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SUMMARY

Valuation of travel time savings is a critical measure in transport infrastructure appraisal, traffic modelling
and network performance. It has been recognised for some time that the travel times associated with repeated
trips are subject to variation, and hence there is risk embedded in the treatment of expected travel time. In the
context of the expected utility framework, we use a nonlinear probability weighting function to accom-
modate choice made under risk. Although the empirical findings suggest small differences between the value
of expected travel time savings (VETTS) in the presence and absence of risk, the mean estimate does make a
noticeable difference to time benefits when applied to real projects. By incorporating nonlinear probability
weighting, our model reveals that the probabilities associated with specific travel times that are shown to
respondents in the choice experiment are transformed, resulting in overweighting of outcomes with low
probabilities and underweighting of outcomes with high probabilities. Copyright # 2011 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Time savings is generally recognised as the most important user benefit in transport appraisal, typically

contributing over 60 per cent of user benefits [1]. In calculating the time benefits in monetary units, a

value of travel time savings (VTTS) has to be obtained. de Jong et al. [2] amongst others have pointed

out that an important user trip benefit that is often neglected in transport appraisal is the valuation of

travel time variability. This is out of line with the growing number of studies which have investigated

the significance of travel time variability in traveller behaviour (see e.g. [3,4,5] and [6] for a review)1.

Some of these studies obtained higher values for reducing travel variability than for reducing scheduled

journey time or for average travel time (see e.g. [7,8]).

Within a choice theoretic framework, that is commonly used to obtain empirical estimates of the

values of travel time savings and time variability, the most popular specification assumes that an

individual acts as if they are a utility maximiser, and that the inability of the analyst to observe and

measure all influences on utility maximising behaviour engenders a theory of Random Utility

Maximisation (RUM) [9]. However, RUM assumes that the individual’s choice is made under certainty

or risk neutrality [8], despite the inability of the analyst to observe and measure all influences on utility
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(which engenders the randomness). In recognition that travel time variability introduces risk or

uncertainty2 at the attribute level, other theoretical platforms have been proposed and introduced as a

way to accommodate travel time variability. Since the early 1990s, a number of studies have

incorporated Expected Utility Theory (EUT) into the representation of travel time variability, as a way

of recognising individual travel choice under risk (see e.g. [10,11]). This model, known as Maximum

Expected Utility (MEU), involves a choice process in which the alternative with the highest value of

expected utility is preferred. Since Noland and Small’s seminal paper in 1995, this has become the

standard approach in travel time variability studies (see e.g. [5,7,12,13]).

Such a willingness to pay estimate can be obtained from suitable revealed preference data, using a

choice model that identifies the trading between time and other factors including monetary outlays.3

However in recent years, stated choice methods have increasingly been used and are now the

dominating data paradigm, largely due to the difficulties of identifying real market situations where

analysts can observe and measure the trade-offs between the attributes required to establish measures

of WTP (e.g. [1,9,14–18]).

The purpose of this paper is to estimate values of travel time savings using stated choice methods

that account for the distribution of travel time for repeated travel, embedding risk into the treatment of

expected travel time. We present an approach that (i) addresses respondents’ risk attitude, (ii) accounts

for nonlinearity in probability weighting and iii) integrates these constructs into the value of expected

travel time savings (VETTS). The model form is nonlinear in the parameter set, specifically

accommodating risk attitude in the levels of the attributes, and the perceptual processing of occurrence

probabilities4 for attributes displaying varying levels over repeated trip activity for a trip with a

common purpose and origin and destination (e.g. the regular weekly commute).

This paper is organised as follows. The following section introduces pioneering travel time

variability (often referred to as reliability) studies developed within a utility maximisation framework

(e.g. [3,4]). This is followed by the contributions that focus on choosing a travel outcome with the

highest expected utility (or the lowest expected disutility) (e.g. [5,12]). We introduce nonlinearity

through the explicit allowance for attribute risk. Within an EU framework, we also apply a nonlinear

probability weighting function (which we call extended EUT) to identify how induced probabilities in

stated choice experiments are transformed. We integrate these additional behavioural constructs into a

willingness to pay for expected total travel time savings experienced over repeated trip activity (mean

and variability), referred to as the VETTS. Using a 2008 stated choice data set from Australia for

commuters choosing amongst alternative trip attribute packages for car travel, we estimate a series of

models based on the alternative behavioural paradigms and compare the findings. Conclusions are

drawn along with recommendations.

2. TRAVEL TIME VARIABILITY AND RANDOM UTILITY MAXIMISATION

Early travel time variability studies, developed within a utility maximising framework such as Jackson

and Jucker [3], proposed a mean-variance form in which utility, U, is defined as a function of the usual

(or mean) travel time and the variance, assuming that travellers trade-off time against variability

(variance). They postulate that variability directly leads to disutility, similar to the mean travel time,

and hence time variability can be represented by the variance or standard deviation5 of travel time (i.e.

the mean-variance approach). The mean-variance model was also employed by Pells [19] and Black

and Towriss [20]. The objective is to minimise the sum of these elements (Equation (1)).

U ¼ T þ lV Tð Þ (1)

2Risk is associated with a known probability distribution whereas uncertainty is associated with an unknown probability
distribution.
3See e.g. Brownstone et al. [47] and Steimetz and Brownstone [48].
4Referred to in prospect theory as under- and over-weighting.
5Some SP studies also use the coefficient of variation (i.e. standard deviation divided by mean travel time) in the utility function
(see e.g. Noland et al. [49]).
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where l is a parameter measuring the influence of the variance in travel times; T is the usual or mean

travel time; and V(T) is the variance of travel time.

Unlike the mean-variance model, in which variability is the direct source of disutility, in the context

of trip timing (or departure time choice), Small [4] introduced the concept of schedule delay, defined as

the difference between actual arrival time and official start time, and he posited that utility would be

decreased if arriving early (SDE) or arriving late (SDL) relative to a planned arrival time. Small

proposed the scheduling model as an alternativeway to understand travellers’ departure time choices in

order to satisfy on-time arrival, as given in Equation (2).

U ¼ hT þ bSDEþ gSDLþ uDL þ . . . (2)

T is travel time, SDE is schedule delay early, SDL is schedule delay late, DL is a dummy variable

equal to 1 when there is an SDL and 0 otherwise; and the estimated parameters (h, b, g and u) are

assumed to be negative.

Fosgerau and Karlström [21] make an important recent contribution in unifying the schedule delay

and variance models Using the scheduling utility of Small [4] and observed travel times at a congested

radial road in Greater Copenhagen, Fosgerau and Karlström [21] showed that the maximal expected

utility is linear in the mean and standard deviation of trip time, and use this evidence to provide a

unification of the scheduling model and the mean-variance model. They also estimated a model which

suggested that travel time variability accounts for 15 per cent of total time cost. They state that the

validity of key assumptions used in their study should be addressed in future research, including the

fixed travel time distribution which may not be known by the decision maker and the assumed linear

utility specification.

The above studies did not consider the stochastic characteristic of travel time variability. That is,

given travel time variability, it is assumed that it is not possible for travellers to anticipate their travel

times, and consequently different travel times have an associated probability of occurrence as well as

the element of risk attitude. Therefore, there should be a distribution of travel times rather than a fixed

travel time, and hence travel choice is no longer made under certainty or risk neutrality.

3. RECOGNISING EXPECTED UTILITY

EUT has been extensively applied in a number of fields such as experimental economics,

environmental economics, health economics and in travel time variability studies after the 1990s.

Unlike RUM models, which typically assume a linear-additive utility function for the observed or

representative consumer component (i.e.U ¼ P
kðbkxkÞ, where bk are the estimated parameters and xk

are the attributes that underlie individual preferences), EUT models postulate a nonlinear functional

form, for example, U¼ xa where a is an estimated parameter which explains respondents’ attitudes

towards risk. A basic EUT model is given in Equation (3).

E Uð Þ ¼
X

m pmx
a
m

� �
(3)

where E(U) is the expected utility; m (¼1,. . .,M) are the possible outcomes for an attribute and m� 2;

pm is the probability associated with the mth outcome; and xm is the value for the mth outcome.

Noland and Small [11] extended Small’s scheduling model to accommodate travel time variability

through the incorporation of EUT, which is often referred to as MEU6. Travel time (T) is no longer

deterministic but has a distribution dependent on departure time (th) [5]. Hence, the expected utility of

the scheduling model is expressed as Equation (4), where the possible delay or early arrival with

respect to the preferred arrival time are modelled separately, and their consequences are measured by

separate parameters7. That is, expected utility (U(th)) is a function of the expected travel time

(E[T(th)]), the expected schedule delay early (E[SDE(th)]), the expected schedule delay late

6MEU adopts linear probability weighting of EUT, however still within a linear utility maximisation framework.
7The travel time destination needs to be assumed for estimating the values of parameters, which is often assumed to be equi-
probable (see e.g. [12,5]).
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(E[SDL(th)]), and the probability of experiencing a late arrival (PL(th)).

E U thð Þ½ � ¼ hE T thð Þ½ � þ bE SDE thð Þ½ � þ gE SDL thð Þ½ � þ uPL thð Þ þ . . . (4)

Small et al. [12] among others also used an MEU framework to analyse traveller responses to travel

time variability, within the mean-variance framework developed by Jackson and Jucker (Equation (1)).

A typical mean-variance specification is shown in Equation (5).

E Uð Þ ¼ bTE Tð Þ þ bSDSD Tð Þ þ bCC (5)

where E(U) is expected utility, bT, bSD and bC are the estimated parameters for the expected travel time

(E(T)), the standard deviation of travel time (SD(T)), and travel cost (C), respectively.

Despite the appeal of EUT, in most travel time variability studies which adopt MEU, a linear

functional form was used (see References [5,7,8,12,13]) with equal occurrence probabilities for each

described level of travel time. Polak [22] is one of the earliest studies that addressed travellers’

decision making under risk, proposing a number of alternative model forms, for example, a quadratic

utility specification (i.e. U¼ b1 xþ b2 x
2), and an exponential utility function (i.e. U ¼ �e�ax). Senna

[10] used a nonlinear utility specification to investigate travel choice; however he imposed an

assumption (rather than estimated the relevant parameter) on this nonlinearity (i.e. the value of risk

attitude parameter): 0.5 (risk seeking) for commuters with fixed arrival time, 1.4 for commuters with

flexible arrival time and 1.4 (risk averse) for non-commuters. Whether those assigned values are able to

reflect respondents’ true attitudes is unknown. Polak et al. [23] also applied EUT in investigating travel

choice in the face of travel time variability, using Bates et al.’s data within an multinomial logit (MNL)

framework with a constant absolute risk aversion (CARA), U ¼ ð1�e�axÞ=a.
EUT not only changes the utility function for travel time variability, it also leads to significant

challenges in the way that stated choice (SC) experiments have to be designed to capture travel

time variability. In studies that do not incorporate an EUT probability weighting function, travel time

variability is typically presented as the extent and frequency of delay relative to normal travel

time (which we refer as a Type 1 experiment). For example Jackson and Jucker [3] ask respondents to

make a choice between a journey that always takes 30 minutes and a journey which has a shorter time,

but a possibility of 5-minute delay once a week (Table I).

In recognising that travel time does vary, a series of arrival times (normally five or 10 levels), rather

than the extent and frequency of delay, have been considered in recent SC experiments (referred to as

Type 2) (see, e.g. [7,8,10–13]). An example of the Type 2 design is given in Figure 1, which has five

outcomes related to the travel time attribute, giving information to calculate the expected value.

The two types of models8 (Equations (4) and (5)) above dominate the current transport literature

on valuation of travel time variability. The key outputs include the value of reliability (VOR) that is

defined as the travellers’ WTP for a unit reduction in variability (shown as the standard deviation) in

travel time (i.e. bSD/bC). An important output from these studies is the reliability ratio, defined as the

marginal rate of substitution between average travel time and travel time variability (i.e. bSD/bT).

Our focus is different. The emphasis is on the treatment of bT E(T) where we introduce nonlinear

probability weighting to account for perceptual processing of occurrence probabilities and risk

associated with the distribution of travel times. In a very real sense, travel time variability is being

Table I. Stated choice task from Jackson and Jucker [3], Type 1.

Card Route 1 Route 2

1 Usual time: 30 minutes 20 minutes
Possible delays: None 5 minutes once a week

8A third type model is the mean lateness model, which is fast becoming the ‘standard’ approach for analysing variability (or
reliability) for passenger rail transport in the UK [8], where travel unreliability is measured by the mean lateness at departure
and/or arrival, while the mean earliness (i.e. negative lateness) is not considered.
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accommodated in the estimation of expected travel time, and hence in the valuation of (expected) travel

time savings.

4. THE APPEAL OF NON-EXPECTED UTILITY MODELS

In EU models, the probabilities of different outcomes presented in a choice experiment are directly

used to weight utility. EUT can be criticised for its failure to account for the way in which the

probabilities offered in experiments are transformed by respondents in recognition of the perceptual

processing of such probabilities, which entails elements of over and under-weighting, especially at

the extremes of the occurrence distribution. Given this, nonlinear probability weighting was

introduced into a number of non-EU models, either cumulatively (e.g. Rank-Dependent Utility

Theory (RDUT) and Cumulative Prospect Theory (CPT)) or separably (e.g. Original Prospect

Theory (OPT) as an instrument to explain the violation of the independence axiom9 of EUT

revealed by the Allais paradox [24], i.e. the induced probabilities in experiments can be

over(under)weighted. A popular probability weighting function developed by Tversky and

Kahneman [25] is given in Equation (6).

w pmð Þ ¼ pgm

p
g
m þ 1�pmð Þg½ �1g

(6)

w(pm) is the probability weight function; pmis the probability associated with the mth outcome (e.g.

travel time) for an alternative with multiple outcomes (over repeated occasions), and g is the

probability weighting parameter. If g ¼ 1, then w(p)¼ p, which implies EUT linear probability

weighting. A common finding from Prospect Theoretical studies based on controlled laboratory

experiments is that people tend to overweight outcomes with lower probabilities, and underweight

outcomes with higher probabilities (see e.g. [25–27]). In the transportation literature, Schwanen and

Ettema [28] and Michea and Polak [29] are two examples in which Prospect Theory was applied to

investigate travel time variability (see [30] for a review on Prospect Theoretic contributions in traveller

behaviour research).

In our empirical application, we incorporate the nonlinear probability weighting function in

Equation (6) into the EU framework (see Equation (3)) separably, and refer to the EU model with

Figure 1. Stated choice task from Small et al. [12], Type 2.

9That is, if two acts (alternatives) have the same consequence given a particular state, the preference between those two acts is
independent of that state with the common consequence.
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nonlinear probability weighting as an Extended EU (EEU) model, given in Equation (7).10

EE Uð Þ ¼
X

m w pmð Þ � Um½ � (7)

5. EMPIRICAL ASSESSMENT

The empirical focus is on estimating the nonlinear probability weighted travel time variability profiles,

and deriving the willingness to pay for expected travel time savings. To illustrate the contribution of

these ideas, we have used a data set that has sufficient elements to enable the empirical assessment of

risk attitude and probability weighting for travel time variability11. The study was undertaken in

Brisbane, Australia in the context of toll vs free roads, which utilised a stated choice (SC) experiment

involving two SC alternatives (i.e. route A and route B) pivoted around the knowledge base of travellers

(i.e. the current trip). The trip attributes associated with each route are summarised in Table II. To

ensure that free flow, slowed down and stop/start/crawling/crawling time were understood, we

provided explanations12 and pictures through pull down screens which were equivalent in meaning to

the standard Levels of Service A, C and E.

Each alternative has three travel scenarios—‘a quicker travel time than average experienced trip

time’, ‘a slower time than the average experienced trip time’ and ‘the average experienced trip time’.

Respondents were advised that departure time remains unchanged and that each of the reported trip

times is associated with a corresponding probability13 of occurrence to indicate that travel time is not

fixed but varies from time to time. We went to great lengths, with the interviewer present, to explain

what this meant for each respondent. For example, the 30% associated with 9 minutes quicker for

Table II. Trip attributes in stated choice design.�

Routes A and B (for a given departure time) in context of commuting on repeated occasions

Average experienced time components for recent trip:

Free flow travel time
Slowed down travel time
Stop/start/crawling travel time
Total trip time associated with repeated occasions:
Time associated with a quicker trip
Time associated with a slower trip
Occurrence probabilities for each trip time:
Probability of trip being quicker
Probability of trip being slower
Probability of recent trip time
Average trip cost attributes:
Running cost
Toll cost

�The descriptive statistics for the time and probability variables are given in Appendix A.

10We are not implementing any prospect theoretic model with referencing, but simply using a non-linear probability weighting
function developed by Tversky and Kahneman [25], a well-known CPT paper, in an extended version of EUT. Some authors (e.g.
[18] and [50]) have implemented the referencing feature of prospect theory but ignored the nonlinear probability weighting, and
also assumed risk neutral attitudes.
11The data set, although not ideal (but one the better data sets collected to date), is being used herein to illustrate how one can
build and estimate a nonlinear model that accommodates risk attitude and decisions weights. This is the real contribution and is a
major step forward regardless of any limitations of the specific instrument used to illustrate the methods. The presence of mean
times for three trip time components that were not separately presented as three levels with associated likelihood of realisation
may have muddied the waters; however we do not believe this is a major concern despite our wish in future studies to also
include the three realisations and associated probabilities of occurrence.
12Free flow as described as ‘can change lanes without restriction and drive freely at the speed limit’. Slowed down time was
described as ‘changing lanes is noticeably restricted and your freedom to travel at the speed limit is periodically inhibited.
Queues will form behind any lane blockage such as a broken down car’. Stop/start/crawling time is described as ‘can only
change lanes if others let you in. Consistently braking and accelerating in stop-start traffic.’
13The probabilities are designed and hence exogenously induced to respondents, similar to other travel time variability studies.
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Route A in Figure 2 was explained as ‘for every 10 trips you might take, three out of the 10 trips the

travel timewill be 9 minutes less than the 58 minutes stated above as the average time experienced, or a

trip time of 49 minutes’.

For all attributes except the toll cost, minutes for quicker and shorter trips, and the probabilities

associated with the three trip times, the values for the SC alternatives are variations around the values

for the most recent trip. Given the lack of exposure to tolls for many travellers, the toll levels are fixed

over a range, varying from no toll to $4.20, with the upper limit determined by the trip length of the

sampled trip. The variations used for each attribute are given in Table III.

A survey was designed and implemented in 2008 to capture a large number of travel circumstances,

to determine how each individual trades-off different levels of travel times and trip time variability with

various levels of proposed tolls and vehicle running costs in the context of tolled and non-tolled

roads14. Sampling rules were imposed on three total time trip length segments: 10–30 minutes, 31–45

Figure 2. Illustrative stated choice screen.

Table III. Profile of the attribute range in the SC design.

Attribute Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

Free Flow time �40% �30% �20% �10% 0% 10% 20% 30%
Slowed down time �40% �30% �20% �10% 0% 10% 20% 30%
Stop/Start time �40% �30% �20% �10% 0% 10% 20% 30%
Quicker trip time �5% �10% �15% �20% — — — —
Slower trip time 10% 20% 30% 40% — — — —
Prob. of quicker time 10% 20% 30% 40% — — — —
Prob. of most recent trip time 20% 30% 40% 50% 60% 70% 80% —
Prob. of slower trip time 10% 20% 30% 40% — — — —
Running costs �25% �15% �5% 5% 15% 25% 35% 45%
Toll costs $0.00 $0.60 $1.20 $1.80 $2.40 $3.00 $3.60 $4.20

14The survey has five major sections: The introduction to the survey task and background on the study; questions describing a
current or recent trip in terms of travel times and cost (including tolls if paid); the SC experiment (16 screens); A series of
attitudinal questions seeking views on the broader set of quality benefits of toll and freeway roads; and some socio-economic
questions.
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minutes and more than 45 minutes (capped at 120 minutes). Sampling by the time of day that a trip

commences was also included, defining the peak15 as trips beginning during the period 7–9 AM or 4.30–

6.30 PM. All non-peak trips are treated as off peak in the internal quota counts.

There are three versions of the experimental design depending on the trip length, with each version

having 32 choice situations (games) blocked into two subsets of 16 choice situations. In generating the

designs, the free flow, slowed and stop/start times were set to 5 minutes if the respondent entered zero

for their current trip. It is important to understand that the distinction between free flow, slowed down

and stop/start/crawling time is solely to promote the differences in the quality of travel time between

various routes—especially a tolled route and a non-tolled route, and is separate to the influence of total

time. An example of a choice scenario is given in Figure 216. The first alternative is described by

attribute levels associated with a recent trip; with the levels of each attribute for Routes A and B pivoted

around the corresponding level of actual trip alternative.

In total, 280 commuters were sampled for this study. The experimental design method of D-

efficiency used herein is specifically structured to increase the statistical performance of the models

with smaller samples than are required for other less-efficient (statistically) designs such as orthogonal

designs (see Rose and Bliemer [31] and [32]).

Commuters in the Brisbane Metropolitan area in Australia were sampled. A telephone call was used

to establish eligible participants from households. During the telephone call, a time and location were

agreed for a face-to-face Computer Aided Personal Interview (CAPI). A $20 incentive was offered for

a complete survey. The face-to-face interview involves the interviewer entering information into a

laptop computer program as the respondent answers a set of questions on each screen. Although a

respondent could enter the data, the process works better if the interviewer undertakes this task as the

questions are put to the respondent. The data is automatically stored in an MS-Access database. Upon

completion of interviews, the data files were emailed by the survey firm to the study team. The effective

interviews represent 6.5 per cent of all contacts, but in terms of eligible respondents, this is 8.4 per cent.

Table IV shows the initial quotas for six segments, and the number of interviews achieved. All

segments, with the exception of long distance off-peak hour commuters were close to, or exceeded the

specified quota. The discrepancy arose in the field as we learnt more about the incidence of specific trip

lengths for each time of day. The socio-economic profile of the data is given in appendix A, together

with a descriptive overview of choice experiments attributes.

6. MODEL ESTIMATION AND VALUATION OF EXPECTED TRAVEL TIME SAVINGS

Instead of treating mean travel time and variability separately, we develop models that integrate

these two components of a travel time distribution, based on the theoretical frameworks set out

in previous sections17. We present (i) an EU model in which risk neutral attitude is assumed together

Table IV. Quotas and final achievement numbers.

Total travel time Quota Achieved

Peak hours Off peak hours Total Peak hours Off peak hours Total

10–30 minutes 60 40 100 61 50 111
31–45 minutes 60 40 100 71 32 103
46–120 minutes 60 40 100 51 15 66
Total 180 120 300 183 97 280

15The way we handle trips that are partly in the peak: a trip is peak if 60 per cent or more of the trip falls within the peak period.
16We captured the time taken to complete each of the 16 choice screens, as graphed below. This depicts a steady reduction in
time, in part due to greater confidence in how to process the information. It is known that respondents often spend more time on
the first screen as they familiarise themselves with the process. This is not cognitive burden but an indication of a commitment to
review the information seriously. As one gets familiar with the format of the screens and what is required, one can focus on the
attribute levels. What we see here, we believe, is that over 70 per cent of time is spent assessing the attributes (after allowing up
to 8 seconds in choice screen one of familiarisation with the task overall).
17Although there are only three points defined on the travel time distribution for each respondent, each with an occurrence
probability, the levels vary across the sample, and given the interest in sample-level estimates we have good coverage of the full
distribution.
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with a linear additive weighting of probability occurrences for the travel time attribute, (ii) a

variation of (i) with risk attitude associated with travel time and (iii) an Extended EU model with

nonlinearity in the utility function through accommodating risk attitude as well as nonlinear

probability weights.18

To be able to develop and estimate these models using the available data described above, we have

converted the times into actual trip times to give three travel times (including the time associated with

the most recent trip), each associated with a probability of occurring19. We will refer to these times as

Most Recent (MRT) (or ‘as above’ in Figure 2), shorter (ST) (or x minutes quicker as in Figure 2) and

longer (LT) (or yminutes slower as in Figure 2), even though they are used herein as three varying travel

times regardless of whether they are shorter or longer relative to the recent travel time level. Ideally we

would want to have many more points for the trip time variability distribution; however despite the

potential limitations of the available data, we are able to illustrate the advantages of a range of

nonlinear utility expressions to derive the willingness to pay to save time, accounting for the variability

in such time over repeated trips. When we combine the time associated with a trip on a surveyed

occasion with a probability distribution of time occurrence, we suggest that we no longer have the

conventional measure of VTTS but a measure that incorporates the variability in VTTS which we call

the value of expected travel time savings or VETTS.

6.1. Risk neutral utility function with linear probability weighting (Model 1)

A linear utility function with a linear probability weighting function is given in Equation (8).20,21

U ¼ bT PMRMRT þ PSST þ PLLTð Þ þ bCostCostþ bCost�Income Cost� Incomeð Þ
þ bTollascTollasc þ bAgeAge (8)

PMR is the probability of most recent trip time, shown to respondents; MRT is the most recent travel

time; PS is the probability of a shorter time shown to respondents; ST is the actual travel time for the

shorter trip time scenario; PLis the probability of the longer travel time shown to respondents; LT is the

actual travel time for the longer trip; Cost is the trip cost including the running cost and the toll cost;

Cost� Income is Cost interacted with Income, where Income is personal income per annum; the

average income of the sampled car commuters is $53 300 in 2008 (Au$2008); age is a person’s age in

years. Tollasc is the dummy variable to indicate whether a specific alternative is a tolled road. bT , bcost,

bCost�Income, bage and btollasc are parameters to be estimated. The MNL model results are given in

Table V.22,23,24

All parameters are significant at the 99 per cent confidence interval. The estimated parameter for the

Reference (status quo) specific constant is positive, which suggests, after accounting for the observed

influences, that sampled respondents prefer their most recent trip experience relative to two stated

choice alternatives, with this tendency stronger as the age of a respondent increases (0.0063). The

18Ongoing research is investigating extensions to incorporate preference and scale heterogeneity.
19The adding up assumption is in line with the evidence from supplementary questions. We asked whether attributes with a
common metric were added up. For travel time, 82.8 per cent of respondents added all three time, and for cost, 81.2 per cent
added the two cost components.
20In addition to the interaction of Cost with Income (i.e. (Cost� Income)), we investigated other interactions such as Cost with
Age and Cost with Gender, but they were not statistically significant.
21Age as a stand alone variable is associated with the reference (status quo). This applies to all models in this paper.
22We investigated a number of socio-economic effects (e.g. income, gender) but did not find any statistically significant except
age).
23We also estimated a model where the sum of three components of time explicitly shown to the respondents (i.e. free flow, slow
down and stop/start/crawling) is used as the mean time, with a linear utility specification. This model (with the same number of
parameters) delivers a marginally worse model fit and a similar meanWTP, compared with model 1 under risk neutrality given in
Table V (Log-likelihood: �3434.75 vs �3427.58, VETTS: Au$16.87 vs Au$16.66 per person hour.
24To account for the panel nature of the data, we implemented a ‘random parameter’ specification that treated the cost parameter
as a random parameter but with a constant that set the standard distribution of the beta distribution to zero. Another way to
address this issue is as an error component model. We ran a series of error component models; however, the model performance
of the reported model with a random parameter specification is far better, and hence this approach has been used for Models 1–3
as reported in Tables 5–7.
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parameter estimate for Cost� Income is 0.0011, which is positive and suggests that car commuters on

higher incomes tend to be less price (or cost) sensitive compared to those on lower incomes. Tollasc is

negative, which indicates that, on average after accounting for the time and cost of travel, other factors

bundled into the idea of a ‘toll road quality bonus’ are less desirable for a tolled route than a non-tolled

route, mainly due to the lack of exposure to tolls for our sampled respondents.

Thewillingness to pay for total expected time savings is related to three trip times, each exogenously

probability weighted, which includes the most recent travel time and times that vary around the most

recent experienced level. The VETTS equation for Model 1 is given in Equation (9), in which in

addition to the estimated parameters, the VETTS is also influenced by the level of personal income.

By applying the actual incomes of our sampled respondents, the derived VETTS value ranges from

Au$13.31 to Au$22.81 per person hour, with a mean of Au$16.65 per person hour and a

standard deviation of Au$2.47 per person hour, Multiplying by 60 converts the VETTS from $/min to

$/hour.

VETTS ¼ 60 � bT

bCost þ BIncome�CostIncome
(9)

6.2. Accommodating attribute risk and linear probability weighting (Model 2)

Model 2 jointly estimates all the parameters in the utility function containing the attribute parameters

and the risk attitude parameter. For this specification, we adopt the constant relative risk aversion

(CRRA) model form. CRRA postulates a power specification (e.g. U ¼ xa), which has been widely

used in behavioural/experimental economics and psychology (see e.g. [25,33,34]) and often delivers ‘a

better fit than alternative families’ ([35], p. 1329). We estimate the CRRA model form as a general

power specification (i.e. U ¼ x1�a=ð1�aÞ), more widely used than the simple xa form ([33,36]),

following the EUT specification shown in Equation (3) (i.e. the sum of probability weighted utilities of

all possible outcomes). Our EUT model (Model 2) is given in Equation (10).

E Uð Þ ¼ bT PMRMR1�a
T þ PSS

1�a
T þ PLL

1�a
T

� �
= 1�að Þ� �þ bCostCost

þ bCost�Income Cost� Incomeð Þ þ bTollascTollascþ bAgeAge (10)

Compared with Equation (8), one extra parameter (i.e. a) needs to be estimated and the value of

(1�a) indicates the attitude towards risk, which is associated with the risky attribute only (i.e. travel

time). If (1�a)¼ 1, Equation (10) collapses to a linear utility function (i.e. Equation (8)). The model

results are summarised in Table VI.

All estimated parameters are significant at the 99 per cent confidence interval. This model delivers

similar behavioural responses to the previous linear model. Model 2 empirically addresses the attitude

towards risk of the sampled car commuters. The risk attitude parameter is 0.7811 (¼ 1�0.2189). For

decision making where risk is associated with travel time, a risk attitude parameter less than one

Table V. Model 1: risk neutral utility function with linear probability weighting.

Variable Parameter t-ratio

Reference constant 0.4565 6.62
Expected time (minutes) �0.0723 �32.66
Cost� ($) �0.3258 �15.18
Cost interacted with income 0.0011 6.60
Tollasc �0.2926 �2.98
Age (years) 0.0063 7.12
No. of observations 4480
Information criterion AIC 6859.74
Log-likelihood �3423.87

�Akaike information criterion: AIC¼�2� log-likelihoodþ 2�K where K is the number of parameters. The smaller AIC
indicates a better model fit.
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suggests risk-seeking attitudes; and a risk attitude parameter greater than one suggests risk-averse

attitudes [10] 25. Model 2 estimates a positive a and hence the calculated risk attitude parameter is less

than unity (i.e. (1�a)¼ 0.7811) which suggests risk-seeking attitudes. As an example, commuters

prefer an expected trip time (E(T)) which has a 50 per cent chance of being 10minutes and a 50 per cent

chance of being 30 minutes, in contrast to a 100 per cent (sure) chance of the expected trip time being

20 minutes. This risk-seeking finding is in line with Senna’s assumption for his sampled commuters

with a fixed arrival time.

The value of expected travel time savings under risk is given in Equation (11):

VETTS ¼ 60 � bT PMRMR�a
T þ PSS

�a
T þ PLL

�a
T

� �

bCost þ BIncome�CostIncome
(11)

VETTS under risk is dependent on the probabilities associated with the travel times and the travel

times over the trip time distribution. The mean estimate of VETTS (weighted by raw probabilities of

three travel times) is Au$17.39 per person hour and the standard deviation is Au$2.84 per person hour,

based on the sample data. The distribution of VETTS is dependent on knowing the distribution of

occurrence times, which may be limiting in applications, despite the added realism, as well as personal

income of each sampled respondent. Analysts can always impose specific distributional assumptions

given evidence from real travel time activity. The arguments are no different to those made by

practitioners when asked to use full distributions of VTTS based on a random parameter specification,

in which the response by the majority of practitioners is to use mean estimates for each one-third of the

distribution, instead of taking repeated draws over the full distribution.

6.3. Extended EU model with non-linear probability weighting (Model 3)

Applying the nonlinear probability weighting function (Equation (6)) suggested by Tversky and

Kahneman [25] in a separable manner, our extended EU (EEU) model is given in Equation (12).

EE Uð Þ ¼ bT W PMRð ÞMR1�a
T þW PSð ÞS1�a

T þW PLð ÞL1�a
T

� �
= 1�að Þ� �þ bCostCost

þ bCost�Income Cost� Incomeð Þ þ bTollascTollasc þ bAgeAge (12)

W(P) is a nonlinear probability weighting function which converts raw probabilities (P) as shown

in a choice experiment (Figure 2), and g is an estimated parameter. The value of g determines the shape

of the weighting function. If g ¼ 1, Equation (12) will be the same as Equation (10). The results are

summarised in Table VII.

Table VI. Model 2: EUT with risk attitude and linear probability weighting.

Variable Coefficient t-ratio

Reference constant 0.4412 6.35
Alpha (a) 0.2189 3.61
Expected time (minutes) �0.1653 �4.57
Cost ($) �0.3239 �15.07
Cost interacted with income 0.0011 6.63
Tollasc �0.2906 �2.96
Age (years) 0.0066 7.38
No. of observations 4480
Information criterion: AIC 6858.37
Log-likelihood �3422.18

25Senna [10] assumed that commuters with fixed arrival time are risk-prone (-seeking), where the assumed risk attitude
parameter is 0.5(<1), and explained this in the following way: ‘commuters are frequently travelling in the same route and this
situation provides them information about the distribution of travel time’ (p. 220), and 70 per cent of his sampled commuters
have no penalties for late arrival.
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All estimated parameters are significant at the 99 per cent confidence interval. This model

incorporates an estimate of the degree of curvature of the probability weighting function, g which is

0.7648 and statistically significant from 1, with a t-ratio of 3.25. It has a significant impact on the

shape of the weighting function (see Figure 3) in which outcomes with lower probabilities tend

to be overweighted (e.g. W(P¼ 0.2)¼ 0.247), while outcomes with high probabilities tend to be

underweighted (e.g. W(P¼ 0.8)¼ 0.714).

Similar to the previous EU model, the VETTS of the EEU model can be calculated in the same

manner as Equation (11), with the difference being that transformed probabilities are used rather than

the stated probabilities in the choice experiment (see Equation (13)). The VETTS (weighted by the

transformed probabilities of nonlinear probability weighting) has a mean of Au$18.04 per person hour

and a standard deviation of Au$3.63 per person hour, based on the sample data.

VETTS ¼ 60 � bT W PMRð ÞMR�a
T þW PSð ÞS�a

T þW PLð ÞL�a
T

� �

bCost þ BIncome�CostIncome
(13)

6.4. Comparison of outcomes from Models 1–3

We summarise the key results of the three models in Table VIII: willingness to pay for expected travel time

savings, the parameter estimates of all variables except travel time, andmodel fit. Themean VETTS values

(Au$2008 per person hour) estimated from the three models are, respectively, $16.65, $17.39 and $18.04.

The differences inmean estimates may appear to be small, but when converted to time benefits for projects,

the differences can amount to sizeable sums. Comparedwith RUM, EU and EEU incorporate attribute risk,

which we argue are pivotal to a behaviourally relevant representation of travel time variability.

Figure 3. Nonlinear probability weighting function.

Table VII. Model 3: Non-linear probability weighting function with risk attitude (EEU).

Variable Coefficient t-ratio

Reference constant 0.4465 6.43
Alpha (a) 0.3624 6.30
Gamma (g) 0.7648 3.25
Expected time (minutes) �0.2740 �4.89
Cost ($) �0.3223 �14.68
Cost interacted with income 0.0011 6.11
Tollasc �0.2757 �2.80
Age (years) 0.0068 7.59
No. of observations 4480
Information criterion: AIC 6846.32
Log-likelihood �3415.16
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We also compared the parameter estimates other than expected time26 and found no significant

differences in Reference, Cost, Cost� Income, Tollasc and Age, which suggest that including attribute

risk and nonlinear probability weighting has a marginal impact on those parameters. The EU and EEU

models have produced a similar mean estimate of risk attitude parameters. The three models have similar

model fits, although the behaviourally more appealing models (EU and EEU) have very marginally better

performance on the overall log-likelihood, with a one/two degree(s) of freedom difference between the

EU/EEU models and the linear utility (risk neutral) model. What this suggests, in the context of a single

data set, is that the more parsimonious linear utility model is a very good linear approximation.

Willingness to pay measures were also computed (see Table IX) using the Krinsky and Robb (KR)

procedure [37] which utilises, in addition, the information in the variance–covariance matrix relevant

to the specific attributes used in the WTP calculations. The method for computing WTP is given in

Haab andMcConnell [38]. Whilst other methods are available for constructingWTPmeasures, the KR

procedure has the advantage of being more accurate, with the resulting asymmetric distributions, with

Table IX. Comparison Models 1–3 after allowing for the variance–covariance effects.

EU without attribute risk Total

Average $17.01
Median $17.01
Std dev. $0.96
Lower 95% $15.16
Upper 95% $18.90
EU with attribute risk Total
Average $15.75
Median $15.53
Std. dev. $2.31
Lower 95% $12.19
Upper 95% $21.41
EEU Total
Average $15.70
Median $15.13
Std. dev. $2.32
Lower 95% $11.69
Upper 95% $20.85

Table VIII. Comparison of three models.�

EU without attribute risk EU with attribute risk EEU

Model 1 Model 2 Model 3

Willingness to Pay (Au$ per person hour)
VETTS (Mean) 16.65 17.39 18.04
VETTS (Std. Dev.) 2.47 2.84 3.63
Parameters
Reference constant 0.4565 0.4412 0.4465
Cost ($) �0.3258 �0.3239 �0.3223
Cost interacted with income 0.0011 0.0011 0.0011
Tollasc �0.2926 �0.2906 �0.2757
Age (years) 0.0063 0.0066 0.0068
Alpha (a) — 0.2189 0.3624
Gamma (g) — — 0.7648
Model fit
AIC 6859.74 6858.37 6846.32
Log-likelihood �3423.87 �3423.18 �3415.16

Note: All parameter estimates are significant at the 99 per cent confidence interval.
�Estimates of VTTS based on Equations (1) and (2) are presented in Li et al. [6]. The mean estimates are higher, close to $22 per
person hour, although these relate to the average travel time.

26Nonlinearity (function form or probability weighting) is only assigned to time related variables.
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asymmetric confidence intervals, appropriately dealt with, in contrast to other methods that produce

confidence intervals based on symmetric asymptotic normal distributions (see [39] or [40]).

The finding in Table IX for Model 1 (i.e. a mean of $17.01) is relatively similar in Table VIII (i.e.

$16.65), suggesting that the elements of the variance–covariance matrix have a small influence;

however this is not the case for the EU and EEU models 2 and 3, respectively. The mean estimates

decline noticeably (i.e. from $17.39 and $18.04 to $15.75 and $15.70, respectively, for EU and EEU),

although the standard deviations are very similar. In particular the adjusted mean estimates are lower

than for the simple models after accounting for the variance–covariance elements.

Despite these changes, which are of interest in themselves, for this one data set we do not find

statistically significant differences between theWTP estimates for EU and EEU, and also between each

of these behaviourally appealing models and the linear utility model with risk neutral attitudes. While

this is encouraging support for a linear approximation, the jury must still be out as additional data sets

are used. In particular the very similar attribute risk parameter is a key reason why the EU and EEU

models produce similar results. In ongoing research, we are investigating other functional forms,

including random parameters and accounting for scale heterogeneity, which may alter the relativity of

the evidence. Nevertheless we have been able to introduce a fuller nonlinear specification in the utility

function and probability weighting function in the literature on valuing expected travel time savings, as

well as presenting an appealing representation of VETTS.

6.5. Mixed multinomial Logit model with nonlinear utility functions

We extend the MNLmodel to allow for preference heterogeneity in risk attitudes, taste and probability

weighting parameters simultaneously, and to take into account the presence of 16 correlated

observations per respondent, using a mixed MMNL model (see e.g. [41–44]) where unconstrained

triangular distributions are used to represent Alpha and Gamma and a constrained triangular

distribution is applied to the Expected Time parameter to ensure all individual time parameters are

negative27 within an Extended Expected Utility framework. As far as we are aware, only heterogeneity

in risk attitudes has been tested in previous studies (see e.g. Anderson et al., [36]). The modelling

results of an EEU MMNL model, the preferred model, are given in Table X.28

This MMNL model has the same utility function and probability weighting function as Model 3 in

TableVII, except that three randomparameters are applied toAlpha,Gamma andExpected Time.Compared

with Model 3 under MNL, the MMNLmodel delivers significant improvement in model fit (AIC: 5582.44

vs 6846.32, Log-likelihood: �2782.22 vs �3415.16). Four nonrandom parameters (Reference constant,

Tollasc, Cost and Age) have the same sign but different values relative to the MNL estimates.

The distributions of the three random parameters (Alpha, Gamma and Expected Time) suggest that

the calculated risk attitude parameter (1�a) ranges from 0.8539 to 1.2521, suggesting that part of the

sampled respondents have risk-seeking attitudes (1�a< 1) while others tend to be risk averse

(1�a> 1). This is a very interesting finding relative to a generic risk-seeking attitude from the MNL

models (e.g. MNLModel 3: 1�a¼ 0.7532< 1). Senna [10] assumed that his sampled commuters with

flexible arrival times are risk averse when making risky time-related decisions, where the assumed risk

attitude parameter is 1.4 (>1). The mix of risk-seeking and risk-averse attitudes revealed by the

MMNL model may be attributed to commuters with a fixed arrival time and commuters with flexible

arrival times, both sampled in our study.

27Let c be the centre and s the spread. The density starts at c� s, rises linearly to c, and then drops linearly to cþ s. It is zero
below c-s and above cþ s. The mean and mode are c. The standard deviation is the spread divided by

ffiffiffi
6

p
; hence the spread is the

standard deviation times
ffiffiffi
6

p
. The height of the tent at c is 1/s (such that each side of the tent has area s�(1/s)� (1/2)¼ 1/2, and

both sides have area 1/2þ 1/2¼ 1, as required for a density). The slope is 1/s2. For a constrained distribution, the mean
parameter is constrained to equal its spread (i.e. bjk¼ bkþ jbkj Tj, and Tj is a triangular distribution ranging between�1 andþ1),
and the density of the distribution rises linearly to the mean from zero before declining to zero again at twice the mean.
Therefore, the distribution must lie between zero and some estimated value (i.e. the bjk). The mean and standard deviation is the
same under a constrained triangular distribution.
28The MMNL model without the interaction of Income and Cost delivers a much better model fit than the MMNL model with
this interaction (Log-likelihood:�2782.22 vs�3049.38; AIC: 5582.44 vs 6118.75). The model with cost interacted with income
had a statistically insignificant parameter estimate for stand-alone age. The model without this interaction is reported in the
paper. We might speculate that the heterogeneity associated with alpha (i.e. risky attitude) may be correlated with income and
other socio-economic characteristics, and hence is the reason for the improved model fit.

Copyright # 2011 John Wiley & Sons, Ltd.

219

DOI: 10.1002/atr
J. Adv. Transp. 2013; 47:206–224

VALUATION OF EXPECTED TRAVEL TIME SAVINGS



The mean VETTS under mixed logit is Au$14.61 per person hour compared to Au$18.04 under

MNL, which is a significant difference, allowing for the small standard deviation of Au$0.75 per

person hour for the mixed logit model and Au$3.63 per person hour for the MNL model.

7. CONCLUSIONS

Substantial effort has been invested in studies focussed on deriving estimates of the VTTS. To date, the

popular approach has been embedded in a theory of MEU, wherein an individual is assumed to choose

the option with the highest expected utility (see e.g. [5,7,12,13]). The approach adopts the probability

weighting function of EUT, but within an attribute risk neutral setting specification. In this paper,

within the current MEU approach we incorporate attribute risk with a linear probability weighting

function; and then introduce attribute risk together with a nonlinear probability weighting function.

The empirical models take the observed distribution of travel time variability, which is commonly

observed in reality over repeated travel experiences, especially in trip situations such as the weekly

habitual commute between a fixed origin and destination, and use it to derive a single estimate of the

value of expected travel time savings. This recognises that the valuation of time savings that applies to

an individual travel activity and response is inherently linked to the degree of variability of the travel

time, which is ever present every time a commuter commences a car trip.

For the single data set used herein, the mean VETTS estimates from our EU and EEU models are not

statistically significantly different from the value obtained from the model with attribute risk neutrality and

linear probability weighting. Our empirical evidence suggests, however, that EU and EEU models address

individual choice under risk; however in this study, the EU and EEU models estimate similar attitudes

towards risk. By incorporating nonlinear probability weighting, our EEU model reveals that the

probabilities shown to respondents in the choice experiment have been transformed resulting in

overweighting of outcomes with low probabilities and underweighting of outcomes with high probabilities.

a (Alpha) Risk attitude parameter

b (Beta) Taste parameter (e.g., expected travel time, cost)

g (Gamma) Probability weighting parameter

Table X. Mixed multinominal logit (MMNL) model within an EEU framework (Model 4) (Estimated using
Nlogit5).

Variable Coefficient t-ratio

Non-random parameters:
Reference constant 0.4793 3.29
Cost ($) �0.3328 �10.86
Tollasc �0.3067 �2.11
Age (years) 0.0278 9.13
Means for random parameters:
Alpha (a) �0.0538 �0.85
Gamma (g) 0.2108 22.61
Expected Time (minutes) �0.3435 �6.50
Standard deviations for random parameters:
Alpha (a) 0.2009 4.57
Gamma (g) 0.0376 2.24
Expected time (minutes) 0.3435 6.50
No. of observations 4480
Information criterion: AIC 5582.44
Log-likelihood �2782.22
VETTS 14.61 (0.75)�

Notes: Simulation based on 50 Halton draws.
�The standard deviation of VETTS is given in parenthesis.

Copyright # 2011 John Wiley & Sons, Ltd.

220

DOI: 10.1002/atr
J. Adv. Transp. 2013; 47:206–224

D. A. HENSHER, Z. LI AND J. M. ROSE

8. LIST OF SYMBOLS AND ABBREVIATIONS

8.1. Symbols



.2. Abbreviations

AIC Akaike’s information criterion

CARA Constant absolute risk aversion

CAPI Computer Aided Personal Interview

CRRA Constant relative risk aversion

EEU Extended Expected Utility

EUT Expected Utility Theory

MEU Maximum Expected Utility

MMNL Mixed multinomial logit

MNL Multinomial logit

RUM Random Utility Maximisation

SC Stated choice

SDE Schedule delay early

SDL Schedule delay late

VETTS Value of expected travel time savings

VOR Value of reliability

VTTS Value of travel time savings

WTP Willingness to pay
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APPENDIX A: DESCRIPTIVE STATISTICS

Tables A1 and A2 summarise the mean and standard deviations by trip purpose for the personal

income, gender and age variables captured within the data.29

Table A3 summaries the average and standard deviations of the costs as exposed to the sampled

population during the course of the SC experiment.

Descriptive statistics for the travel time components of the experiment are shown in Table A4. Over

all trip segments, the average free flow time was 13.42 minutes compared with 11.77 minutes for

slowed down time and 14.1 minutes in stop/start/crawl time. The average times spent in the different

traffic conditions varied markedly across each of the segments. Surprisingly, travelling in off-peak

conditions reported higher average times in stop/start/crawl conditions than those travelling in peak

time periods.

Table A5 shows the ratio of each time component to total time travelled. From the data, the

commuter trip reported spending the greatest proportion of time in stop/start traffic conditions and the

Table A1. Travel times and probabilities of occurrences.

Variable Mean Std. Dev. Minimum Maximum Cases

PS 0.25 0.11 0.1 0.4 13440
PL 0.25 0.11 0.1 0.4 13440
PMR 0.50 0.15 0.2 0.8 13440
X(quicker) 4.80 3.14 0 18 13440
Y(slower) 9.60 6.28 1 36 13440
MRT 39.29 16.58 10 119 13440
ST 34.48 14.98 7 115 13440
LT 48.89 21.09 11 150 13440
PTS 8.61 5.61 0.8 40.8 13440
PTL 12.12 7.68 1.1 56.4 13440
PTMR 19.69 10.57 2 95.2 13440

Notes: PS, PL and PMR are probabilities for quicker, slower and recent trip time, MRT is the most recent travel time (the sum of
three components: free flow, slowed down and stop/start times), X(quicker) and Y(slower) are the amounts of quicker and slower
times compared with most recent time; which are designed and presented in the experiment. ST is the actual quicker (or shorter)
travel time (¼MRT�X(quicker)); LT is the actual slower (or longer) travel time (¼MRTþ Y(slower)); PTE (¼PS

�ET), PTL

(¼PL
� LT) and PTMR (¼PMR

�MRT) are probability weighted values for quicker, slower and most recent time, respectively.

Table A2. Descriptive socioeconomic statistics.

Purpose Statistic Gender (1¼ female) Income Age

Commuter Mean 0.575 $67 145 42.52
Std. Deviation 0.495 $36 493 14.25

Table A3. Descriptive statistics for costs by segment.

All times of day Peak Off-peak

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Running costs $3.15 $2.56 $3.58 $3.01 $2.92 $2.26
Toll costs $1.41 $1.50 $1.40 $1.50 $1.41 $1.51

29The socio-economic profile is based on the 2008 survey data. There is no current data in the study area to check the
representativeness of this profile, given that the census is five years old and the travel survey data is even older and did not
include personal income.
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least in free flow traffic conditions. Smaller proportions of the total travel time are spent in free flow

conditions for those travelling in the peak period compared to those travelling during the off-peak

periods. For those travelling in non-peak period times, nearly 50 per cent of their total trip is spent in

free flow conditions, with around 25–35 per cent spent in slowed down time.

Table A4. Descriptive statistics for free-flow, slowed down, stop start time by segment (minutes).

Free flow Slowed down Stop start Total time

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Commuter 13.419 10.990 11.766 9.340 14.102 13.844 39.286 16.575
Peak 18.063 13.360 9.687 8.855 9.175 11.088 36.925 16.251
Off-peak 10.957 8.527 12.868 9.404 16.713 14.437 40.537 16.610

Table A5. Ratio of free-flow, slowed down, stop start to total travel time by segment.

Free flow Slowed down Stop start

Proportion Std. Dev. Proportion Std. Dev. Proportion Std. Dev.

Car commuter 0.366 0.257 0.303 0.196 0.331 0.244
Peak 0.292 0.208 0.326 0.192 0.382 0.238
Non-peak 0.508 0.280 0.258 0.196 0.234 0.226
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