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Abstract: In this study, the authors consider the problem of spectrum sensing based on energy detection method in cognitive radio over wire-
less communication channels when users experience fading and non-fading effects. The closed-form analytical expressions for the detection
probability are derived over non-fading additive white Gaussian noise channel and Rayleigh and log-normal shadowing fading channels. The
detection probability involves Marcum-Q function, summations and integrations in the early research papers, which are replaced by closed-
form expressions in this study. The probability distribution function of fading channels is used to obtain the expressions for detection prob-
ability. The new derived numerical results are simulated under various parameters. The performance of the derived theoretical expressions
closely matches with the simulated results.
1 Introduction

Owing to the increasing popularity of wireless devices in recent
years, the radio spectrum has been an extremely scarce resource.
However, all bands of the spectrum are not fully utilised at specific
times or at particular geographic locations according to the report of
Federal Communications Commission (FCC) [1]. The underutilisa-
tion of spectrum in many of the frequency bands is because of the
conventional fixed spectrum allocation policy. To overcome the
problem of spectrum scarcity, the license exempted secondary
users (SUs) are allowed to exploit the unused spectrum holes
over some frequency ranges by using the cognitive radio (CR) tech-
nology [2]. The challenge in implementing the CR technology is
that the SUs must accurately monitor and be aware of the presence
of the primary users (PUs) over a particular spectrum. Several effi-
cient methods have been proposed to address this challenge [3–6].
The detection of unknown deterministic signals with energy detec-
tion (ED) is the simplest and most popular method since it does not
require any a priori knowledge of the PUs signal and has much
lower computational and implementation complexity. The perform-
ance of ED over non-fading additive white Gaussian noise
(AWGN) channel was first addressed by Urkowitz and comprehen-
sively derived analytic expressions for the probability of detection
and the probability of false alarm [7]. Recently, the detection
problem over fading channels has been revised in [8, 9]. The
expressions derived for the detection probability over fading chan-
nels using energy detector in [9–14] depend on the number of terms
in the summation and other functions. The implementations of these
expressions are susceptible to truncation errors. We summarise our
contributions as follows. We provide approximate expressions for
the detection probability over non-fading AWGN channel and
Rayleigh and log-normal shadowing fading channels. The expres-
sions reported in [9–14] for AWGN channel involves the
Marcum-Q function, which is replaced by closed-form expression
in our derivation (16). It has much less computational complexity.
The derived analytical expressions over fading channels in the
recent papers consist of summations and integrations with the lim-
itations. These are susceptible to truncation errors. We compare our
new derived expressions (16), (22) and (30) with the expressions
reported in [9–14] and we show that our new derived expressions
do not involve summations and integrations and they can be used
with no limitations. The simulation results of the considered ED
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method over both AWGN and fading channels are compared with
the theoretical evaluation of the derived expressions. The rest of
this paper is organised as follows. In Section 2, the system model
is discussed. We derive expressions for the detection probability
over fading channels in Section 3. The performance of the
derived expressions and simulation results are presented in
Section 4. Conclusions are drawn in Section 5.

2 Model

The energy-sensing model is as shown in Fig. 1. The received
signal r(t) is filtered to the required bandwidth B to reject the
noise and adjacent signals. The filtered signal is sampled and quan-
tised using analog-to-digital converter. Next, a square-law device
and an integrator measure the received signal energy. The output
of the integrator, represented by the decision statistic Y, is compared
with a predetermined threshold γ to determine the presence (H1) or
absence (H0) of a PU. The presence or absence of a PU signal can
be modelled as binary hypotheses problem as originally proposed
by Urkowitz [7] and Pridham and Urkowitz [15] and latter followed
by most researchers [16, 17]. The received signal samples under
two hypotheses defined as

r(n) = w(n) : H0

hs(n)+ w(n) : H1

{
(1)

where n = 1, 2, …, N. s(n) is the PU signal which is assumed to be
an unknown deterministic signal and w(n) is the AWGN with zero
mean and variance s2

n. h is the channel gain between PU and SU.
The energy detector is defined as

Y =
∑N
n=1

|r(n)|2 (2)

The distribution of the decision variable Y will be central chi-square
X 2
N under H0 and non-central chi-square X̃

2
N with N degrees of

freedom under H1. The distribution can be expressed as [18]

Y � X 2
N : H0

X̃
2
N : H1

{
(3)
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Fig. 1 Energy detector model
Its probability density function can be written as
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(4)

where the non-centrality parameter z =∑N
i=1 m2

i and μi is the mean
of the ith Gaussian random variable of test Y. IM(·) is theMth modi-
fied Bessel function of the first kind, which has a series representa-
tion [19]

IM (Z) =
∑1

k=0 (Z/2)
2k+M

k!G(M + k + 1)
(5)

and Γ(·) is the gamma function G(z) = �1
0 tz−1e−t dt. The test stat-

istic Y is compared with a predetermined threshold γ, to decide on
one of the two hypotheses H0 and H1. The probability of detection
(Pd) and probability of false alarm (Pfa) can be computed as

Pd = P(Y . g : H1) =
∫1
g

fY (y) dy (6)

Pfa = P(Y . g : H0) =
∫1
g

fY (y) dy (7)

2.1 Probability of false alarm under AWGN channel

To derive the probability of false alarm over non-fading AWGN
channel, the probability density function defined under H0 in (4)
is inserted in (7). We define signal-to-noise ratio (SNR) (ρ) as
r = h2z/s2

n

Pfa =
∫1
g

1

sN
n 2N/2G(N/2)

y(N/2)−1 exp
−y

2s2
n

( )
dy (8)

Substituting t = y/s2
n in (8) and further integrating the Pfa results in

Pfa =
∫1
g/s2n

t(N/2)−1

2N/2G(N/2)
exp

−t

2

( )
dt (9)

The right-hand side of (9) is the chi-squared density [20, 26.4.2]
which can be written as Pfa = QX 2

N
g/s2

n

( )
. In the energy detector,

the threshold γ can be computed using g = s2
n					

2/N
√

Q−1(Pfa)+ 1
[ ]

, where Q(x) = 1/
				
2p

√( ) �1
x e−u2/2 du is the

standard Gaussian tail probability function.

2.2 Probability of detection under AWGN channel

To derive the probability of detection over non-fading AWGN
channel, the probability density function defined under H1 in (4)
is inserted in (6). By substituting t = y/s2

n and using definition of
ρ, the probability of detection is given by
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Pd =
∫1
g/s2n

1

2

t

r

( )(N−2)/4

exp
−(t + r)

2

( )
I(N/2)−1

			
tr

√( )
dt (10)

Substituting t = x2, ρ = a2 and with the further simplification, Pd can
be written as

Pd =
1

a(N/2)−1

∫1 				
g/s2n

√ xN/2 exp
−(x2 + a2)

2

( )
I(N/2)−1(ax) dx (11)

We can rewrite (11) using the definition of generalised Marcum-Q
function [21, 1.2] as

Pd = QN/2
		
r

√
,

			
g

s2
n

√( )
(12)

Since the precise computation of Marcum-Q function is quite diffi-
cult, it is represented in the new form as [21, 2.6]

Pd = 1−
∑
n≥0

(− 1)n exp
−r

2

( ) L(N/2)−1
n (r/2)

G((N/2)+ n+ 1)

g

2s2
n

( )(N/2)+n

(13)

where Lkn(x) is the generalised Laguerre polynomial of degree n
and order k. The absolute convergence of the series in (13) can
be easily shown [21, 22] as

∑
n≥0

(−1)n exp −r

2

( ) L
N
2−1
n

r
2

( )
G N

2 + n+ 1
( ) g

2s2
n

( )
N
2+n

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤ exp
−r

2
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1
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2s2
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= exp
−r

4

( ) 1

G(N/2)

g

2s2
n

( )(N/2)−1

exp
g

2s2
n

− 1

( )
(15)

Inserting (15) in (13) the Pd for AWGN channel is approximated as

Pd � 1− exp
−r

4

( ) 1

G(N/2)

g

2s2
n

( )(N/2)−1

exp
g

2s2
n

− 1

( )
(16)

3 Probability of detection under fading channels

We define the average SNR �r as �r = E[h2]z/s2
n, where E(·)

denotes the expectation operator.

3.1 Rayleigh fading channel

The probability distribution function (PDF) of ρ in case of Rayleigh
fading channel is given as

f (r) = 1

�r
exp

−r

�r

( )
(17)
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Using (16), we obtain the probability of detection as (see (18)
and (19)).

The first term of (19) is simplified to

∫1
0

1

�r
exp

−r

�r

( )
dr = 1 (20)

The second term of (19) is simplified to

∫1
0
exp

−r

4

( )
exp

−r

�r

( )
dr = 4�r

4+ �r
(21)

After substituting (20) and (21) in (19), the approximate probability
of detection for Rayleigh channel is

PdRay
� 1− 4

4+ �r

1

G(N/2)

g

2s2
n

( )(N/2)−1

exp
g

2s2
n
− 1

( )
(22)
3.2 Log-normal shadowing channel

The link quality in terrestrial and satellite land-mobile systems is
affected by slow variation of the mean signal level because of the
shadowing from terrain, buildings and trees. The performance of
a communication system will depend only on the shadowing if
the radio receiver is able to average out the fast multipath fading
or if an efficient micro-diversity system is used to eliminate the
effects of multipath. Empirical measurements reveal that shadowing
can be modelled by a log-normal distribution for various outdoor
and indoor environments, in which case the probability distribution
of ρ is given by [23]
PdRay
=
∫1
0

1− exp
−r

4

( ) 1

G(N/2)

g

2s2
n

( )(N[
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1
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g
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n

( )(N/2)
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4
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2s2
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e

[
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f (r) = 4.34				
2p

√
sr

exp − (10 log10r− m)2

2s2

( )
(23)

where μ(dB) and σ(dB) are the mean and the standard deviation of
10 log10 ρ, respectively. To the best of our knowledge, closed-form
expression cannot be obtained for the detection probability using
(16) and (23). The log-normal distribution can be closely approxi-
mated by the Wald distribution [10]. Its PDF is given by

f (r) =
				
h

2p

√
r−3/2 exp −h(r− u)2

2u2r

( )
(24)

where θ = E(ρ) denotes the expectation of ρ and η is the shape par-
ameter. These parameters are related with μ and σ as given below

u = exp
m

4.34
+ s2

37.67

( )

h = u

exp(s2/18.84)− 1

(25)

Using (16) and (24), the approximate probability of detection for
log-normal shadowing channel is given as (see (26) and (27)).

Using [24, 3.471-9], the first and second terms of (27) are reduced
to (see (28) and (29)) where Kv(x) is a modified Bessel function of
second kind. By substituting (28) and (29) in (27), the approximate
probability of detection over log-normal shadowing channel is given
by (see (30) at the bottom of the next page).

4 Results and discussion

In this section, we present the performance of the derived expres-
sions for AWGN and fading channels through simulation.
/2)−1
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g
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Fig. 2 Complementary ROC curves for AWGN channel for different values
of ρ with N = 10 and s2

n = 0.5

Fig. 3 Complementary ROC curves for AWGN channel for different values
of N with ρ=−10 dB and s2

n = 0.75

Fig. 4 Complementary ROC curves for Rayleigh channel for different
values of N with �r = −5 dB and s2

n = 0.5

Fig. 5 Complementary ROC curves for Rayleigh channel for different
values of �r with N = 8 and s2

n = 0.5
Receiver operating characteristic (ROC) has been widely used in the
signal detection theory. It is an ideal technique to quantify the trade-
off between the probability of detection and probability of false
alarm. In the simulation, we use complementary ROC curves
(Pmd against Pfa) to show the detection performance of ED over
non-fading AWGN and fading channels. The noise variance
factor s2

n

( )
is considered in each simulation result.

In Fig. 2, we generate the complementary ROC curves for
AWGN channel for different values of ρ with N = 10 and noise vari-
ance s2

n = 0.5. In this figure, the deviation between (12) which
involves generalised Marcum-Q function and the derived closed-
form expression (16) is shown. The deviation between (12) and
(16) is too small. It is clear that increasing SNR decreases the
miss-detection probability and improvement in the detection prob-
ability diminishes at low SNR.
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� exp
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Fig. 3 shows the complementary ROC curves for different values
of N in AWGN channel for ρ =−10 dB and s2

n = 0.75. Clearly, if
the value of N is greater then the network can achieve better per-
formance. From this figure, we can see that the miss-detection prob-
ability decreases greatly with a small increase in value of N, which
shows the improvement in the sensing performance.

In Fig. 4, we have presented the performance evaluation of ED
over Rayleigh channel based on both analytical and simulation
for different values of N with �r = −5 dB and s2

n = 0.5. As can
be observed, the simulation results well confirm the analytical ex-
pression (22). Here, increasing the value of N improves the detec-
tion probability. Fig. 5 shows the complementary ROC curves for
different values of �r with N = 8 and s2

n = 0.5. We note from the
figure that there is an improvement in the performance with
several dB’s increment in �r.
− 1

) 			
2h

p

√
h

2((h/2u2)+ (1/4))

( )−1/4

K−1/2 2

															
h

2

h

2u2
+ 1

4

( )√[ ]}

(30)

Commons J Eng, 2014, Vol. 2014, Iss. 8, pp. 445–449
doi: 10.1049/joe.2014.0173



Fig. 6 Complementary ROC curves for log-normal shadowing channel for
different values of μ with N = 8, σ= 4 and s2

n = 0.5

Fig. 7 Complementary ROC curves for log-normal shadowing channel for
different values of N with μ= 5 dB, σ= 3 and s2

n = 0.6
In Fig. 6, we plot complementary ROC curves for log-normal
shadowing channel for different values of mean (μ) with N = 8,
σ = 4 and s2

n = 0.5. There is a great improvement in the detection
probability when μ is increased from 6 to 12 dB. Fig. 7 shows
the complementary ROC curves for log-normal shadowing
channel for different values of N with μ = 5 dB, σ = 3 and
s2
n = 0.6. We note that detection probability is low when N = 6

and we can achieve very high detection probability for N = 12.
Here simulation results closely match with analytical results.
Finally, we say that all the derived expressions for the detection
probability over non-fading and fading channels are simulated in
MATLAB under various parameters which concur with the simula-
tion results.

5 Conclusions

In this study, we derived the closed-form expressions for the prob-
ability of detection over non-fading AWGN and fading channels.
To the best of our knowledge, (16), (22) and (30) are the new nu-
merical results for the detection probability over considered chan-
nels. These theoretical expressions are evaluated under various
parameters and verified by the simulation results. Our numerical
J Eng, 2014, Vol. 2014, Iss. 8, pp. 445–449
doi: 10.1049/joe.2014.0173

This is an open
results in Section 3 provide new mathematical analysis for the de-
tection probability over fading channels.
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