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Abstract: System uncertainties play a vital role in the robustness (or sensitivity) analysis of system designs. In an iterative procedure such as
design optimisation, the robustness analysis that is simultaneously accurate and computationally efficient is essential. Accordingly, the current
state-of-the-art techniques such as univariate dimension reduction method (DRM) and performance moment integration (PMI) approach have
been developed. They are commonly used to express the sensitivity while utilising the statistical moments of a performance function in an
advanced design optimisation paradigm known as the reliability-based robust design optimisation (RBRDO). However, the accuracy and com-
putational efficiency scalability for increasing the problem dimension (i.e. the number of input variables) have not been tested. This study
examines the scalability of the above-mentioned pioneering techniques. Additionally, it also introduces a novel analytical method that
symbolically calculates the sensitivity of the performance function prior to the iterative optimisation procedure. As a result, it shows a
better computational cost scalability when tested on performance functions with increased dimensionality. Most importantly, when applied
to real-world RBRDO problems such as the vehicle side impact crashworthiness, the proposed technique is three times faster than the
mainstream method while yielding a high quality and safe vehicle design.
1 Introduction

In the increasingly complex and competitive modern technological
environment, engineers from a wide variety of fields constantly
strive toward finding the most economical designs by using the
least amount of resources. To find the design parameters that
produce the most inexpensive design, a design optimisation proced-
ure is performed whereby an objective function (which is usually
the weight or cost) is minimised or maximised with respect to a
set of constraint functions. There are various types of evolutionary
algorithms readily available in the literature [1, 2] to perform this
procedure.
For mission-critical applications where health and safety factors

are involved, e.g. the crashworthiness of vehicle design [3], an add-
itional framework of reliability and/or robustness analysis is nor-
mally integrated into the optimisation framework. Such analyses
are made on the objective and constraint functions by taking into
account the system uncertainties. By doing so, the optimisation al-
gorithm searches for the most economical design while the physical
constraints are met with a desired level of confidence (or reliability)
along with less susceptibility to system uncertainties (due to the in-
herent robustness analysis). As a result, a higher-quality design that
meets the specified safety requirements can be obtained.
The advanced design optimisation paradigm that incorporates

both such analyses is known as the reliability-based robust design
optimisation (RBRDO) [4, 5]. Though this method is predominant-
ly used in the field of a structural and mechanical design, in the
recent years, it has become increasingly popular in the other
fields of engineering such as magnetics, manufacturing, microelec-
tronics and micromachining [6–8] etc. due to the increasingly
competitive market conditions, stringent safety requirements and
the ability of the method to deliver designs that are insensitive to
uncontrollable variations [7]. RBRDO is a unified framework that
combines two approaches: (a) the reliability-based design optimisa-
tion [9] which optimises design objectives for a given set of
probabilistic (or reliability) constraints and (b) the RDO [10]
which increases the robustness of a designed system by minimising
J Eng, 2016, Vol. 2016, Iss. 11, pp. 423–430
doi: 10.1049/joe.2016.0264

This is an open
the sensitivity of the design objectives to process variabilities.
Therefore, their integration in RBRDO offers a complete solution
that assesses the best compromise between the cost, reliability
and robustness. The prime focus of this paper is the robustness
(or sensitivity) analysis in the RBRDO procedure.

Though the incorporation of the robustness analysis leads to
better quality designs, it incurs high computational load/time.
Therefore, such frameworks are often characterised by an inherent
trade-off between the accuracy and computational complexity.
For instance, Monte Carlo (MC) simulation technique [11] is the
state-of-the-art approach in accurately finding the sensitivity of a
function. Unfortunately, the use of MC in design optimisation pro-
blems imposes a serious computational burden due to the required
large sample size as well as due to the iterative nature of the design
optimisation process [5, 12]. The first-order Taylor series expansion
method [10] is the most simplistic and computationally efficient ap-
proach. However, the results can often be inaccurate especially for
non-linear functions or input random variables with large variations
[5]. Various innovative and efficient numerical techniques such as
the moment-based method [4, 5, 12, 13], percentile difference-
based method [14] and hybrid quality loss functions-based
method [15] have been developed to address the shortcoming.
They offer a better trade-off between the accuracy and computation-
al efficiency compared with the MC simulation and Taylor series
approximation techniques. On the other hand, the scalability of
computational cost and accuracy of the methods have not been
tested for problems with a high dimensionality, i.e. with a large
number of variables. At the same time, such an analysis is essential
as some design problems, e.g. advanced microelectronics package
design [6], have a relatively large number of input variables (.5).

This paper investigates the scalability of some of the representa-
tive techniques in the moment-based approach for problems with an
increased dimensionality. It also introduces a novel analytical
moment-based evaluation method that shows a better scalability
of the computational cost when tested with the increasing number
of random variables (up to 20). The proposed method utilises the
polynomial expansion [16] and the mathematical tool [17] that
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can precisely calculate the statistical moments of a polynomial
function. Its procedural steps (given below in Section 3) allow
the moments to be symbolically calculated in advance with the
aim of alleviating the computational burden of finding the
moments within the iterative optimisation procedure. Section 4
then goes on to show, by comparing against the computationally ef-
ficient mainstream moment-estimation techniques, that the pro-
posed analytical method demonstrates a better computational cost
scalability with the increase of the problem dimension while main-
taining good estimation accuracy. The section also discusses the im-
plication of such a technique for design engineers facing real-world
RBRDO problems.

2 Overview of the moment-based RBRDO

The traditional optimisation formulation can be represented as (1)
whereby fo ·( ) is the objective function to be minimised; d is the
vector of design variables with lower bounds dL and upper
bounds dU; Gl ·( ) is the lth constraint function; and nc is the
number of the constraint functions

minimise fo d( ),
subject to Gl d( ) . 0 l = 1, . . . , nc

dL ≤ d ≤ dU
(1)

In the robust design, the sensitivity analysis is performed on a
performance function and the moment-based approach is the
most-effective technique in terms of accuracy and computational
efficiency [5, 18]. A performance function (represented as h X( ),
where X denotes the vector of random variables) is a mathematical
model that quantifies the performance of a system-under-design.
Theoretically, the statistical moments of h X( ), E hk X( )[ ]

can be cal-
culated using the multi-dimensional integral (2), where k denotes
the order of the statistical moment; x denotes realisations of the
random variables X ; and fX x( ) is the joint probability density func-
tion of X

E hk X( )[ ] =
∫1
−1

. . .

∫1
−1

hk X( )fX x( )dx (2)

In the moment-based RBRDO, the objective is to simultaneously
minimise the discrepancy of the mean mh = E h X( )[ ] and variance
Fig. 1 Proposed analytical moment-based RBRDO procedure
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s2
h = E h2 X( )[ ]− E h X( )[ ]( )2

of the performance function h ·( )
with respect to the design specifications. The objective function
fo ·( ) is therefore modified to be expressed in terms of mh and s2

h:
fo mh, s

2
h

( )
. The reliability of the design, however, is ensured with

a probabilistic constraint Pr Gl X , d( ) . 0
[ ] ≤ F −bl

( )
whereby

F ·( ) is the normal inverse cumulative distribution function; Pr[·]
is the probability operator; X is the vector of random variables;
and bl is the lth targeted reliability level. If Pr Gl X , d( ) . 0

[ ]
is

more than the constraint F −bl

( )
, then the design is deemed non-

compliant and a different set of design points are searched by the
optimisation algorithm.

By incorporating these conditions with formulation (1), a typical
moment-based RBRDO problem can be mathematically repre-
sented as (3). Here, the vector d maybe either independent or be
linked to the random variable vector X . In most design problems
d = E X[ ], where E X[ ] is the expectation of the random variable X

minimise fo mh, s
2
h

( )
,

subject to Pr Gl X , d( ) . 0
[ ] ≤ F −bl

( )
l = 1, . . . , np

dL ≤ d ≤ dU
(3)

This paper introduces an analytical approach for calculating the
mean mh and variance s2

h of a very general class of continuous
performance functions in Section 3. The method presented in this
paper is the analytical moment-based RBRDO.

There are various advanced techniques presented in the literature
to perform the inherent sensitivity analysis in RBRDO procedure.
Apart from the well-known MC simulation and first-order Taylor
series approximation techniques, they can be categorised into
three main groups: (i) moment-based [4, 5, 12, 13]; (ii) percentile
difference-based [14]; and (iii) hybrid quality loss functions-based
[15]. The research [5, 18] show that the moment-based approach is
simple, reliable and computationally efficient compared with the
other approaches. For example, the research [5] shows that the per-
centile difference-based method provides inconsistent variance esti-
mation (of the performance function) depending on the percentile
locations used, whereas the paper [18] shows that the hybrid
quality loss functions-based method is computationally more
expensive than the moment-based one. For this reason, the effect-
iveness of the proposed analytical moment-based technique will
be benchmarked (in Section 4 below) against the two most promin-
ent mainstream moment-based approaches: the univariate DRM [5,
13] and the PMI [12] method.

In the univariate DRM method, the performance function h ·( ) is
additively decomposed into one-dimensional (1D) functions and
the moment-based integration rule [13] is then applied to numeric-
ally calculate the multi-dimensional integral (2). The PMI method,
on the other hand, reduces (2) into 1D integral using Rosenblatt
transformation [19] and numerically calculates it using the first-
order reliability method [20]. In both the techniques, the dimension-
ality of the problem is first reduced in effort to boost the computa-
tional efficiency. The moments, E h ·( )[ ] and E h2 ·( )[ ]

, are then
numerically calculated utilising the dimensionally reduced
problem and nq number of quadrature points. The significance of
nq as well as the underlying theoretical framework of these
methods are discussed in a greater depth in [5, 12, 13].

3 Analytical moment-based RBRDO

Section 2 presented the general formulation of the RBRDOmethod-
ology. It also briefly described the commonly used univariate DRM
and PMI methods to find the mean and variance of the performance
function h ·( ). This section presents the new analytical moment-
based RBRDO (Fig. 1). Here, by utilising the exact analytical
moment expressions (obtained by using the moment calculator
[17]), the computational burden of finding the statistical moments
of h ·( ) within the optimisation loop is minimised. As a result, the
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overall computational burden of the analytical moment-based
RBRDO is significantly diminished without compromising the ac-
curacy of the calculated moments.
The new analytical moment-based RBRDO procedure illustrated

in Fig. 1 is implemented in four systematic steps:

Step 1: Represent h ·( ) and h2 ·( ) in the form
∑N

j=0 aj
∏

k[Kj
Xmk
k in

order to employ the moment calculator. This form is a common
end-result of multivariate polynomial approximation models or re-
sponse surface methodology [21] from empirical data and a numer-
ical solution to dynamical equations. If the function h ·( ) is not given
in this required form, it can be analytically approximated by
employing the polynomial dimensional decomposition method
[22] or power series expansion such as the Taylor and Laurent
series [16, 23]. This paper uses the Taylor series expansion and a
brief discussion on this algorithm step is presented below in
Section 3.2.
Step 2: Employ the moment calculator to precisely calculate E h ·( )[ ]
and E h2 ·( )[ ]

. Section 3.1 below demonstrates the use of the
calculator.
Step 3: Simplify the calculated expressions for E h ·( )[ ] and E h2 ·( )[ ]
using the expressions mh = E h ·( )[ ] and s2

h = E h2 ·( )[ ]− E h ·( )[ ]( )2
for the mean and variance of the performance function, respectively.
Since the evaluation of the moments is done analytically, steps 1–3
are only needed to be performed once before the optimisation loop
begins.
Step 4: Determine the type of objective function fo mh, s

2
h

( )
. Then,

formulate and solve the RBRDO problem using any optimisation
algorithm and reliability analysis method. This paper uses the well-
known performance measure approach (PMA) [24, 25], which is
discussed below in Section 3.3.

The proposed analytical moment-based RBRDO method
assumes the independence of random variables. This is the same as-
sumption as that made in the other mainstream moment-estimation
techniques discussed in this paper. In cases where correlated
variables are involved, the transformation can be used to map
these dependent variables into an equivalent set of independent
variables [26].

3.1 Analytical moments using moment calculator

The use of the Mellin transform to obtain precise moments of any
polynomial was proposed and validated in [27, 28]. An
open-access-type moment calculator was also developed [28] to
enable an automatic simplification of the algebraic operations. To
provide a quick demonstration, the procedure of obtaining the
mean and variance using the calculator is presented below by
employing a simple example.
Let the performance function h X( ) have the following general

type (4)

h X( ) =
∑N
j=0

aj
∏
k[Kj

Xmk
k . (4)

Moreover, let the particular form of the performance function be
h X( ) = X 2

1 + X1X2. The expressions for E h X( )[ ] and E h2 X( )[ ]
are

sought. Following the step 1 of the procedure, h2 X( ) =
X 4
1 + X 2

1 X
2
2 + 2X 3

1 X2. Since both h X( ) and h2 X( ) are in the required
form (4), there is no any need here for the approximation. Let both the
random variables follow the normal distribution with a mean mX and
standard deviation sX . The application of the moment calculator yields

E h X( )[ ] = m2
X1

+ mX1
mX2

+ s2
X1

and E h2 X( )[ ] = m4
X1

+ 6m2
X1
s2
X1
+

3s4
X1

+ 2mX2
m3
X1
+ 3mX1

s2
X1

( )
+ m2

X1
+ s2

X1

( )
m2
X2
+ s2

X2

( )
. Finally,

both expressions are substituted following the step 4 to obtain the
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This is an open
mean and variance of performance function h X( ) as mh X( ) =
m2
X1

+ mX1
mX2

+ s2
X1

and s2
h X( ) = s2

X1
2mX1

+ mX2

( )2
+ 2s4

X1
+

s2
X2

m2
X1

+ s2
X1

( )
, respectively.

By using the moment calculator, the final expressions for E h X( )[ ]
and E h2 X( )[ ]

are obtainable in a single step given that h X( ) is in the
form (4). Both expressions have been proven to be analytically valid
regardless of values of the distribution parameters [27].

In the above example, the parameters are the mean mX and stand-
ard deviation sX . Typically, the complexity (or length) of the
output expression increases as the non-linearity of the input
performance function (or the number of random variables) is
getting higher. However, this complexity is of a minor concern,
as it has minimal impact on the execution speed by a modern
commodity computer (this is shown in Section 4.2).

As mentioned above, the online tool is directly applicable when
the performance function naturally takes the form (4). In practice,
however, not all performance functions are represented in such a
form. To address it, the use of the power series expansion (outlined
in Section 3.2) is incorporated into the RBRDO framework (Fig. 1).

3.2 Power series expansion

The online moment calculator enables finding E hk ·( )[ ]
regardless

of the value of k. The calculator requires that the relationship
between h ·( ) and the input variables X take the polynomial form
(4). For performance functions that do not satisfy this condition,
the terms in expression hk ·( ) should be approximated by an appro-
priate polynomial. Owing to the space constraint, only univariate
Taylor’s series approximation is discussed in this paper. More
sophisticated multivariate polynomial approximation (such as the
multivariate Taylor series) can be employed for multivariate
performance functions.

For example, let g ·( ) be an analytical function of an arbitrary
order m. The higher-order function gm Xi

( )
can be derived by

performing the following steps:

a) For Xi � mi + ji, where mi is an appropriate translation param-
eter (usually the mean of variable Xi), the Taylor series of gm Xi

( )
around mi is written as

∑1
n=0 ({g

m} n( )(mi)/n!) Xi − mi

( )n
.

b) After simplification, the series is gm Xi

( ) = ∑1
n=0 cnj

n
i , whereby

cn are known constants and jni = Xi − mi. This form is consistent
with (4). To employ the calculator, the series is expanded to a
finite (but sufficient) number of terms.
c) Finally, the new function is created to analytically approximate
hk ·( ), and it is compatible with the moment calculator.

For illustration, let a given performance function is
h X( ) = X 2

1 + exp X2

( )
. Here, the second right term [exp X2

( )
] is

not in the required form. Hence, it is represented using the Taylor
series as h x( ) = X 2

1 +∑nT
n=0 (1/n!)X

n
2 for nT number of terms.

This allows the moment calculator to be deployed to find the
moments of h X( ) (as shown in Section 3.1).

3.3 Reliability analysis and optimisation loop

The final step of the analytical moment-based RBRDO procedure is
a design optimisation through an iterative search. Since the pro-
posed analytical method is only concerned with the evaluation of
the objective function (specifically, the moment evaluation of the
performance function h ·( )), it is compatible with any off-the-shelf
optimisation routines and reliability analysis methods. Therefore,
the choice of the optimisation algorithm and reliability analysis
method is immaterial for the purpose of this paper.

The algorithm chosen for the reliability analysis in this paper is the
well documented and validated PMA [24, 25]. In PMA, the reliability
analysis of an arbitrary lth probabilistic function Gl ·( ) in (3) is per-
formed using the technique known as the inverse reliability analysis
access article published by the IET under the Creative Commons
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[25]. There most probable point (MPP) is the failure point that corre-
sponds to the lowest performance level that satisfies the target reli-
ability index bl . A specific algorithm known as the conjugate
gradient analysis method [29] is employed in this paper to perform
the reliability analysis.

4 Examples and discussion

This section experimentally compares and analyses the effective-
ness of applying the proposed analytical method based on the fol-
lowing three criteria:

a) variance estimation accuracy and efficiency;
b) scalability when increasing a number of random variables in per-
formance functions; and
c) implication of the proposed method on real-world RBRDO designs.

To keep the discussion succinct, only the variance of perform-
ance functions is calculated as it comprises both the first- and
second-order statistical moments. The analytical method is bench-
marked against the two most effective and computationally efficient
moment-based methods: univariate DRM [5] and PMI [12].

4.1 Variance estimation accuracy and efficiency

In the following two numerical problems, different types of func-
tions (concave and convex) are used to test the accuracy and effi-
ciency of the analytical moment-based method in calculating the
variance. Research [25] shows that some methods maybe ineffect-
ive for either concave or convex function. Thus, it is particularly
important to ensure that the analytical method is tested using
these two types of functions to validate its effectiveness.

4.1.1 Problem setup: In this example, the performance functions
h1 X( ) and h2 X( ) shown in (5) and (6) are concave and convex func-
tions, respectively, whereas I0 ·( ) in (6) denotes the Bessel function
of the first kind [30]. Input random variables X1, X2 and X4 are nor-
mally distributed with the means 4.0, 5.0, 6.0{ }, respectively, and
standard deviation of 0.8. The random variable X3 is assumed to
follow the uniform distribution within the limit 4.8, 7.2[ ]. The
goal here is to calculate the variance of h1 X( ) and h2 X( )

h1 X( ) = exp 0.8X1 − 1.2
( )+ exp 0.7X2 − 0.6

( )− 5

10
(5)

h2 X( ) = −I0 X3 − 7
( )− X4 + 10 (6)

Following the proposed analytical moment-based method (Fig. 1),
variance values of the performance functions are evaluated. The
number of terms used for the Taylor series expansion is nT = 3,
nT = 5 and nT = 7. It is important to note that this step is performed
only once in RBRDO because the same analytical expressions can be
used multiple times with different values of mX and sX in the design
optimisation. On the other hand, the DRM and PMI methods are
implemented for different numbers of the quadrature points:
nq = 3, nq = 5 and nq = 7. The results are compiled in Table 1.

4.1.2 Performance metrics and results: The percentage error of
the variance estimation as well as the equivalent function evaluation
(EFE) are used as the performance metrics in this paper. The
percentage error is calculated based on the difference between the
estimated variance and the variance obtained from the numerical
integration (NI) of the integral (2). The expression

nq − 1
( )

× nrv + 1 and the number of performance function calls

are used to determine the EFE for the univariate DRM and PMI
methods, respectively [5]. EFE reflects the computational efficiency
of an approach whereby a smaller EFE corresponds to a better
computational efficiency.
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
Since the moment computation is done before the optimisation loop,
to form a fairer assessment, the EFE for the analytical approach is
reported based on the median computational time for the expressions
of s2

h1 X( ) and s
2
h2 X( ) with reference to h1 X( ) and h2 X( ), respectively.

For example, the median execution time of 108 h1 X( ) is 20.47 s while
108 s2

h1 X( ) for nT = 3 takes 44.01 s. Thus, the complexity factor of
s2
h1 X( ) is 2.15, and every evaluation of s

2
h1 X( ) is counted as equivalent

to 2.15 h1 X( ) function evaluation. In other words, EFE to evaluate one
s2
h1 X( ) using the analytical method is 2.15.

4.1.3 Observations and discussion: Table 1 shows that both the
PMI and DRM approaches provide a fair estimation of the variances
of h1 X( ) and h2 X( ) when compared against the NI. Moreover as
anticipated, the EFE counts for the DRM and PMI methods increase
with the number of quadrature points nq thus showing that the
higher computational cost is associated with more quadrature
points. However, the effect to the variance estimation accuracy is
different for each method. For instance, increasing the number of
quadrature points did not guarantee an increase in the variance
estimation accuracy for the PMI method as it does for the DRM.

The proposed analytical method also provides a fair estimation of
s2
h1 X( ) and s

2
h2 X( ). Increasing the number of Taylor series expansion

terms gives an increasingly more accurate moment estimation. Most
notably, the analytical method gives a very good trade-off between
the accuracy and computational load. For example, the analytical
method with nT = 7 is capable of estimating the variances with
almost 0% error. Additionally, for the similar level of accuracy, it
consistently maintains a comparable computational load with the
most-efficient mainstream moment-based method: the univariate
DRM. However, note that the performance functions (5) and (6)
are low in dimensionality, and it is important for the analytical
method to exhibit a similar trade-off even for high-dimensional
problems. Therefore, Section 4.2 examines the scalability of
computational efficiency as well as the accuracy for performance
functions with a higher number of variables (up to 20).

4.2 Scalability when increasing the number of random variables
in performance functions

Normally, the computational cost to calculate the moments
increases exponentially with a dimension of a problem (the
number of random variables). This is known as the curse of dimen-
sionality [22]. To investigate the computational efficiency scalabil-
ity of the analytical method, this section uses performance functions
with the increasing dimensionality up to 20 random variables.

4.2.1 Problem setup: The previous two examples have analysed the
performance (i.e. accuracy and efficiency) of the analytical method with
simple performance functions with a low dimensionality. Here, the func-
tions h3 X( ) and h4 X( ) given by (7) and (8), respectively, are used to test
the computational efficiency scalability with the increasing function
dimensionality. Expression (7) is an exponential function with random
variables following the uniform distribution within the limit −1, 1[ ].
Expression (8) is a polynomial function with random variables following
the normal distribution with the mean equal to 1 and the standard devi-
ation of 0.4. The variances of h3 X( ) and h4 X( ) are calculated for the set
of dimensions s [ 4, 8, 12, 16, 20{ }. The number of terms used in
the Taylor series expansion for h3 X( ) is nT = 10. The conventional
methods are implemented with nq = 3

h3 X( ) = exp
∏s
i=1

Xi

( )
s [ 4, 8, 12, 16, 20{ } (7)

h4 X( ) = 1+∑s
i=1

∏i
j=1

Xj s [ 4, 8, 12, 16, 20{ } (8)

4.2.2 Performance metrics and results: Similar to the previous
example, the EFE and percentage errors of the calculated variances
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Table 1 Comparison of a variance of the concave performance function (5) and convex performance function (6) using the PMI, DRM, analytical and the
NI methods

Performance metrics Moment-estimation techniques

PMI DRM Analytical

NInq = 3 nq = 5 nq = 7 nq = 3 nq = 5 nq = 7 nT = 3 nT = 5 nT = 7

variance, s2
h1 X( ) 1.7820 1.8553 1.8565 1.8786 1.9767 1.9774 1.4677 2.0198 2.0772 2.0811

error, % 14.02 10.85 10.79 9.74 5.02 4.98 29.47 2.95 0.18 –
EFE 22.00 50.00 88.00 10.00 18.00 26.00 2.15 5.34 8.49 –
variance, s2

h2 X( ) 0.9150 0.9209 0.9217 0.8554 0.8573 0.8573 0.7650 0.8463 0.8566 0.8573
error, % 6.73 7.21 7.33 0.22 0.00 0.00 10.77 1.28 0.08 –
EFE 40.00 78.00 108.00 10.00 18.00 26.00 2.06 6.51 17.10 –

Table 2 Comparison of a variance of the performance functions (7) and
(8) for s = 4 and 8 using the analytical method and the MC simulation
results with 107 samples

Variance, s2
h3 X( ) Variance, s2

h4 X( )

number of random variables, s 4 8 4 8
MC simulation 5.3409 42.955 0.0133 0.0002
analytical 5.3413 42.999 0.0133 0.0002
are used as the performance metrics. The EFE calculation is done in
the same way as discussed above in Section 4.1 for all the methods.
As the dimension of the performance function increases (s . 8), the
NI of (2) becomes impractical while the convergence of the MC
simulation requires unaffordable computational time: the perform-
ance function with 20 independent variables would require at
least 104

( )20
samples to be reliable. Thus, the analytical method

is practically the only viable approach to calculate the variance of
high-dimensional functions. Table 2 shows that the variance esti-
mated using the analytical method agrees with the MC simulation
results for s = 4 and 8. Besides, it was proven to be mathematically
correct in the earlier works [27, 28], and was demonstrated numer-
ically in Section 4.1. Thus, Fig. 2a presents the EFE with increasing
dimensionality for all the methods, while Fig. 2b reports the error of
the PMI and DRM approaches relative to the analytical method.
4.2.3 Observation and discussion: The results shown in Fig. 2a
are well in agreement with the literature [5] stating that the PMI
method becomes computationally more efficient for high-
dimensional problems. The EFE of DRM scales linearly with
respect to the number of variables, whereas the EFE for the PMI
method appears to be insensitive on the problem dimension. The
analytical method incurs the lowest computational cost and is char-
acterised by the slowest growth of the computational complexity (or
EFE) with respect to the problem dimension among all the three
compared methods. In short, the analytical method has the best
scalability with respect to the increasing problem dimension. The
minimise fo X( ) = w1
W X( )
W0 X( ) + w2

s2
H X(

s2
H0(

subject to Pr abdomen load . 1 kN[ ] ≤
Pr upper/middle/lower visco
[

Pr upper/middle/lower rib de
[

Pr pubic symphysis force . 4
[

Pr velocity of B− pillar at mi
[

Pr velocity of front door at B−[
dL ≤ d ≤ dU and b = 2,
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implication of such an advantage on a real-world RBRDO design
scenario is discussed in Section 4.3 below.

It can be observed in Fig. 2b that both the univariate DRM and
PMI reach 100% error for the variance of h3 X( ) at s ≥ 5. Both
methods wrongly estimate the variance of h3 X( ) as 0 in this case
– as shown in Table 2, the variance of h3 X( ) gets smaller with
the increasing number of variables s. For h4 X( ) however, the vari-
ance estimation error deteriorates with the increase of the dimen-
sion. Nevertheless, for functions h3 X( ) and h4 X( ), both the
methods do not perform well with the error ranging anywhere
between 10 and 100% for s . 5. The root cause for such an
effect in the PMI method is the MPP search which becomes increas-
ingly unreliable when a large number of variables are present. In the
DRM method, it is caused by the errors introduced in the univariate
decomposition for highly non-linear functions. The impact of such
shortcomings on a real-world RBRDO problem is demonstrated in
the subsequent section.

4.3 Implication of the proposed analytical method on real-world
RBRDO designs

In this section, a real-world optimisation problem is considered – it
is a vehicle side impact crashworthiness [3]. The design objective is
to minimise the weight of the vehicle W X( ) as well as the variance
of the performance function H X( ) while enhancing the side impact
crash protection to ensure the safety of passengers. To do so, the
European Enhanced Vehicle-Safety Committee side impact proced-
ure [31] is used in order to determine the reliability constraints of
the performance functions.
4.3.1 Problem setup: In this paper, the vehicle side impact crash-
worthiness (which is well documented in [3]) is formulated as
(see (9))

whereby fo X( ) is the objective function. W0 X( ) = 29.05 kN is the
initial weight and H0 X( ) = 1.4781mm is the initial variance of
the performance function based on the original design points
given in [3].
)
X)

,

F −b
( )

us criteria . 0.32m/s
] ≤ F −b

( )
flection . 32mm

] ≤ F −b
( )

kN
] ≤ F −b

( )
ddle point . 9.9mm/ms

] ≤ F −b
( )

pillar . 15.7mm/ms
] ≤ F −b

( )

(9)
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Fig. 2 Results of
a EFE
b Error relative to the analytical method in estimating the variance of performance functions h3 X( ) and h4 X( ) in (7) and (8), respectively. Both (7) and (8) are
analytic functions with increasing dimensionality. The variance estimation error is calculated relative to the analytical method
Table 3 provides the expressions for the probabilistic functions.
The initial design points, statistical information, as well as details
on the random variables are given in [3]. Note that X10 and X11
are not regarded as design variables in this problem, and the
weight W X( ) in Table 3 is given in terms of d = E X[ ]. The target
reliability index for all probabilistic functions is b = 2. The lower
rib deflection is the performance function H X( ) in this RBRDO
problem to represent safety component of the design objective.
Since H X( ) is already in the required form, the online calculator
[17] can be employed without the need for any analytical transform-
ation in order to calculate the first-order moment E H X( )[ ] and
second-order moment E H2 X( )[ ]

. The univariate DRM and PMI
method are implemented with nq = 3.

4.3.2 Performance metrics and results: In addition to the EFE, the
actual objective function fo X( ) is also used as one of the perform-
ance metrics. The method to calculate EFE remains the same as
in Sections 4.1 and 4.2, while the actual variance of the perform-
ance function and the actual objective function for each design is
calculated using MC simulation with 107 samples. The RBRDO
Table 3 Expressions of objective and performance functions whereby d = E X[ ]

Description

weight, W X( ) 1.98+ 4.9d1 + 6.67d2 + 6.98d3 + 4.01d4 + 1.78d
abdomen load 1.16− 0.3717X2X4 − 0.00931X2X10 − 0.484X3X9

lower rib deflection, H X( ) 46.36− 9.9X2 − 12.9X1X8 + 0.1107X3X10

middle rib deflection 33.86+ 2.95X3 + 0.1792X10 − 5.057X1X2 − 11X2

upper rib deflection 29.98+ 3.818X3 − 4.2X1X2 + 0.0207X5X10 + 6.63

upper viscous criteria
0.261− 0.0159X1X2 − 0.188X1X8 − 0.019X2X7 +

0.08045X6X9 + 0.00139X8X11 + 0.00001575

middle viscous criteria
0.214+ 0.00817X5 − 0.101X1X8 − 0.0704X1X9 +
0.0007715X5X10 − 0.0005354X6X10 + 0.00121X8X

lower viscous criteria 0.74− 0.61X2 − 0.163X3X8 + 0.001232X3X10 − 0

pubic symphysis force 4.72− 0.5X4 − 0.19X2X3 − 0.0122X4X10 + 0.0093
velocity of B-pillar at
middle point

10.58− 0.674X1X2 − 1.95X2X8 + 0.02054X3X10 −

velocity of front door at
B-pillar

16.45− 1.489X3X7 − 0.843X5X6 + 0.0432X9X10 −

This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
method here is implemented using MATLAB’s fmincon function
[32] and solved using its inbuilt sequential quadratic programming
algorithm with the tolerance of the function’s termination condition
of 10−6, the tolerance on constraint violation of 10−6 and the
maximum iteration number of 400. The final design outputs are
compiled and tabulated in Table 4.
4.3.3 Observation and discussion: Table 4 shows that each
RBRDO technique yields different optimal design points with
respect to the side impact crashworthiness. All the employed
three methods show the significant reduction in the objective func-
tion fo X( ) (which is a function of the vehicle weight W X( )) as well
as the variance of the lower rib cage deflection of the occupants. In
addition, all the methods yield design points with probabilistic
functions that meet the minimum probabilistic constraints of
b = 2. Hence, regardless of the chosen design, the vehicle will
meet the high safety standards. However, the proposed analytical
method can achieve it with at least three times faster computational
speed than the mainstream methods of estimating the variance
s2
H X( ) in the optimisation process.
Expression

5 + 2.73d7
+ 0.01343X6X10

X8 − 0.0215X5X10 − 9.98X7X8 + 22X8X9

X6X9 − 7.7X7X8 + 0.32X9X10

0.0144X3X5 + 0.0008757X5X10+
X10X11

0.03099X2X6 − 0.018X2X7 + 0.0208X3X8 + 0.121X3X9 − 0.00364X5X6 +

11 + 0.00184X9X10 − 0.02X 2
2

.166X7X9 + 0.277X 2
2

25X6X10 + 0.000191X 2
11

0.0198X4X10 + 0.028X6X10

0.0556X9X11 − 0.000786X 2
11
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Table 4 Performance of the PMI, DRM and analytical method in the
vehicle side impact crashworthiness evaluation

Employed
method

Optimum design

Actual
objective
function,
fo X( ) from
MC

Weight,
W X( ),
kN

Variance
of H X( ),
mm2

Actual
variance
of H X( )
from MC,

mm2

EFE

PMI,
nq = 3

0.7069 28.7780 0.0618 0.6254 4590.00

DRM,
nq = 3

0.6024 25.8685 0.4144 0.4645 4940.00

analytical 0.5987 25.9044 0.4511 0.4518 1526.07
Furthermore, Table 4 shows that the proposed analytical method
has achieved the lowest optimum function fo X( ) in comparison with
the mainstream moment-based methods. The accuracy of the vari-
ance estimation using the proposed method indicates that the
balance between the vehicle weight and the safety has been
achieved as envisioned by the designer. On the other hand, an
under-estimated variance (by the univariate DRM for this
example) will lead to a low-weight design at the expense of
vehicle safety. Even the designer might be unaware of the elevated
risk because the reported variance is 0.4144 mm2 while the true
value is 0.4645 mm2. Though a more accurate estimation maybe
achieved by either increasing the quadrature points nq used or by
employing the bivariate DRM, doing so will, in turn, increase the
EFE count.
It is equally important for a moment evaluation technique to be

accurate and computationally efficient in a design optimisation
procedure. Hence, the use of the proposed analytical method is a
preferable option as it meets both the criteria for this RBRDO
problem. Moreover, the analytic approach involves a straightfor-
ward application of the moment calculator to get an expression
for moments without needing to worry about the degree of the func-
tion non-linearity, and the problem dimensionality. This could be a
very important advantage from practicing design engineers’
perspectives.

5 Conclusion

The RBRDO is a unified methodology that yields the superior
design solutions while offering the best compromise between the
cost, reliability and robustness of a system-under-design. The diffi-
culty in overcoming the mathematical complexity in analytically
evaluating the statistical moments of the performance function
h ·( ) in the moment-based RBRDO has led to the development
and implementation of various numerical moment-estimation tech-
niques such as the univariate DRM and PMI technique. However,
both of them have come with the accuracy versus computational ef-
ficiency trade-off, significance of which has not been tested for pro-
blems with large number of variables (.5).
This paper examines the computational cost and accuracy scal-

ability of the representative mainstream moment-based techniques
for higher problem dimensions. Also, it introduces a new analytical
moment-based RBRDO framework to derive the high-order
moments of a specific functional form using the Mellin transform
in conjunction with the analytical approximation techniques
employing power series expansion.
For problems with a small number of variables (e.g. 2), the

performed experimental study shows that the proposed analytical
approach provides equally accurate results while being computa-
tionally as efficient as the competing state-of-the-art methods.
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However, when tested on problems with a higher number of
random variables (up to 20), the proposed analytical approach
provides a better scalability with respect to the dimension of the
performance function – e.g. it remains computationally efficient.
This was demonstrated on the vehicle side impact crashworthiness
problem whereby the proposed method was capable of finding
the best optimal design while being at least three times faster than
the mainstream DRM and PMI methods without sacrificing the
design quality. The new analytical method decouples the computa-
tionally expensive moment-estimation process from the iterative op-
timisation loop, thus facilitating higher-quality design solutions at a
lower computational cost.
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