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Abstract: Prognostics and health management (PHM) has become an important component of many engineering systems and products, where
algorithms are used to detect anomalies, diagnose faults and predict remaining useful lifetime (RUL). PHM can provide many advantages to
users and maintainers. Although primary goals are to ensure the safety, provide state of the health and estimate RUL of the components and
systems, there are also financial benefits such as operational and maintenance cost reductions and extended lifetime. This study aims at review-
ing the current status of algorithms and methods used to underpin different existing PHM approaches. The focus is on providing a structured
and comprehensive classification of the existing state-of-the-art PHM approaches, data-driven approaches and algorithms.
1 Introduction

Prognostics and health management (PHM) is an engineering
process of failure prevention, and predicting reliability and remain-
ing useful lifetime (RUL). PHM of engineering systems has become
very important as a malfunction or failure may cause severe damage
to the system, environment and users, and may result in significant
repair on un-scheduled maintenance costs. PHM is now widely
recognised as an efficient and practical approach to these engineer-
ing challenges. Repair and maintenance cost can be reduced by
converting the unscheduled maintenance tasks into evidence-based
scheduled maintenance tasks. Evidence-based scheduled mainten-
ance strategy reduces the inspection cost, required number of
skilled labours, system down time, life-cycle cost of the system
and emergency unscheduled maintenance [1]. PHM is identified
as the best candidate to improve the maintenance cycle, reduce
the maintenance cost and extend the overall lifetime through
evidence-based scheduled maintenance strategies. PHM can also
provide support to improve the qualification approach and
improve the design of the future systems [1].
PHM applications can be classified into two main categories

based on how the PHM is applied to the system or to the product:

(1) Real-time PHM (sometimes referred as online PHM).
(2) Off-line PHM.

Most of the safety critical and mission critical applications
require real-time PHM (referred as on-board health monitoring).
Modern aircrafts, automobiles and so on have substantial
on-board monitoring capability that is based on the use of data
from real-time sensors. For example, an electric car provides the
range distance which can be achieved with the battery operation
based on the real-time PHM of the battery. Another example is
the autonomous unmanned vehicles which have embedded real-
time on-board PHM used to re-plan the mission and reconfigure
the controls based on the health diagnostic and prognostic informa-
tion. Such capability requires the evaluation of the current state of
the health and also a prediction of the future state of the product/
system’s health [2]. Real-time PHM for electronic systems is some-
times known as built-in self-test (BIST) or self-scanning where the
electronic system tests itself. BIST are generally used in all modern
weapon systems, avionics, safety critical systems, automotive and
other electronic hardware. Such embedded diagnostics and
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prognostics allow performing tests to verify if all parts of the
electronic-based equipment operate as required.

Off-line PHM is deployed where the system’s safety is not crit-
ical and likelihood of failures is very small. Data are collected
from the system and they are used off-line to predict the RUL
and to perform the maintenance. One main advantage of the
off-line PHM is that complex systems models can be used to
perform the PHM using computer simulations, whereas in the real-
time PHM computer simulations may not be achievable as there
might be limitation in the available on-board computational
power and efficiency. Failure mode, effects and critically analysis
(FMECA) which is an extension of failure modes and effects ana-
lysis, includes the probability of the failure modes against the sever-
ity of the consequences. It can be used in off-line PHM. FMECA is
developed over the time by collecting the data for particular system
or product; hence, the developed FMECA knowledge can be used
to predict the failures and the RUL of a system.

PHM is also applied in development and deployment stages of a
system or product. PHM methodology can be applied in the design
stage to optimise the design to ensure the expected performance
from the systems or products given certain reliability requirements.
Physics of failure (PoF)-based models are used to optimise the
product design based on failure modes, mechanisms and effective
analysis. Life-cycle loads, for example, thermal, electrical, mechan-
ical, chemical and so on, acting on the products at different stages
and under different conditions of the product life, such as manufac-
turing, storage, shipment, harsh operating, non-operating and so on,
are considered at the product design stage to optimise the product
design and obtain the best performance from the product for a
certain period of time without failure. These life-cycle loads are
also monitored, and used with the PoF-based damage models to
assess the reliability and degradation of the product in the field
after it has been deployed [3]. Anomaly detection is the starting
point of the PHM for systems and products when monitored in
the field. Anomaly detection and failure prevention can be achieved
effectively by monitoring the life-cycle loads and relevant perform-
ance parameters of the systems. The PHM will be more accurate if
the life-cycle loads and parameters are monitored in real-time, espe-
cially in the case of critical applications. Many safety critical
systems and mission critical systems consist of electronic hardware
and software that control the electronic hardware and also interact
with the user. Most of these electronic hardware devices use thou-
sands of individual semiconductor components to perform their
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operation. Malfunction or failure of any individual semiconductor
component, electronic hardware or software module independently
affects the system as a whole.

Health of a system can also be defined as the extent of deviation
or degradation from its expected typical operating performance [4].
This extent of deviation or degradation of the expected typical op-
erating performance has to be determined accurately to prevent the
failures. It is also necessary to determine which operating para-
meters are contributing to this extent of deviation or degradation.
There are two different approaches available to assess the degrad-
ation or extent of deviation from the expected performance, to
assess reliability of systems and to predict the remaining useful
life using PHM. They are:

(1) Data-driven approach.
(2) Model-driven approach.

Fusion approach, as illustrated in Fig. 1, incorporates the advance
features from both data-driven and model-driven approaches to
perform the PHM.

On the basis of the techniques used for data-driven and model-
driven approaches, PHM can be further classified into different
approaches. For example, data-driven approaches can be classified
into statistical and machine learning approaches. Model-driven
approach can be classified into PoF and system model approaches.
Fig. 2 shows the classification of PHM approaches. All these
approaches can be used as online or off-line prognostics techniques.
The next sections provide detailed review of the different
data-driven PHM classifications.

2 Data-driven approach

Data-driven approaches are considered as a black box approaches to
PHM as they do not require system models or systems specific
knowledge to start the prognostics [3]. Monitored and historical
data are used to learn the systems behaviours and to perform the
prognostics. Hence, the data-driven approach is suitable for
systems which are complex and with behaviours that cannot be
assessed and derived from first principles. The implementation of
data-driven techniques for the purpose of health monitoring and
prognostics is generally based on the assumption that the statistical
characteristics of system’s performance will not change until a fault
occurs [3]. Therefore the main advantage of data-driven approach is
that the underlying algorithms are quicker to implement and com-
putationally more efficient to run compared with other techniques.
However, it is necessary to have historical data and knowledge of
typical operational performance data, the associated critical thresh-
old values and their margins. Data-driven techniques rely com-
pletely on the analysis of data obtained from sensors and exploit
operational or performance related signals that can indicate the
health of the monitored system. Data-driven strategies for
Fig. 1 PHM approaches
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diagnostics and prognostics have been applied in a number of dif-
ferent PHM applications [5–12].

The principal disadvantage of the data-driven approach is that the
confidence level in the predictions depends on the available histor-
ical and empirical data (i.e. healthy and failure data). Availability of
run-to-failure data sets for a particular system or component is the
main disadvantage of data-driven PHM, as running a system or a
component to failure might be time consuming and expensive
[13]. These data are required in the data-driven approach to
define the respective threshold values. In some instances, it is diffi-
cult to obtain or have historical data available, for example, in the
case of a new system or device that may require long time and/or
expensive tests to failure to generate this data. However, there are
techniques and procedures available that can be used to achieve
this [14–17]. Three of the strategies used to address this challenge
are based on the use of:

1. Hardware-in-the-loop simulations (HiL): HiL is a computer
simulation which is used to test hardware under simulated loads
as in the real application. Several failure parameters (i.e. operational
and environmental) can be controlled independently. HiL can also
be used to algorithm development, testing and validation, bench-
marking and development of metrics for prognostics [14, 15].
2. Accelerated life test (ALT): Accelerated load test is designed to
cause the product to fail more quickly than under normal conditions
by applying accelerated (elevated) stress conditions resulting in the
same failure mechanisms. ALT becomes an important methodology
in the development of the PHM for electronics. Several environ-
mental and loading conditions can be applied independently to
accelerate the failure [16, 17].
3. Online learning: Online learning is based on the assumption that
new systems do not fail for a certain period of time and hence the
performance data during early stages of use (operation) can be
used to define the ‘healthy’ status of the system. This approach is
called semi-supervised learning approach as only healthy data are
available.

Data-driven approaches for PHM can be also classified as falling
within one of the following two classes [11]:

(1) Statistical approach.
(2) Machine learning approach.

The statistical approach uses statistical parameters, such as mean,
variance, median and so on, to make predictions based on known or
unknown underlying probabilistic distributions. Statistical
approaches are generally considered to be simple if the underlying
statistical property (i.e. probability distribution) is known. This type
of approach is called parametric approach. Statistical parameter
estimation techniques and hypothesis testing can be applied in
this case to detect the presence of anomalies in the data [18].
Techniques based on the use of statistical distance measure are
another simple way to estimate the distance of the new sample
Fig. 2 Classification of PHM approaches
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data from the expected mean data (i.e. how many standard devia-
tions away from the mean) [18]. Outlier rejection techniques can
also be exploited to detect the anomalies based on the box plot para-
meters such as lower extreme and upper extreme [18].
Unfortunately, most of the real-world reliability data’s statistical
properties are unknown and probability functions representing
these data need to be constructed first. This type of approach is
called non-parametric approach and it introduces more flexibility
into computation. Therefore a non-parametric approach can be
viewed as generalised approach. One of the widely used non-
parametric approaches to PHM is through histogram analysis. A
better way to estimate the density function is to use kernel
methods [18].
Machine learning approaches make predictions based on

acquired data (such as healthy and failure data) by converting the
gathered data into useful information which can be used in conjunc-
tion with sensor data to provide future predictions. The machine
learning approach is more data-driven approach and typically no
statistical assumptions are made. One of the well-known PHM
approaches in the field of machine learning is based on the use of
neural networks [19]. Machine learning approach can also be rea-
lised using support vector machine (SVM). With this method the
data are separated into different classes using hyper-planes, after
they are transformed by a kernel function [20]. SVM uses linear
combination of kernel functions centred on the subset of the train-
ing data which are known as support vectors [21].
PHM applications may require more than one algorithm for dif-

ferent tasks such as for the anomaly detection, parameter isolation,
parameter trending, damage estimation, lifetime estimation and so
on. Hence, different types of algorithms can be used to achieve
these individual tasks based on the performance of those
algorithms.

3 Statistical approach

The statistical approach to PHM is based on analysis of the under-
lying statistical property of the data such as type of distribution, sta-
tionary or non-stationary and so on. If new observation is not
representing the statistical property of the data, then the observation
is considered as an anomaly. Statistical techniques fit the typical
expected operating condition data and then apply statistical infer-
ence test to determine if the new observation belongs to the fitted
statistical model. For example, if the data representing the normal
operating condition is modelled with probability density function
(PDF) p(x), then new observation data can be tested
against the developed PDF (i.e. if p(xnew) < ε→ flag anomaly and
if p(xnew)≥ ε→ flag normal). There are two different ways to fit
the data into a statistical model, that is, to develop a PDF function
(p(x)): (i) parametric approach and (ii) non-parametric approach
[22]. Statistical models have different computational complexity
and require different computational powers based on the complexity
of the statistical models.
The main advantage of the statistical approach to PHM is if the

assumed statistical characteristics are true, then the result from the
statistical inference test for the new observation will be statistically
reasonable. In addition, the use of a statistical approach can provide
a confident interval and this can be used in the decision making
about the new observation data. Furthermore, this statistical
approach can be underpinned by unsupervised techniques which
do not require training data, as in the case of the robust statistical
approach [22]. The main disadvantage of the statistical approach
is that it depends on the assumed statistical characteristics of the
data, and hence, if the assumption is not true, they will not detect
the anomalies accurately. Typically, the assumption may not be
true in particular high-dimensional real data sets. In addition,
even if the assumed statistical characteristics are true, there are
many statistical inference tests that are available, and selecting the
suitable test itself might be difficult [22].
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4 Parametric approach

Parametric approaches are based on assumed underlying statistical
properties (typically in the form of known distribution, that is,
normal, Weibull, exponential and so on.) of the expected data.
On the basis of the assumed underlying probability distribution of
the data, parameters associated with that probability distribution
are calculated from the data. Typically, these data will represent a
healthy systems performance under expected typical operating
conditions. Healthy or normal operating data then will be defined
by these parameters and assumed as being the representative prob-
ability distribution. This distribution can be used to detect anomal-
ies and predict the RUL. Once the system’s healthy or normal
operating data are defined by a probability distribution, new moni-
tored data can be classified using different methods based on the
probability distributions used. Some of the methods are listed
below:

1. Hypothesis testing: One of the simplest statistical procedures
which can be used to test if the data comes from the same popula-
tion as the training data [18]. It can also be used to test if the mean
of a sample is equal to μ when the standard deviation σ is known
[23]. Hypotheses are always statements about the sample popula-
tion parameters instead of sample population data. There will be
two types of errors which may occur in the hypothesis testing: (i)
Type I Error and (ii) Type II Error. Type I Error (false
positive – α) is defined as rejecting the null hypothesis when null
hypothesis is actually true. Type II Error (false negative – β) is
defined as accepting the null hypothesis when the hypothesis is ac-
tually false. It is not possible to eliminate these errors completely.
Typically, the hypothesis test decision is taken by fixing an accept-
able value for σ and by minimising the β. Standardised difference
between the population and sample statistics is compared with the
decision rules before making the decision. Most of the hypothesis
tests use underlying PDF as normal.
2. Analysis of variance (ANOVA): It is a method to analyse the
means of several groups of samples which can be affected by differ-
ent types of factors. Simplest form is one-way analysis and it is an
extension of t-test. Simple form of ANOVA can be used to compare
different groups of sample data [23]. ANOVA can be applied to
groups of data based on the assumptions: (i) values are normally
distributed in every group and (ii) variance are equal. Decision
will be made based on the variability among the groups. If the vari-
ability among the group is small compared with the variability
within the group, then this will lead to the decision says groups
can be treated as identical. If the variability among the groups is
large compared with the variability within the groups, then the
groups cannot be treated as identical.
3. Extreme value theory (EVT): EVT is a branch of statistics that
deals with the analysis of data at the tails of a given distribution.
EVT can be used to set the threshold values for anomaly detection,
where EVT explicitly models the tails of the distribution of normal
data [19, 24, 25].
4. Maximum-likelihood (ML) estimation: It is an approach to esti-
mate the most likely value related to other values in the population
data. Log-likelihood which is the logarithm of the likelihood func-
tion is typically used to estimate the MLE by maximising the
log-likelihood [11]. If the ML is the mutually independent observa-
tions x = {xx, x2, x3, …, xn} which is an instance of the random
sample {X1, X2, X3, …, Xn}, then the joint PDF is equal to the
product of the marginal PDFs.
5. Maximum-a-posteriori (MAP) estimation: MAP estimation is
considered as a Bayesian version of ML estimation [11]. This esti-
mation technique can be used to estimate the parameters of a
process or system based on prior knowledge of the system. This
prior knowledge typically comes from the historical data that are
available for the system. Such prior information can be included
in the estimation in the form of PDF. Parameters θ which need to
access article published by the IET under the Creative Commons
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be estimated are considered as random variable and the associate
probabilities P(θ) are called the prior probabilities. Bayes’
theorem can be applied to incorporate the prior information into
the estimation [26].
6. Expectation–maximisation (EM) algorithm: EM algorithm is
used to estimate the ML or MAP of parameters using an interactive
process. These parameters are from a statistical model which
depends on some hidden variable. The iterative process switches
between two different steps in the process: (i) estimating the expect-
ation (‘E’ step) and (ii) maximisation (‘M’ step). The ‘E’ step is
used to compute the expectation of the log-likelihood based on
the current estimate for the parameters. The ‘M’ step is used to
compute parameters which maximise the computed log-likelihood
in the ‘E’ step. Estimated parameters values are used to compute
the expectation of the log-likelihood in the next ‘E’ step and
these have to be repeated until the log-likelihood of the parameter
becomes constant [11, 26].
7. Gaussian mixture modelling (GMM): It is widely used for
density estimation and to form the hidden space of radical-basis
function (RBF) networks [25]. GMM uses fewer kernels than the
number of patterns in the training set and model parameters are esti-
mated by maximising the log-likelihood of the training set with
respect to the model. Optimisation algorithms such as conjugate
gradients are used to maximise the log-likelihood of the training
set with respect to the model. One of the disadvantages is the
very large sample sizes that are required to train the model, particu-
larly if the dimensionality of the data is high [18].

5 Non-parametric approach

The non-parametric approach is not based on any assumption of
underlying statistical property of the population data. It gives
more flexibility than the parametric approach and can be used to
fit the data more accurately. The non-parametric approach is more
suitable in the case when the underlying probability distribution
is not known and also when the data cannot be modelled with stand-
ard distribution. For those reasons, most of the real-world data
would typically require a non-parametric approach to estimate the
density function. There are many approaches available to solve a
non-parametric problem. Some of the non-parametric techniques
and approaches are listed below:

1. Parzen–Window density estimation: This non-parametric
density estimation technique was introduced by Emanuel Parzen
in 1960s. Density is estimated such that all the observation data
belong to a window function that can contribute to the density es-
timation based on selected window kernel function [11, 18, 27].
For a given data set D = {x1, x2, …, xn} of n independent and iden-
tically distributed example drawn according to p(x) which is the
density function that needs to be estimated, the Parzen–window es-
timate of p(x) based on the n example [27]. Typically Gaussian
kernel is used in many situations as (i) they are very smooth and
(ii) radially symmetrical Gaussian function is available. Hence the
estimated density function will also be smooth and can be a
mixture of radially symmetrical Gaussian kernel with a common
variance σ2 [27]. There are many different kernel functions and
some of the commonly used functions are Gaussian, uniform,
box, triangle, Epanechnikov and so on. The kernel function is gen-
erally selected based on the required property of the function and
the available computational power [1].
2. Histogram-based approach: The simplest non-parametric ap-
proach is the histogram-based approach. It involves two steps: (i)
building the histogram based on available data typically under
normal operating conditions and (ii) test the new observation data
against the developed histogram. If the data does not belong to
any of the bins of the histogram, then the observed data are
judged to be an anomaly. The size of the bins plays a critical role
This is an open access article published by the IET under the Creative
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in this approach. If the size of the bins is small, then many
normal test instances will fall in empty or rare bins, which would
lead to a high rate of false alarms. If the size of the bins is large,
then many fault instances will fall in frequent bins. This will lead
to high false negative rate. An optimum size for the bin is necessary
to construct a suitable histogram which will maintain a low false
alarm rate and a low false negative rate [22]. Accuracy of the
histogram-based approach can be estimated using integrated
square mean error [1].
3. Nearest neighbour (NN) approach: It is another technique which
can be used to estimate the density function. It does not require a
smoothing parameter. Instead, it requires a width parameter
which sets the position of the data point in relation to other data
points. Main disadvantage of this method is the large number of
computations that are required [11, 18]. NN approach assumes
the normal operating instances occurring in the dense neighbour-
hoods, whereas the anomalies occur far from their closest neigh-
bourhoods [22]. This approach requires a similarity evaluation or
a form of distance measure between two data points. This distance
or similarity can be calculated in many different ways, for example,
using Euclidean distance, Mahalanobis distance, Manhattan dis-
tance, cosine angle distance and so on. Distance measures are
also used in many other tasks such as clustering (K-mean), distance-
based outlier detection, classification (SVM) and several other
machine learning techniques [28]. NN anomaly detection approach
can be divided into two groups: (i) NN which uses the distance of a
data instance to its kth NN as the anomaly and (ii) NN which com-
putes the relative density of each data instance [28]. The basic NN
approach is based on the assumption that the anomaly score of a
data instance is defined as its distance to its kth NN in a given
data set. NN approach based on relative density estimates the
density of the neighbourhood of all data instances. A new data in-
stance (observation) with low density is marked as anomaly and a
data instance with high density is marked as normal [28]. The
main disadvantage of the NN approach is the computational com-
plexity which is O(n2). Although sampling techniques try to
address the computational complexity associated with considering
the NNs within a limited sample of the data set, they might end
up in incorrect anomaly scores if the sample size is very limited
[22]. The main advantage of this approach is that it does not
require any assumptions about the distribution of the data.
4. Wilcoxon–Mann–Whitney test: The test is used to compare two
groups of sample data. Wilcoxon–Mann–Whitney test is also called
as Wilcoxon rank sum test [11, 29]. This is a hypothesis test on the
two different samples. Main advantage is that the rank can be
estimated in advance; hence, computational run time is small. In
addition, noise effects are reduced using the rank instead of the
raw data [11].
6 Machine learning approach

Although there is no explicit definition for machine learning,
Samuel [30] has defined the machine learning as a field of study
that gives computers the ability to learn without being explicitly
programmed. Tom Mitchell defines the machine learning problem
as a computer programme that learns from experience E with
respect to some task T and some performance measure P, if its per-
formance on T, as measured by P, improve with experience E [31].
Machine learning is an established approach in many different
fields, such as speech recognition, computer vision (i.e. face,
hand writing and object recognitions), information retrieval,
robotics, medical diagnosis, financial prediction, target tracking,
biological predictions and so on. There are mainly three types of
learning approaches: (i) supervised learning (ii) unsupervised learn-
ing and (3) reinforcement learning. Machine learning approach can
be used in PHM applications to learn the behaviours of the systems
and make predictions based on the generated predictive models.
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Since PHM problems can be formulated as classification or cluster-
ing techniques of machine learning approach, machine learning ap-
proach can be used to classify or cluster the data into different
groups (i.e. healthy, anomaly and so on). Hence with the help of
machine learning, new data can be classified into healthy or
anomaly and then can be used to isolate the anomalies and faults.
Further this information can be fed into prediction algorithm to
predict the reaming useful lifetime of a system [11].

7 Supervised learning approach

If the algorithm is given the labelled outputs for a set of input, then
the learning is called supervised learning. Its goal is to predict a
correct output for a new input data. Most of the PHM problems
can be treated as supervised learning problems where set of
healthy and failure data are available. Some of the frequently
used supervised learning techniques are discussed below:

1. Neural networks: Many data-driven PHM approaches are based
on artificial neural networks [8, 32, 33]. Neural network is a graph
based on some interconnected numerical values attached to each
node. It has also a set of input nodes, output nodes and hidden
layers. Neural networks are trained for a set of training data to op-
timise the network parameters to obtain the desired output. This can
be achieved by minimising the output error. For the PHM applica-
tion, neural network can be used as a statistical modelling and pre-
diction algorithm which can be achieved in two different ways: (i)
density estimation and prediction and (ii) classification and regres-
sion. For a statistical modelling and prediction problem, a neural
network can be trained to produce a statistical model which can
be used to predict the output for a new input data. Density estima-
tion is achieved by modelling the unconditional distribution of the
training data. In the case of an input vector X, the neural network is
trained to model the density function p(X ). On the basis of the la-
belled target variable threshold, value of the probability of anomal-
ies will be determined. Classification is achieved by classifying the
input data into different groups based on the output classes. In the
case of an input vector X, the neural network classifies the input
vector into one of the C classes C1, C2, …, Cn represented by the
labels of the output variable [34].
For example, in the case of PHM application the labels of the

output variable can be healthy, anomaly and so on. Then the regres-
sion can be used to extrapolate the damage or failure precursor to
estimate the RUL of a system. Main advantage of the neural
network is that a very small number of parameters need to be
Fig. 3 Neural network for density estimation problem based on Gaussian
mixture distribution
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optimised for training networks and no prior assumptions on the
property of the data are made. There are many different types of
architectures available for neural networks such as multi-layer per-
ceptron networks, self-organised maps (SOMs), RBF networks,
SVMs, Hopfield networks, oscillatory networks and so on [18].
Fig. 3 illustrates a neural network for density estimation. Fig. 4
shows a neural network for classification problem.

2. SVMs: SVM was introduced by Vapnik in 1998. SVM is
described as a function estimation problem for a given set of meas-
urement data with noise. The idea behind this approach is to map
the low-dimensional data (input space vector X) into high-
dimensional vectors of the features space (feature space Z ) such
that the input vectors can be grouped based on the label of the
target variable by an optimal unique hyper-plane [20]. Initially,
SVM was applied for pattern recognition problems but became a
popular approach in many different fields because of its perform-
ance. SVM has been applied to anomaly detection problems. A
set of normal data is used to learn a region using kernel functions.
This region can be defined as a normal operating region. If the new
observation data belongs to the normal region, it will be flagged as
normal and as anomaly otherwise [22].

For a set of training data {xi, yi}, i = 0, 1,…, n yi ∈ {−1, 1}, xi∈
Rd, there are some hyper-planes which separate the positive (1)
from the negative (−1) training data. Fig. 5 illustrates some of the
hyper-planes which can be used to separate two classes of the
sample data. Shortest distances to the closest negative and closest
positive points from the hyper-plane are d− and d+, and these dis-
tances are defined as the margin of separating the hyper-plane. In
the case of linearly separable, the hyper-plane with the largest
margin will be selected by the SVM. The closest points from the
hyper-plane are called the support vectors [35]. Fig. 6 shows the
hyper-plane with the largest margin and the support vectors.

Relevance vector machine (RVM) is a Bayesian treatment model
of identical functional form of the SVM. RVM overcomes a number
of practical disadvantages associated with the SVM. In addition,
RVM uses dramatically fewer kernel functions while still showing
a performance comparable with the equivalent SVM [8, 36].

3. Gaussian process (GP) regression: A GP is a collection of
random variables, any finite number of which has (consistent)
joint Gaussian distributions [37]. GP can be used with more flexi-
bility for the non-linear regression problem [38].
4. Bayesian networks (BN): BNs is a directed acyclic graph which
represents the joint probability distribution of the variables [39]. It
is a directed graph which does not have any closed paths within the
graph, that is, paths giving connection back to the starting node. In
the graph of Fig. 7 there are three nodes which represent three vari-
ables. Node c has two parent nodes (i.e. a, b), node b has only one
parent (i.e. a) and node ‘a’ does not have any parent nodes.
Fig. 4 Neural network for classification problem
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Fig. 5 Linearly separable sample data with some hyper-planes

Fig. 7 BN with three variables
Joint distribution for the above BN can be formulated using the
product rule of probability [39]. The equation for the BN is the fac-
torisation property of the joint distribution. Generally, BN is used to
estimate the conditional probability of one node, given values for
other nodes. Since BN is used to estimate the posterior probability
of one node given the values for other nodes, BN can be used as a
classifier. Nodes represent the data set attributes when BN learns
from the data sets [40].

Naïve–Bayes (NB) classifier is a simple BN where the classification node
represented by the parent node to all the other nodes and no other connec-
tions are allowed in the NB classifier. The main advantages of the NB clas-
sifier are that they are easy to construct and the respective classification
process is very efficient [40]. A general NB network is shown in Fig. 8.
5. Hidden Markov model (HMM): Markov models (MM) assume
the future predictions are independent of all but the most recent ob-
servation [39]. HMMs are one of MMs in which the latent variables
are discrete. HMM is widely used to model the sequential data.
Fig. 9 shows an HMM as a specific instance of the state space
model. It can be viewed as a mixture model with component dens-
ities given by p(x|z). The state of the latent variable depends on the
state of the previous latent variable, and therefore p(zn|zn−1). Initial
latent node is unique as it does not have a parent node, and therefore
it has a marginal distribution p(z1). Another important distribution
Fig. 6 Linearly separable sample data with support vectors and hyper-
plane with largest margin

This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
is the conditional distribution of the observed variables p(xn|zn).
Sometimes these are known as emission probabilities. This is a
special case of BN called as dynamic BN.
8 Unsupervised learning approach

Unsupervised learning is used where there are no labelled data
available (i.e. target variable). It is used to discover similar
groups within the data based on clustering techniques or estimates
the distribution of the data within the input space. It can be also
used to map the high-dimensional input space into a low-
dimensional space for the purpose of visualisation [39]. In the
case of PHM applications, the unsupervised learning approach
can be used to classify the data into different groups and identify
the healthy and normal data. For most new systems, only normal
operating data will be available and these data can be used to
learn recognising a healthy system under different settings. Then
this learned information can be used to detect the anomalies in
the new observations and to predict the reliability and remaining
lifetime. Some of the supervised learning approaches can also be
used under unsupervised setting. Some of the frequently used tech-
niques for unsupervised learning approach are listed below:

1. Principal component analysis (PCA): PCA is a widely used
method for dimensionality reduction, data compression, feature ex-
traction and data visualisation via mapping the data into a lower-
dimensional linear space also called principal subspace. The goal
of this approach is to map the higher-dimensional data into a
lower dimension while maximising the variance of the mapped
data. Alternatively, PCA can be performed by minimising the
sum-of-squares of the projection errors [39]. Fig. 10 illustrates an
example of mapping two-dimensional (2D) data into a 1D data.
2. K-means clustering: K-means clustering refers to grouping the
data into K number of clusters such that the inter-point distance
are small compared with the distance to the points outside of the
cluster. Every cluster centre is given with a centre point μk where
Fig. 8 Graphical representation of NB classifier

Fig. 9 Graphical structure of HMM
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Fig. 10 PCA for 2D data
k = 1, 2, …, K. Data point needs to be assigned to these clusters
such that the sum of the squares of the distances of each data
point to its closest centre is the minimum one [39].
3. Neural networks: Neutral network can also be used in the un-
supervised setting where labelled data are not available.
Self-organising maps (SOMs) are the type of neural networks
used for unsupervised learning. It is an alternative approach to
the statistical clustering. In most of the SOMs, every cluster is iden-
tified by a threshold value and based on these thresholds data points
are assigned to the particular cluster [18].
4. Kalman filters (KFs): Kalman [41] proposed a technique to
solve the problems such as: (i) prediction of random signal, (ii) sep-
aration of random signal from the random noise and (iii) detection
of signals of known form (i.e. pulses, sinusoids and so on) in the
presence of random noise. The KF is based on the assumption
that the posterior density at every time step is Gaussian, and
hence parameterised by the mean and covariance [42]. The KF is
frequently used as an optimised estimation technique for systems
state. It is a recursive approach to estimate the systems state
based on the prior knowledge of the state of the system and the mea-
sured information. The KF is also used to fuse the measurements for
same variable from different sensors. The KF is used in PHM appli-
cation of electrical components based on changes in resistance [43].
There are different versions of KF available.
5. Particle filter (PF): PFs also referred as sequential Monte Carlo
are used to handle model non-linearity or non-GP or observation
noise [44]. PF was developed based on the concept of sequential
important sampling and the Bayesian theory. PF has been applied
in many fields, such as economics, biostatistics, target tracking,
time series analysis, signal processing and so on [42]. There are
many different PFs based on different sampling techniques, such
as sampling important resampling PF, auxiliary PF, regularised
PF and so on PFs have been applied successfully in number of
PHM applications [44–49].

9 Conclusion

A typical PHM application consists of many different tasks from
sensing to prediction. Each task benefited from different techniques;
hence, the real-world PHM application does not necessarily depend
on a single approach. Filtering techniques such as KF and PF can
also be used to sequentially estimate the system state based on a
model and sensor data. In particular, they are capable of correcting
the predictions based on their outer feedback correction loops. PF
demonstrated its robustness in online (real-time) estimation of the
RUL of a system [48].
J Eng, 2015, Vol. 2015, Iss. 7, pp. 215–222
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This is an open
The fusion approach is based on the advance features of both the
data-driven and model-based approach. This approach will require
an accurate mathematical model of the system for physics-based
failure approach and enough historical data and knowledge of
typical operational performance data for data-driven approach.
The aim of the fusion approach is to overcome the limitations of
both the model and data-driven approach to estimate the remaining
useful life (RUL) [11]. Therefore the accuracy of the fusion ap-
proach should be high [11], although for real-time analysis it may
not be suitable because of the computational resource required.

This paper discussed different algorithms and mathematical
models under different data-driven PHM approaches. These
approaches and algorithms have their own advantages and disad-
vantages depending on the application, availability of the historical
data, system specific knowledge, programmability and so on PHM
applications also have many different individual processes such as
noise reduction, anomaly detection, fault isolation and monitoring,
state estimation, lifetime prediction and so on All these processes
may require different approaches and different algorithms. Hence,
the selection of the approach and algorithm for each process of a
PHM application plays a key role and deciding factor of the accur-
acy of overall PHM methodology. One has to investigate the selec-
tion process properly to come up with a successful PHM
application.
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