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Article

Perfect data sets do not exist in the real world, and missing 
data are an authentic challenge facing social science analysts 
and researchers. Missing values can bias analyses, especially 
when high percentages are missing or there are patterns in 
the missingness (Allison, 2002; Osborne, 2013; Wang, 
Bartlett, & Ryan, 2017). The higher the percentage of miss-
ing values, the greater the potential problems (Bennett, 2001; 
Osborne, 2013). Consequently, the handling of missing data 
has been a topical issue in social sciences and methods deal-
ing with missing values have grown exponentially (Enders, 
2010; Li, Stuart, & Allison, 2015; Little & Rubin, 2002; 
Rubin, 1987; van Buuren, 2012). Treating missing data as 
incorrect responses and excluding cases, which is a common 
practice in large-scale assessments, could lead to signifi-
cantly biased item parameter estimates (Hohensinn & 
Kubinger, 2011; Rose, von Davier, & Xu, 2010). Model-
based approaches are recommended for handling missing 
data that provide the opportunity to consider the likelihood 
of responding and ability (Peugh & Enders, 2004; Mayer, 
Muche, & Hohl, 2012; Yucel, 2011).

As methods for handling missing data become easier to 
access, their limitations, including the evaluation of imputa-
tions and reporting, should be given more attention (Cox, 
McIntosh, Reason, & Terenzini, 2014; Graham, 2012; Little & 

Rubin, 2002; van Buuren, 2012). Some forms of missing data, 
such as Missing Not at Random (MNAR) data, warrant further 
research, which complicates the use of missing data handling 
techniques as data missing randomly is an assumption of many 
imputation methods (Galimard, Chevret, Protopopescu, & 
Resche-Rigon, 2016). In longitudinal research, large-scale 
assessments, high-stakes studies, and research designs that 
gather sensitive data, missing data are particularly problem-
atic, and could affect statistical validity (Mallinckrodt, Roger, 
et al., 2013; Peng, Harwell, Liou, & Ehman, 2003). The most 
popular and recommended methods for handling missing data, 
such as multiple imputation (MI) and maximum likelihood 
(ML) estimation, were originally developed for continuous 
variables with the assumption of a normal distribution for data 
Missing at Random (MAR) or data Missing Completely at 
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Random (MCAR). Some studies have found that when miss-
ingness mechanisms are investigated, MI can be used for 
MNAR data (Baraldi & Enders, 2010).

This article reports on a practical application of MI using 
structural equation modeling (SEM) to model the missing-
ness of MNAR dichotomous data using Rasch person mea-
sures as predictors. The data contained a combination of 
MNAR and MCAR dichotomous test anchor items. Data are 
MNAR when missingness on a variable is directly related to 
the outcome variable (e.g., science proficiency; Enders, 
2010; Graham, 2012; Kim & Shao, 2014; van Buuren, 2012). 
When data are missing due to underlying patterns and vari-
ables in the model, the mechanism of missingness is non-
ignorable (Wang et  al., 2017). The percentage of missing 
data can be used to guide the selection of methods to handle 
the missingness: With less than 5% of missing values, list-
wise or pairwise deletion is an option as long as MAR data 
are present (Allison, 2002). Greater percentages of missing 
data may cause bias in analyses and should be investigated, 
and other options such as MI should be considered 
(Mallinckrodt, Lin, & Molenberghs, 2013; McPherson et al., 
2015; Roberts, Sullivan, & Winchester, 2017).

Current Study

The study included seven independent high schools in South 
Africa. The schools are parts of a coalition and are sponsored 
by a funding agent. The funding agent required a set of year-
end assessments to evaluate curriculum knowledge and to 
ensure that all students in the schools had achieved the same 
standards. Science assessment instruments were designed for 
Grades 8 to 11. During the yearly assessment of the eighth-
grade students, one school received a copy of the Science test 
that did not contain the anchor (common) items. This was 
due to a printing error. The missing data for the anchor items 
could not be classified as missing randomly as they were 
completely missing only for that school. The missing data 
can be classified as MNAR because their absence from the 
test was unintended and not part of a planned design. 
Furthermore, the school with the missing data were different 
from the other six schools, as it had consistently higher score 
averages in all subjects. Using data from the other schools in 
the sample to predict the missing data for the seventh school 
would have led to the underestimation of achievement.

Treating data that are missing due to a specific variable, in 
this case one school, as MAR could have a biased effect on the 
imputation (Cleophas & Zwinderman, 2012; Fielding et  al., 
2008). The assumption of missingness has to be carefully 
investigated and conducting sensitivity analysis to assess the 
accuracy of the imputations is essential (Fielding et al., 2008; 
Keene, Roger, Hartley, & Kenward, 2014; McPherson et al., 
2015). According to Roberts et al. (2017), “Patterns of miss-
ingness dictate how data should be analyzed” (p. 10). Based 
on this specific case of missingness (MNAR), the study aimed 
to investigate and answer three research questions:

Research Question 1: How can MNAR missing data be 
imputed by modeling the missingness?
Research Question 2: Which type of model and vari-
ables would best predict the MNAR data and how would 
the variables be identified?
Research Question 3: What contribution could be made 
by Rasch scores in comparison with raw scores to build 
more accurate MI models for missing item responses?

Method

To link the assessments within each subject from one year to 
the next, common items (anchor items) were included in the 
assessment design. The eighth-grade tests were of particular 
importance as they served as a baseline assessment of stu-
dent ability and knowledge. The nine anchor items were 
present in the tests completed by the other six schools but not 
the seventh school. This meant crucial items that would be 
used for anchoring within the cohort were missing for one 
school. For the school in which the items were not included 
in the test, the data were MNAR and were directly related to 
variables in the data set, namely, that of school and science 
proficiency for tracking (anchoring). It was not possible to 
exclude the missing data as it was crucial to have responses 
to the items for anchoring in the subsequent year’s assess-
ment. A hybrid approach was explored to handle the missing 
data. Hybrid approaches are recommended for strengthening 
methods for handling missing data (Aste, Boninsegna, Freno, 
& Trentin, 2015).

Participants and Ethical Considerations

A total of 358 Grade 8 students from seven independent high 
schools completed the Science assessment at the end of the 
academic year. Parents signed consent forms for testing par-
ticipation, as well as for the results to be used for research 
purposes. The average age of the Grade 8 students was 15.53 
years with a greater number of female participants (71.79%) 
than males. The sample included a girls-only school, which 
accounts for the larger proportion of females in the sample. 
The MNAR school, which received the test copies without 
the anchor items, accounted for 18.15% of the total sample 
(65/358).

Instruments and Procedures

The assessments were designed to cover the South African 
Curriculum and Assessment Plan Statement (CAPS) and 
measure the knowledge gained over the course of a year 
(Department of Basic Education, 2012). The Science assess-
ments were administered at the seven schools at the end of 
each academic year and were conducted using standardized 
procedures, with external evaluators conducting the testing 
processes at each school. Examination conditions were 
maintained during the assessments.
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Data Analysis

To address the problem of MNAR data for the dichotomous 
anchor items, this study investigated methods to handle 
missing data when the mechanism for missingness is known. 
IBM SPSS Version 23 and IBM Amos were used in the anal-
ysis, and a practical application of modeling the missingness 
and imputing missing values, based on the model, was dem-
onstrated. Rasch person measures were identified as the most 
suitable predictors for the missing scores. Rasch theory uses 
logistic regression models to estimate the likelihood of 
answering a question correctly and creates an equal interval 
logit scale for persons and items (Andrich, 2011; Bond & 
Fox, 2015; Dunne, Long, Craig, & Venter, 2012; Linacre, 
2016; Uebersax, 1993). The Rasch models are quite resilient 
to missing data in general (Bond & Fox, 2015; Boone, Staver, 
& Yale, 2014; Linacre, 2016). Winsteps 3.75.0 was used to 
produce items and person estimates before the imputation 
(Linacre, 2016). The measures for both persons and items 
were rescaled from 0 to 100 to make the outputs easier to 
interpret. The anchor items did not form a scale and conse-
quently could not be used as predictors; using Rasch person 
measures addressed this challenge.

The data contained a combination of both MNAR data 
(one school did not have the anchor items) and MCAR data 
(the other schools had the items but some students elected 
not to answer some items). The composition of the two miss-
ingness mechanisms is shown in Table 1. MI was chosen as 
the method to handle the missing data because it uses multi-
ple values to estimate parameters and explicitly accounts for 
the uncertainty associated with missing data by reflecting the 
underlying variability (Enders, 2010; Rubin, 1976, 1987; van 
Buuren, 2012). MI produces continuous imputations for cat-
egorical variables if multiple linear regression is used, as 
opposed to logistic imputation (Cox et al., 2014). Rounding 
off values so that illogical values fit the original variables’ 
scale has to be done with caution and can be especially 

problematic for dichotomous items (Finch, 2010, 2011; 
Horton, Lipsitz, & Parzen, 2003). In addition, MI can be 
used for MNAR data when the missingness is modeled 
(Dong & Peng, 2013; Horton & Kleinman, 2007; van Buuren, 
2012). For ordinal data with a monotone pattern, as was the 
case discussed in this article, logistic regression was the pref-
erable method for imputation (Mayer et al., 2012; Schafer, 
1999b). Mayer et  al. (2012) recommend using IBM Amos 
when the researcher knows the reason for missingness; in 
this way, the missingness can be modeled explicitly with 
SEM and the imputations will be based on the model’s struc-
ture. The model can also be evaluated for fitness and refined 
so that the MI will have more accurate imputations, which 
are based on the relationships within the data. It should be 
noted that both the percentage of missing data and the sam-
ple size have an impact on the MI model, and when sample 
sizes are small, such as n < 50 and missing greater than 20% 
of values, bias can be introduced into the imputation process 
and results (Hardt, Herke, Brian, & Laubach, 2013).

For the current study, only the nine anchor items in the 
Grade 8 Science test needed to be imputed. The highest per-
centage of missing values in this study was 30% for one of 
the variables, and the sample size of 358 was judged to be 
adequate to estimate the missing data. When utilizing IBM 
Amos, Bayesian analysis is conducted for ordered categori-
cal data and the Markov Chain Monte Carlo (MCMC) algo-
rithm is employed to draw random values of the parameters 
from joint posterior distributions (Arbuckle, 2014b; Grace, 
2015; Poleto, Singer, & Paulino, 2011). When dichotomous 
variables are used in an Amos model, additional constraints 
must be added to identify the model (Arbuckle, 2014a; 
Grace, 2015; IBM, 2015). As MI uses regression to predict 
outcomes, SEM is the next natural step, and more complex 
relationships among imputation variables can be specified. 
All of the anchor items to be imputed were dichotomous and 
functioned as endogenous variables in the model. For each 
item, the residual mean and variance were fixed as 0 and 1, 
respectively (Arbuckle, 2014b). Dichotomous variables have 
only one boundary, and to determine the origin and underly-
ing scale required for the variable, parameter constraints 
must be imposed. The constraints act as priors, restricting the 
dichotomous variables to a range of 0 to 1. Further priors 
were not added in this study, as the aim was to analyze the 
model for use in SPSS, and uninformative priors were rec-
ommended for this purpose (Grace, 2009).

Modeling the MI in Amos allowed for the testing of sev-
eral possible models, as well as refining the model to obtain 
a model best suited for MI. SPSS was used to conduct the 
final MI after modeling was completed in Amos, and the 
most appropriate model was used to specify the imputation 
in SPSS. The main reason for using SPSS for the final impu-
tations was that SPSS has logistic regression MI as an option, 
which produces categorical variables within the correct 
ranges. In contrast, Amos Bayesian multiple regression 
results produce variables on a wider, continuous scale and 

Table 1.  Variable Summary of Missing Data for Imputation Items 
MCAR and MNAR.

Test questions

Missing both MCAR 
and MNAR

Missing 
MCAR

Valid nn % n %

Anchor Item Q1 68 18.99 3 1.02 290
Anchor Item Q2 73 20.39 8 2.73 285
Anchor Item Q3 106 29.61 41 13.99 252
Anchor Item Q4 108 30.17 43 14.68 250
Anchor Item Q5 87 24.30 22 7.51 271
Anchor Item Q6 99 27.65 34 11.60 259
Anchor Item Q7 76 21.23 11 3.75 282
Anchor Item Q8 76 21.23 11 3.75 282
Anchor Item Q9 68 18.99 3 1.02 290

Note. MCAR = Missing Completely at Random; MNAR = Missing Not at 
Random.
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this requires additional formulae for rescaling and rounding 
(Graham, 2012). Using Amos to assess the model produced 
statistics such as regression weights and the posterior predic-
tive p value (Nguyen, Lee, & Carlin, 2015). SPSS outputs 
limited statistics once the MI process has been conducted, 
making it challenging for users of the MI function to assess 
the statistical validity of their model and imputations (IBM, 
2012). In addition, SPSS does not provide an iteration his-
tory for categorical variables (IBM, 2014), which is where 
Amos proves to be a more advantageous tool. The variables 
for use in the MI model were identified using Pearson’s cor-
relation coefficient (r) to assess the strength of the relation-
ships. Possible predictors for the MI process were investigated 
and included auxiliary variables such as gender, school, and 
age, as well as other items in the instrument, the imputation 
variables, and the composite (total test) scores. Only vari-
ables with small to large significant correlations found in the 
imputation variables were used in models for predictive 
power and improved model functioning.

After the MI process had been performed in SPSS, sensi-
tivity analysis was conducted to compare nonimputed data 
with the imputations. In this step, the original anchor items 
were compared with the imputed variables using the 
McNemar and Kruskal–Wallis tests to determine whether the 
original items differed statistically from the imputed vari-
ables when the results were pooled (Schafer, 1999a). Using a 
hybrid approach by combining SEM in Amos with MI in 
SPSS led to a stronger imputation model, as the advantages 
of each program were utilized and their limitations were 
negated.

Results

Table 1 shows the percentage of missing data per item, first 
showing the percentage of missing values per item for all 
types of missingness (MCAR and MNAR), and then illus-
trating the percentage of missing only for MCAR. Anchor 
Item 4 has the largest percentage of missing data at 30% of 
values missing (valid n = 250/358), with 14.68% of those 
being MCAR data. All anchor items were dichotomous and 
for MCAR and MNAR data combined, 62.57% of cases and 
82.29% of values were complete. For MNAR data only, 
76.45% of cases and 93.33% of values were complete. The 
MCAR data accounted for 6.67% of missing values, whereas 
the MNAR mechanism explained 11.04% of missing data 
(overall 17.72% of the values were missing). A monotone 
pattern of missingness was identified due to data being miss-
ing for one school in particular (IBM, 2013; Rezvan, Lee, & 
Simpson, 2015). Little’s MCAR test of the data for schools 
where the items were completed confirmed that the missing 
values were MCAR for the other schools, χ2 = 195.269,  
df = 166, p = .06 (within SPSS Version 23; Little, 1988). This 
established that the data contained a combination of MCAR 
and MNAR data. A listwise deletion of all missing data 
would thus result in 37% of cases being excluded.

Auxiliary Variables

Literature on building missing value models indicates that 
including auxiliary variables could be very beneficial for 
imputation (Crameri, von Wyl, Koemeda, Schulthess, & 
Tschuschke, 2015; Manly & Wells, 2015; Nguyen et  al., 
2015). The advantages of auxiliary variables are dependent 
on significant correlations (>.40) with the imputation vari-
ables, as well as lower percentages of missing values for the 
auxiliary variables (Dong & Peng, 2013; Enders, 2010). In 
this study, three auxiliary variables were considered: gender, 
which did not correlate significantly with any of the imputa-
tion variables or predictor variables; then, age was consid-
ered but it correlated weakly with only one of the imputation 
variables; and finally, school membership was assessed, with 
membership in the seventh school functioning as constant as 
it was completely missing for the MNAR school. For reasons 
cited above, none of the demographic variables were included 
in the model. MI can be robust to application without auxil-
iary variables when viable alternative imputation variables 
are utilized (Mustillo & Kwon, 2015).

Predictor and Imputation Variables in the Model

The anchor items had correlations with one another, rang-
ing from nonexistent (r = .002) to weak (r = –.273), with a 
principal components analysis showing that the nine 
anchor items did not form a factor. Using the anchor items 
to predict missing values on one another was not recom-
mended, and when a saturated model was attempted, it 
failed to converge (Poleto et al., 2011, had similar findings 
when using a saturated model). The other test items in the 
assessment were also considered; however, they only cor-
related well with some of the anchor items to be imputed 
and thus could not be used as a group. Inclusion of all 79 
items in the model may have led to the overcomplication 
of the model (Hardt et al., 2013). As a result, two types of 
composite (total test) scores were considered: raw com-
posite scores and Rasch person measures. The use of item 
composite scores creates a variable that contains all the 
information from items without MNAR data to predict 
MNAR variables. Correlations among anchor items and 
raw composite variables showed small to moderate signifi-
cant correlations to the raw composite scores with five out 
of the nine anchor items (correlations ranged from r = .128 
to r = .424). The Rasch person measures of all items had 
small to moderate correlations with six out of the nine 
anchor items (r = .133-.360). The Rasch person measures 
variable, based only on anchor items, had small to large 
correlations with all anchor items (r = .173-.667).

The SEM Model of Missingness

The SEM of missingness, built for this particular study, was 
specified as a recursive model. The imputation variables 
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were the anchor items, nine items which were all dichoto-
mous, with 18% to 30% of the values missing in a combina-
tion of MCAR and MNAR mechanisms. The predictor 
variables included the Rasch person measures of the anchor 
items, as well as the Rasch person measures of all test items 
(excluding the anchor items). The standardized direct 
effects (regression weights) indicated good predictive 
power for each of the imputation variables, see Table 2. 
Both, Predictors 1 and 2, worked well in the model due to 
their moderate correlation with each other at r = .352  
( p = .000), as well as small to large significant correlations 
with the imputation variables. In Amos, five imputations 
were generated to assess the model, and a total of 10 impu-
tations were generated in SPSS (Dong & Peng, 2013; 
Schafer, 1999a; White, Royston, & Wood, 2011).

Figure 1 displays the visual representation of the recur-
sive model, which converged after 10,000 observations. 
Van Buuren (2012) suggests using the most simplistic 
model for MNAR data, with the result that the model below 
is both the simplest and most accurate that could be devised 
with the data.

The posterior predictive p had a value of .02, which indi-
cates a lack of good fit between the data and the model, as 
the ideal value should be closer to .5 (IBM, 2014; Nguyen 
et al., 2015). However, the p value is only one indication of 
model functioning and is subject to factors such as percent-
age of missing values and sample size and thus should be 
treated with caution (Gelman, 2013). Further checks of the 
model and convergence were done by examining the histo-
grams with first and last distributions. A sample of the histo-
grams, trace plots, and autocorrelation plots are displayed in 
Figures 2 to 7. The histograms show that the first and last 
distributions from the analyses are closely aligned and 
almost equal, an indication that the posterior distributions 
were successfully identified and modeled.

Figures 4 and 5 illustrate the trace plots or time-series 
plots and indicate that the MCMC procedures converged 
quickly. There were no long-term trends or drifts, only mini-
mal fluctuations.

The autocorrelation plots, depicted in Figures 6 and 7, 
show high initial correlation and then small or no correla-
tion by 100 iterations, the point at which the model 
converged.

A pseudo-R2 was calculated by using the formula as rec-
ommended by Grace (2009) for use in MCMC models in 
Amos: R2 = 1 – (e1 / implied variance of predictor variables; 
see also Grace & Bollen, 2005). This yielded R2 = .737 for 
the SEM model, showing that the overall model accounted 
for a large percentage of variance.

Diagnostic Checks of the Imputation Model

A comparison of the original data and the pooled data for 
the 10 imputations is presented in Table 3. No imputed 
item recorded a statistically significant difference between 
the original item and the pooled item, demonstrating the 
accuracy of the imputation. As recommended by Schafer 
(1999b), the McNemar test was used to compare preimpu-
tation with imputed binary variables. The Kruskal–Wallis 
test was also reported to use the imputation numbers as 
grouping variables, so that each imputation was compared 
with every other imputation in this analysis. Both the 
McNemar and Kruskal–Wallis tests showed that there was 
no statistically significant difference between the original 
data and the imputed values, or among the imputations  
( p > .01).

When the imputed items were imported into Winsteps, 
the item measures were found to have remained very stable, 
with each imputed anchor item correlating above .9 with the 
original anchor item measures (estimates; Suarez Enciso, 
2016). Each imputation was imported into Winsteps sepa-
rately, and the outputs were produced and compared. The 
school with data completely missing on the anchor items 
(MNAR data) tended to have higher performance on the test 
overall (M = 49.91, SE = 0.48, n = 65) when compared with 
the other six schools (M = 43.84, SE = 0.36, n = 293). In the 
MI model, this was accounted for by including the overall 
Rasch person estimates. The MNAR school had a higher 

Table 2.  Standardized Direct Effects on Imputation Items.

Test 
questions Pred1 Ma Pred2 Mb Maximum Minimum

Lower 
bound 50%

Upper 
bound 50% SD SE

Convergent 
statistic

Anchor_Q1 0.402 0.099 0.639 0.125 0.355 0.452 0.072 0.001 1.000
Anchor_Q2 0.468 0.051 0.748 0.072 0.414 0.525 0.081 0.001 1.000
Anchor_Q3 0.282 −0.128 0.605 −0.054 0.219 0.346 0.093 0.001 1.000
Anchor_Q4 0.427 0.136 0.688 0.099 0.379 0.480 0.077 0.001 1.000
Anchor_Q5 0.772 0.259 0.890 0.604 0.748 0.799 0.038 0.000 1.000
Anchor_Q6 0.873 0.069 0.941 0.732 0.857 0.891 0.026 0.000 1.000
Anchor_Q7 0.512 0.285 0.736 0.217 0.469 0.558 0.065 0.001 1.000
Anchor_Q8 0.440 −0.083 0.677 0.150 0.394 0.488 0.071 0.001 1.000
Anchor_Q9 0.549 −0.179 0.768 0.175 0.502 0.599 0.074 0.001 1.000

aRasch person measures for anchor items only.
bRasch person measures for all items.
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mean for the pooled MI anchor items (M = 46.02, SE = 2.79, 
n = 65), which was 4.5% higher than that of the other schools 
(M = 41.45, SE = 0.44, n = 293). Notably, the standard error 
was much higher for the MI data of the MNAR school than 
that of the other schools. Figure 8 also demonstrates graphi-
cally how the mean of Rasch person measures for all items 
with no imputation compares with the multiple imputed 
anchor items’ person mean.

Discussion

The quality of analyses and findings improves when 
researchers acknowledge missing data, investigate the rea-
sons thereof, and actively find ways to deal with the miss-
ing values (Carpenter, Bartlett, & Kenward, 2010; Manly & 
Wells, 2015; Peng et al., 2003). By building SEM models 
with Bayesian analysis to find the best model and assess the 
convergence, an MI model could be structured for 

Figure 2.  Q1 Histogram Predictor 1.

Figure 1.  IBM Amos recursive model for imputing missing data.

Figure 3.  Q9 Histogram Predictor 1.
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Figure 4.  Q1 Trace Plot Predictor 1.

Figure 5.  Q8 Trace Plot Predictor 1.

Figure 6.  Q1 AutoCorrelation Predictor 1.
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imputations in SPSS using logistic regression. Using IBM 
Amos, a recursive model was built with Rasch person mea-
sures as predictors and had one predictor based on all items 
and the other on the anchor items only. The result was that 
the Rasch person measures were better predictors compared 
with using composite scores of the raw values, and as a 
result, the recursive model worked best. Other models were 
attempted, such as a saturated model and possible path 
models with either both or one of the Rasch person mea-
sures or with the raw composite scores, but these models 
either failed to converge or had poor model fit. Poor fit for 
the other models is attributed to the fact that the imputation 
variables did not form a scale. Finding good predictors for 
MI models should be done by identifying variables that cor-
relate moderately to highly with the imputation variables. 
For this reason, imputation items alone could not be uti-
lized in the model. This is where the Rasch scores were 
useful, because they created an estimate of persons, which 
was on an equal interval scale, thus providing a more accu-
rate measure. The Rasch measures also provided significant 

correlations with the imputation variables while maintain-
ing the pattern of performance between the MNAR school 
and the other schools with MCAR missing data.

IBM Amos provided a way to model the missingness and 
check model functioning. In addition, Amos produced con-
tinuous imputation variables for MI. Considering the prob-
lems caused by rounding off variables and the importance of 
using the correct MI method for the type of variables imputed, 
the model constructed in Amos was used as the guideline for 
imputation in SPSS (hybrid approach). Checks of the multi-
ple imputed variables from SPSS showed that they main-
tained the structure of the original variables with similar 
means, standard deviations, and standard errors. The imputed 
variables were not statistically different from the original 
variables ( p = 1.000). The MNAR school had a higher mean 
for all items in comparison with the other schools in the test. 
This pattern was maintained by the MI model, with the mul-
tiple imputed anchor items of the MNAR school having a 
4.5% higher mean than that of the other schools after imputa-
tion. This is similar to the original pattern of the other items 

Table 3.  Original Data Compared With Pooled Data.

Test questions Original n Original M Original SE Pooled M Pooled SE χ2
Asymptotic 
significanta

Exact significant 
(two-tailed)b

Anchor Item Q1 290 0.272 0.026 0.297 0.027 2.828 .985 1.000
Anchor Item Q2 285 0.179 0.023 0.204 0.028 7.142 .712 1.000
Anchor Item Q3 252 0.202 0.025 0.215 0.032 9.938 .446 1.000
Anchor Item Q4 250 0.304 0.029 0.340 0.037 11.377 .329 1.000
Anchor Item Q5 271 0.472 0.030 0.489 0.030 2.488 .991 1.000
Anchor Item Q6 259 0.467 0.031 0.473 0.032 3.517 .967 1.000
Anchor Item Q7 282 0.298 0.027 0.332 0.031 5.493 .856 1.000
Anchor Item Q8 282 0.294 0.027 0.316 0.030 4.749 .907 1.000
Anchor Item Q9 290 0.172 0.022 0.207 0.030 9.886 .451 1.000

aKruskal–Wallis test, df = 10.
bBinomial distribution used for McNemar.

Figure 7.  Q9 AutoCorrelation Predictor 1.
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in the assessment, which had on average 6.0% higher means 
for the MNAR school items (see Figure 8). The impact of the 
MI on the measurement model was also investigated, and it 
was found that the item and person parameters remained 
stable and highly correlated with the original estimates. 
However, for the MNAR school, it should be noted that the 
imputations increased the standard error.

Summary and Conclusion

MI is mainly conducted by assuming data are MAR or 
MCAR and the imputation variables are used as both predic-
tors and imputed variables. Imputations are often conducted 
without checking the accuracy of the predictors (Kim & 
Shao, 2014; Osborne, 2013). Factors such as the missingness 
mechanism, the strength of the predictors in the MI model, 
variable types for imputation (such as dichotomous items), 
and ways to improve the MI model should be considered and 
the statistical validity should be strengthened. MNAR data 
are especially challenging to handle and this article is one 
demonstration of how to take important factors into consid-
eration and to use MI for dichotomous MNAR items. Other 
applications have been carried out with different types of 
MNAR data and in various disciplines using a variety of 
approaches (see, for example, Galimard et al., 2016; Poleto 
et al., 2011; Wang et al., 2017). The study described in this 
article adds value due to its realistic set up, and demonstrates 
a single application of MI using SEM to model the missing-
ness and Rasch scores as predictors. If missingness can be 
modeled, then the best identified model can be used to spec-
ify the imputation process. The usefulness of Rasch scores as 
predictors was also explored, as well as the impact of MI 
values on the measurement model. The following steps were 
used and could be considered for similar studies:

1.	 The missingness mechanism was known, and corre-
lations of demographic and other variables with the 
missing values were calculated to find potential pre-
dictor variables.

2.	 The MNAR data were modeled with SEMs to find the 
model that best predicted the missingness mechanism.

3.	 Predictors were identified by calculating the correla-
tions among imputation variables, as well as compos-
ite scores (outcome variables) and demographic 
variables. Only predictors that had significant corre-
lations with the imputation variables were used in the 
model. Rasch scores were used as they had higher 
correlations with the anchor items than raw total test 
scores (imputation variables).

4.	 Logistic regression MI was utilized for the dichoto-
mous anchor items.

5.	 The imputation model was checked statistically by 
comparing the imputed variables with the original. 
For the SEM, the convergence statistics, goodness of 
fit, and other indicators such as graphs and plots were 
checked for evidence of convergence and goodness 
of fit. A pseudo-R2 was calculated for the model.

6.	 The measurement model was assessed by comparing 
how the imputations affected the item and person 
parameters.

MI has become less complicated to apply, particularly 
with the availability of statistical programs. Thus, the onus 
rests on the researcher to investigate the underlying assump-
tions before applying MI and finding the most accurate mod-
els with which to predict the missing data (Fielding et  al., 
2008). It also highlights the importance of strong predictors 
in MI models and checking the imputation model after impu-
tations have been completed.

Figure 8.  Mean person measures for all items (no MI) versus MI pooled.
Note. MI = multiple imputation; MNAR = Missing Not at Random.
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This study was conducted on a relatively small sample  
(n = 358), and it is suggested that larger studies with more 
dichotomously scaled items or ordered categorical variables 
could expand knowledge in this area. Several methods are 
available to deal with MNAR data, including many different 
software packages (Mayer et al., 2012). It is recommended 
that researchers learn how to handle missing data with soft-
ware they are familiar with and that they should examine the 
advantages and disadvantages of their software for imputing 
missing data. Researchers should take into consideration 
assumptions of imputation models, limitations, and sensitiv-
ity analyses when handling missing data. More research is 
needed in educational and psychological disciplines so that 
guidelines can be established for imputing data for special 
cases, especially where anchor items are concerned, as well 
as for MNAR dichotomous test items.
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