 2 nm diameter due to the unequal energy levels broadening
(i.e. unequal tunnelling transmission probability), current peak
magnitudes are not equal to each other. So, the energy levels broad-
ening phenomenon and its effect on the amplitudes of the current
peaks are obvious, while it can be neglected in metallic islands of
about 2 nm in diameter.

3 Results and discussion

The complementary structure with two SETs was first proposed by
Tucker and is similar to a CMOS inverter circuit in structure [6].
Tucker is focused on the inverter behaviour of such a structure in
[7]. However, this topology can be used to produce more than an
inverter function. In this section, we implement a simple PSF
circuit based on a complementary SET inverter consisting of two
SETs [18, 20]. Fig. 4 shows the equivalent circuit for SET-based PSF.

3.1 Performance analysis of metal SET-based PSFs at
room-temperature

From Fig. 3, one can conclude that due to the periodic Coulomb
oscillations and equal current peaks, designing PSFs based on
these islands at room-temperature is achievable. Therefore in the
following, we discuss the possibility of implementation of the 2
nm metallic island-based-SET PSF at the room-temperature.
Figs. 5 and 6 indicate I4—V, characteristics of the upper and
lower SETs, respectively. The circuit parameters used in simulation
are as follows: the supply voltage is 0.12 Vand V,, =0.63 V, V;; =
—0.24V, C,=0.092 aF, Cx=0.434 aF, and R, =R, =1.5 MQ. The
operating temperature is set at 100 and 300 K. Figs. 5 and 6 reveal
that PVCR deteriorates with increasing the temperature (i.e. low
PVCR at high temperatures).

To implement an SET-based PSF (with 50% duty ratio), we
adjusted V,;=-0.24V and V,,=0.63 V to attain a half-period
phase shift of the Coulomb oscillations. Owing to the SET inherent
Coulomb oscillations characteristics with the period of e/Cy, when
the upper SET turns ON, the lower SET will switch to OFF. The

m

V— —_— -I- Vur.rr

Fig. 4 Schematic of the generic PSF structure
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Fig. 5 -V characteristics of upper and lower SET at 100 K
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Fig. 6 -V characteristics of upper and lower SET at 300 K

circuit parameters used in simulation are as follows: the supply
voltage is 0.12V, V,,=0.63V, V,;;=-024V, C;=0.092 aF,
Cs=0.434aF, Rj=R,=1.5MQ, and Cy y,q= 10 fF. Figs. 7 and 8
indicate the simulated conversion characteristics of the SET-based
PSF at 100 and 300 K, respectively.

Fig. 7 demonstrate that a PSF circuit based on a 2 nm metallic
island SET has an acceptable conversion characteristics at 100 K.
However, it is clearly obvious from Fig. 8 that at the room-
temperature (300 K) the signal conversion becomes more

0{] 0.2 0.4 0.6 0.8

1
0.1+ *i
1

Gl. 1
0 0.2 0.4 0.6 0.8

Time (ns)

Fig. 7 Conversion characteristic of the PSF based on metal SET at 100 K
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Fig. 8 Conversion characteristic of the PSF based on metal SET at 300 K

inaccurate. Switching performance degradation due to PVCR re-
duction is its main reason in the SET current at high temperatures.

3.2 Performance analysis of Si SET-based PSFs at
room-temperature

Using Fig. 2, one can conclude that due to the asymmetric Coulomb
oscillations and the unequal PVCR, designing PSFs based on these
islands at room-temperature is impossible. According to the men-
tioned unequal energy-levels broadening and Pauli exclusion prin-
ciple effects (due to the energy-levels quantisation), we can
conclude that SET characteristics at room-temperature has asym-
metric Coulomb oscillations and also unequal current peaks.

One challenge of the implementation of the Si SET-based PSFs
operating at the room-temperature is the Pauli’s exclusion principle
effect, because the distance between current peaks in Coulomb
oscillations are unequal (the asymmetric Coulomb oscillations).
So, operation of the PSFs at the room-temperature is limited. The
other challenge is the degradation of the switching performance
due to the unequal PVCR in the SET current at high temperatures.
Therefore, Si QD-based SET PSFs at room-temperature never has a
suitable output and operating Si SET-based PSFs at room-
temperature is impossible.

4  Conclusion

We have been demonstrated the impossibility of the implementation
of the PSFs operation based on 2 nm island-based SET operating at
the room-temperature. The main reason of this challenge is the deg-
radation of the switching performance due to the decreased PVCR
and the unequal PVCR in the SET current at high temperatures. It
was proposed that PVCR can be improved by the scaling of the
island size, but, for small islands, i.e. metallic islands smaller
than 2 nm and QD smaller than 10 nm in size (due to the energy-
levels quantisation effect), asymmetric Coulomb oscillations and
unequal PVCR would happen in the SET current. So, SET-based
PSFs at room-temperature never had an accurate output.
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