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SUMMARY

Capacity reliability is defined as the probability that the network capacity can accommodate a certain
volume of traffic demand at a required service level. It is a supply-side reliability measure for assessing
the adequacy of a degradable transportation network. The network capacity model used to calculate the
capacity reliability measure is based on the concept of reserve capacity, which requires preserving a
pre-determined origin—destination (O—D) demand pattern. In this paper, we relax this assumption by allowing
anon-uniform growth in the spatial distribution of the O-D demand pattern. By using this non-uniform O-D
growth approach, two network capacity models related to the concepts of ultimate capacity and practical
capacity are developed to estimate alternate capacity reliability measures. Numerical results are provided
to analyze the features of three capacity reliability measures for transportation networks. Copyright ©
2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Capacity reliability analysis addresses the issue of adequate capacity planning for a highway
network to accommodate the growing traffic demand. It provides a probabilistic assessment of
road networks under uncertainty. It is an important tool for planning a reliable transportation
system when considering everyday disturbances, such as uncertainty of route choice behavior,
variations in traffic demand, and link capacity degradation caused by traffic accidents, mainte-
nance work, or bad weather conditions. Further, capacity reliability analysis can be incorporated
as an integral part of the transportation systems analysis. Potential applications include decision
making for infrastructure management (e.g., prioritizing degraded/degradable roadways for
repairs), improving the durability of roadways against man-made/natural disasters, and providing
an indication to implement flow control (e.g., congestion pricing, traffic restraint, emission
control, etc.). For further information on modeling uncertainty in traffic and transportation
applications, see Ottomanelli and Wong [1].

Conventional capacity reliability analysis used the concept of reserve capacity to determine the
spare capacity of isolated intersections [2—4]. This concept was then extended to a general signal-
controlled road network using bi-level programming to determine the largest common multiplier
that can be applied to an origin—destination (O-D) matrix subject to signal timing and saturation

*Correspondence to: Anthony Chen, Department of Civil and Environmental Engineering, Utah State University, Logan,
UT 84322-4110, U.S.A. E-mail: anthony.chen@usu.edu, fengpak @ku.ac.th, tongjiyc@tongi.edu.cn

Copyright © 2012 John Wiley & Sons, Ltd.



80 A. CHEN ET AL.

flow constraints with user-equilibrium assignment [5]. Ceylan and Bell [6] further extended the
reserve capacity model of Wong and Yang [5] to consider signal coordination under a fixed-time
signal-controlled road network. Sumalee et al. [7], on the other hand, explicitly considered
stochastic demand in the reserve capacity model to design robust networks that can accommodate
different levels of variation in future stochastic O-D demand. Using the concept of reserve
capacity of a road network, Chen et al. [8] defined capacity reliability as the probability that
the network capacity can accommodate a certain volume of traffic demand at a required service
level. Chen et al. [9] provided an assessment methodology, which combines the reliability and
uncertainty analysis, network equilibrium models, sensitivity analysis of the equilibrium
network flow, and the expected performance measure, as well as Monte Carlo methods, to assess
the capacity reliability of a degradable road network. Chen et al. [10] also examined the effect of
route choice models on assessing network capacity reliability. In terms of applications, Sumalee
and Kurauchi [11] adopted the capacity reliability concept to evaluate traffic regulation strategies
after a major disaster; Lo and Tung [12] studied the problem of allocating design capacities to
maximize the reserve capacity subject to the probabilistic user-equilibrium constraints and the
budgetary constraint; Gao and Song [13] extended the reserve capacity of a signal-controlled road
network of Wong and Yang [5] to include capacity enhancement as a network design problem
(NDP); Chootinan et al. [14] provided an alternate capacity reliability index, which measures
the probability that all of the network links are operating below their respective capacities under
the day-to-day route choice variability, as a surrogate for determining the optimal design
variables to maximize network capacity (or to minimize the probability of link failures) in a
reliability-based NDP model; Chen et al. [15] embedded this new capacity reliability index to
formulate a new reserve capacity model for a signal-controlled road network; Chen et al. [17]
extended the work of Chootinan et al. [14] to include both capacity reliability (a supply-
side measure for the planners) and travel-time reliability (a demand-side measure for the network
users) as a bi-objective reliable NDP model that explicitly optimizes both supply-side and
demand-side reliability measures with demand uncertainty; and Yim et al. [16], on the other
hand, extended the reliability-based NDP model to include not only capacity enhancements
of the network but also residential and job allocations in the system to form a more comprehen-
sive reliability-based land use and transportation model for the integrated residential and
job allocations and transportation NDP. For NDP under uncertainty, see Chen et al. [17] for
a recent review and new developments and Chen et al. [18] for a review of multi-objective
NDP models.

In the previous studies of capacity reliability analysis by Chen et al. [8,10,9], the concept of
reserve capacity for a signal-controlled road network was used to calculate the capacity reliabil-
ity measure. Although the concept of reserve capacity has provided a feasible approach to deter-
mining the maximum network capacity with a particular route choice, it is restricted to a
common multiplier for all O-D pairs. Essentially, it assumes that every O-D pair will have a
uniform growth or decline in its O-D demand pattern. The fixed O-D distribution pattern
assumption also means that the relative ratio of the resultant total trip productions or attractions
is also fixed and hence is only of limited use in undertaking comparative analysis of zonal activ-
ity allocation. The purpose of this paper is to relax this assumption by allowing non-uniform
growth in the spatial distribution of the O-D demand pattern when estimating the network capac-
ity of a transportation network. Two alternate network capacity models related to the concepts of
ultimate capacity and practical capacity are applied to assess the capacity reliability of a trans-
portation network.

This paper is organized as follows. After the introduction, Section 2 reviews the transportation
network reliability measures. Section 3 describes the network capacity problems related to three
different concepts of network capacity: reserve capacity, ultimate capacity, and practical capacity.
Using these network capacity models, alternate capacity reliability measures are provided. Section
4 presents a capacity reliability assessment procedure, which includes Monte Carlo simulation,
network capacity evaluation, and reliability analysis. A numerical example is presented in Section
5 to illustrate the features of the alternate capacity reliability measures, and concluding remarks
are provided in Section 6.
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2. REVIEW OF TRANSPORTATION NETWORK RELIABILITY MEASURES

Reliability is generally defined as the probability that the system of interest has the ability to
perform an intended function or goal [19]. Traditionally, transportation network reliability studies
were concerned mainly with two problems: connectivity reliability and travel-time reliability [20].
Recently, the reliability of transportation networks has become an increasingly important issue
because of its critical status as the most important lifeline in the restoration process following
the occurrence of a disaster [21]. It has attracted many researchers to develop various indicators
to assess the reliability of transportation networks (see the recently edited books, proceedings,
and special issues by Lam [22], Bell and Cassir [23], Bell and Iida [24], Nicholson and Dantas
[25], Sumalee and Kurauchi [26], Murray and Grubesic [27], van Zuylen [28], Kurauchi and
Sumalee [29], Schmocker and Lo [30], and Levinson ef al. [31]). These reliability indicators
are summarized in Table I and described in the following sections.

2.1. Connectivity reliability

Connectivity reliability is concerned with the probability that network nodes are connected. A
special case of connectivity reliability is the terminal reliability, which concerns the existence
of a path between a specific O-D pair [32]. For each node pair, the network is considered
successful if at least one path is operational. A path consists of a set of roadways or links that
are characterized by zero—one variables denoting the state of each link (operating or failed).
Capacity constraints on the links are not accounted for when determining connectivity reliability.
This type of connectivity reliability analysis may be suitable for abnormal situations, such as
earthquakes, but there is an inherent deficiency in the sense that it only allows for two operating
states: operating at full capacity or complete failure with zero capacity. The binary state approach
limits the application to everyday situations where links are operating between these two
extremes. Therefore, the reliability and risk assessment results obtained through this approach
may be misleading for normal conditions.

2.2. Travel-time reliability

Travel-time reliability is concerned with the probability that a trip between a given O-D pair can
be made successfully within a given time interval and a specified level of service [33-34]. This
measure is useful when evaluating network performance under normal daily flow variations. Bell
et al. [34] proposed a sensitivity analysis-based procedure to estimate the variance of travel time
arising from daily demand fluctuations. Asakura [35] extended the travel-time reliability measure
to consider capacity degradation due to deteriorated roads. He defined travel-time reliability as a
function of the ratio of travel times under the degraded and non-degraded states. This definition
of reliability can be used as a criterion to define the level of service that should be maintained
despite the deterioration of certain links in the network. Chen er al. [36-37] further examined
the effect of considering different risk-taking route choice models on estimation of travel-time
reliability under demand and supply variations.

2.3. Within budget time reliability

Within budget time reliability (WBTR) is concerned with the probability that travel time exceed-
ing the travel-time budget (TTB) is less than a predefined confidence level o specified by the
traveler to represent his or her risk preference [38]. TTB is a random variable, and it is defined
by a travel-time reliability chance constraint. Each commuter is assumed to learn the travel-time
variations through his or her daily commutes and choose a route that minimizes his or her TTB.
The WBTR definition is similar to that defined by Chen and Ji [39], where the path with the
minimum TTB is termed “o-reliable path”. It is also similar to the equilibrium conditions of
the demand driven travel-time reliability-based user-equilibrium model [40] despite that the
source of travel-time variability is induced by demand uncertainty. The core idea behind the
WBTR definition is based on the concept of TTB, which is defined as the average travel time
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ALTERNATIVE CAPACITY RELIABILITY MEASURES 83

plus an extra buffer time as an acceptable travel time, such that the probability of completing the
trip within the TTB is no less than a predefined reliability threshold (or a confidence level o). In
fact, the concept of TTB is analogous to the Value-at-Risk, which is by far the most widely
applied risk measure in the finance area [41].

2.4. Travel demand reduction reliability

Travel demand reduction reliability is concerned with the probability that the decrement rate of
O-D flow is less than a given intolerable value under a degradable network. Nicholson and Du
[21] provided two definitions to evaluate the reduction of travel demand: O-D subsystem and
system reliabilities. The decrement rate of O-D flow is defined as the ratio of the travel demand
reduction due to degradation of a network to the travel demand of a non-degradable network. The
O-D flow decrement rate can vary between zero (i.e., no degradation) to unity (i.e., degradation
is so severe that the travel demand is zero). A system surplus was also suggested as a perfor-
mance measure to assess the socioeconomic impacts of the system degradation.

2.5. Travel demand satisfaction reliability

Travel demand satisfaction reliability is concerned with the probability that the network can
accommodate a given travel demand satisfaction ratio. Heydecker et al. [42] defined this ratio
as the equilibrium travel demand (i.e., travel demand that can be satisfied by using the transpor-
tation network) over the latent travel demand (i.e., total travel demand that intends to use the
transportation network). The latent travel demand is the sum of the equilibrium travel demand
or the satisfied travel demand and non-satisfied travel demand stemming from the latent demand
events, such as horse race or weekend events. The key feature of this reliability measure is that it
attempts to distinguish the difference between recurrent travel demand and latent travel demand
under a degradable transportation network.

2.6. Encountered reliability

Encountered reliability is concerned with the probability that a trip can be made successfully
without encountering link degradation on the least (expected) cost path [43]. Level of information
to the users is important in the encountered reliability because users will often try to avoid
degraded links and links that may be degraded. In addition, different users may behave differ-
ently. Risk-averse users are concerned with avoiding disruptions and are willing to travel longer,
while risk-neutral users will still travel on their preferred routes based on expected cost consid-
erations regardless of the probability of encountering disruptions along their preferred routes.

2.7. Capacity reliability

Capacity reliability refers to the probability that the network capacity can accommodate a certain
volume of traffic demand at a required service level [8,10,9]. Link capacities for a road network
can change from time to time because of various reasons, such as the blockage of one or more
lanes because of traffic accidents, and are considered random variables. The joint distribution
of random link capacities can be experimentally obtained or theoretically specified. Capacity
reliability explicitly considers the uncertainties associated with link capacities by treating roadway
capacities as continuous quantities subject to routine degradation due to physical and operational
factors. Readers may note that when the roadway capacities are assumed to take only discrete
binary values (zero for total failure and one for operating at ideal capacity), then capacity
reliability includes connectivity reliability as a special case.

3. NETWORK CAPACITY MODELS AND CAPACITY RELIABILITY MEASURES
Network capacity in the transportation system is an important measurement for transportation

planning and management because it addresses the question of whether or not the transportation
system has adequate capacity to handle continuing economic surges and traffic congestion. It has

Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:79-104
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been used in examining various transportation problems: traffic restraint [44], road pricing [45],
traffic control [5,13,6,15], and road network design [46-47,14,17].

Capacity in transportation has traditionally been measured at individual elements of the
network, such as links (rail lines, road segments, waterways, etc.) and nodes (terminals, signal-
ized intersections, etc.). These measures do not constitute the transportation network capacity
as a capacity for the whole system [48]. Assuming that capacities of links are known, the
maximal network capacity can be determined by the classical maximal flow problem, which is
formulated as a network-programming problem to find a feasible flow that leads to the maximum
flow capacity. This method has been used in communication networks [49-50], water distribution
systems [51], electric power systems [52], and others to determine the maximum flow capacity of
the network. For the capacity problem of freight transportation, Nijkamp et al. [53] stated that
capacity of a transportation system has to be viewed as multidimensional constraints that include
different constituents such as environmental limitations, regulations, and effective management
roles. Morlok and Riddle [48] provided an operational mathematical model that considers some
of these multidimensional constraints.

The approaches for communication networks, water distribution systems, electric power
systems, and freight transportation systems, however, are not directly applicable to a passenger
transportation network where capacity modeling characteristics are quite different for the follow-
ing reasons: (1) the movement in a transportation network involves flows of people rather than
pure physical commodities as treated in the classical maximal flow problem; (2) travel delay
increases with increasing flow as a result of congestion and as opposed to fixed cost; (3) route
choice behavior has to be considered; (4) the traditional maximal flow problem does not consider
the level of service when finding the maximum throughput; however, transportation network
capacity should be specified with a level of service, such as a predefined threshold of the O-D
travel time; and (5) multiple O-D pairs exist, and the flows of different O-D pairs are not
exchangeable or substitutable in a passenger transportation network capacity problem; thus, it
is important to define the O-D demand pattern that influences the resultant value of the transpor-
tation network capacity. These characteristics make the modeling of a transportation network
capacity quite complex yet an intriguing problem to solve [54]. In this section, models for
estimating three network capacity concepts of a transportation network are provided, as well as
the application of these network capacity models for estimating alternate capacity reliability
measures.

3.1. Network capacity concepts

In this study, three capacity concepts are applied to the transportation problem to estimate the
network capacity: (1) reserve capacity, (2) ultimate capacity, and (3) practical capacity. The
concept of reserve capacity is based on the premise of preserving a fixed demand pattern when
estimating network capacity. This concept is useful when the zonal growth information is not
available (i.e., assuming all O-D pairs grow at the same rate). The ultimate capacity concept,
when applied to the transportation problem, is the maximum throughput the system can handle
without violating roadway and zonal capacity constraints (i.e., only consider the physical limita-
tions of the system). The network users can choose both destination and route simultaneously to
minimize their user costs. The practical capacity concept, applied to the transportation problem, is
the summation of the current O-D demand and the additional demand that the system can accom-
modate without violating roadway and zonal capacity constraints. The additional demand or users
can choose both destination and route simultaneously, while the current demand pattern is
preserved. For destination choice, users choose the destination based on travel time to the desti-
nation and attractiveness measures of the destination. In system capacity, practical capacity is the
maximum output at which cost does not exceed a maximum acceptable value or capacity limit,
which continues to provide an acceptable level-of-service deterioration or delay.

The reserve capacity concept, although simple, requires the assumption of preserving the base
O-D demand pattern while determining the largest multiplier that can be allocated to the network
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without violating any link capacity in the network. This reserve capacity model hence can only
capture the changes in demand volume (i.e., changes in demand pattern are not considered).
The fixed O-D distribution pattern assumption also means that the relative ratio of the resultant
total trip productions or attractions is also fixed and hence is only of limited use in undertaking
comparative analysis of zonal activity allocation. Another drawback of the reserve capacity model
is the lack of level-of-service consideration in determining the network capacity. It simply treats
the road network capacity as a maximum physical amount of flow capable of being accommo-
dated without modeling the interaction between network capacity and level of service of a road
network [54].

The two alternate capacity concepts to be used in capacity reliability analysis enable evaluating
both changes in demand volume and variations in demand pattern. The practical capacity concept
estimates how much more demand volume could be added to a fixed demand pattern by allowing
the additional demand to deviate from the fixed demand pattern, while the ultimate capacity
concept estimates the maximum network capacity by allowing all users in the network to choose
both destination and route. For zonal development potential and equilibrium network capacity
analysis, Yang et al. [54] suggested using the equilibrium trip distribution/assignment with
variable destination costs (ETDA-VDC) of Oppenheim [55], which is the practical network
capacity model in our paper, to study the activity characteristics of individual trip-producing
zones. The ETDA-VDC model (or the practical network capacity model) incorporated a
destination attractiveness measure to reflect the activity opportunities available in determining
the travelers’ choice of destinations and routes simultaneously for any given number of trips
originating from each origin. These two non-uniform network capacity models not only relax
the limitation of a common multiplier for all O-D pairs (i.e., uniform OD growth) in the reserve
capacity model, but also provide a higher behavioral richness in modeling the interaction between
network capacity and level of service of a road network with consideration of zonal development.
For example, the ultimate capacity model can be used to determine the network capacity of a new
developed city (or a new town), and the practical capacity model can be used to estimate the
additional demand that an existing city can accommodate while preserving the current demand
pattern without violating roadway and zonal capacity constraints. Note that the practical useful-
ness of the ultimate capacity model may be limited because it assumes that the roadway
infrastructure is available when making land use decisions (i.e., residential and employment
locations). Nevertheless, the ultimate capacity model serves as a theoretical upper bound for
estimating the maximum network capacity. For our analysis, we include both alternate network
capacity models to estimate the capacity reliability for transportation networks.

3.2. Network capacity models

Models for estimating three network capacity concepts (i.e., reserve capacity, ultimate capacity, and
practical capacity) of a transportation network are provided.

3.2.1. Notation.

set of links in the network

set of nodes in the network

set of all origin nodes, / € N

set of all destination nodes, J S N

set of routes in the network

set of routes between origin i € / and destination j € J
an origin node, i € [

a destination node, j € J

a link in the network, a € A

aroute, r € R;;

objective function

O-D matrix multiplier for the whole network
capacity on link a

<

AT NI~ XX S~=h

N
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Vg flow on link a
t,(v,) travel time on link a
g existing demand between O-D pair ij
qij additional demand between O-D pair ij
q; total demand between O-D pair ij, ¢; = g;; + g
q O-D demand matrix in vector form
hg flow on route r between O-D pair ij associated with g;
VA flow on route r between O-D pair ij associated with g;
oy 1 if link a is on route r from origin i € I to destinationj € J; 0 otherwise
0; existing trip production at origin i
0; additional trip production at origin i
0; total trip production at origin i, 0;=0; + 0;
o trip production in vector form
o™ maximum trip production at origin i (a constant)
; existing trip attraction at destination j
cfj additional trip attraction at destination j
d total trip attraction at destination j, d; = d; + Jj

d;™  maximum trip attraction at destination j (a constant)
ci(d;)  cost of destination j
0 impedance parameter for trip distribution

3.2.2. Reserve capacity model

The concept of reserve capacity is defined as the largest multiplier p applied to a given existing O-D
demand matrix that can be allocated to a network without violating the link capacities C, or exceeding
a pre-specified level of service [5]. The method for estimating the network capacity uses a common
multiplier to scale all O-D pairs. This network capacity model, with a uniform O-D growth, was used
in Chen et al. [8-10] as a core component in the reliability assessment procedure for estimating the
capacity reliability of a transportation network. Mathematically, finding the reserve capacity p can
be formulated as a bi-level program as follows.

Max u (la)
subject to
va(uq)<CyVa € A (1b)

where v,(u q) is obtained by solving the following user-equilibrium problem:

Min Z Jatu(x)dx (1c)

acA 0

subject to
Zﬂf =uggvieljed (1d)
reR;;
va=Y_ > Y fis] VacA (le)
icl jeJ reRy
Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:79-104
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fi>oviel, jeJ, reRy (1f)

Route choice behavior and congestion effect are considered by the lower-level problem, while
the upper-level problem determines the maximum O-D matrix multiplier in Equation (1a) subject
to the roadway capacity constraints in Equation (I1b). The lower-level problem is a standard
network equilibrium problem [56] for a given p value determined from the upper-level problem.
The objective function in Equation (lc) is the sum of the integrals of the link performance
functions. Equation (1d) is a set of flow conservation constraints. Equation (le) is the incidence
relationship, which expresses the link flows in terms of path flows. Equation (1f) represents the
non-negativity condition to ensure a meaningful solution. v,(xq) represents the equilibrium
link-flow pattern obtained from solving the lower-level problem for a given existing demand
pattern q (i.e., the O-D demand matrix in vector form) uniformly scaled by u. The largest value
of u indicates whether the current network has spare capacity or not. For example, if u> 1, then
the network has a reserve (or spare) capacity amounting to 100(u — 1) per cent of the existing
O-D demand matrix q; otherwise, the network is overloaded by 100(1 —u) per cent of the
existing O-D demand matrix q. Note that alternate traffic equilibrium models can also be consid-
ered in the lower-level problem (e.g., C-logit model by Zhou et al. [57], reliability-based traffic
equilibrium model by Chen et al. [58], mean-excess traffic equilibrium model by Chen and Zhou
[59], and stochastic mean-excess traffic equilibrium model by Chen ef al. [67]). For a review of
traffic equilibrium models under uncertainty, see Zhou and Chen [60].

3.2.3. Network capacity model based on the ultimate capacity concept

The ultimate capacity concept is defined as the maximum throughput the system can handle
without violating the roadway and zonal capacity constraints or exceeding a pre-specified level
of service. This concept relaxes the common multiplier requirement of the network reserve capac-
ity model by allowing the maximum throughput to be scaled by individual O-D pairs. The
network capacity model adopted here is a variant of the network capacity and the level-of-service
problem described in Yang et al. [54], which integrates a combined distribution—assignment
model to determine the maximum zonal trip productions. This concept allows all travelers in
the network to choose both destination and route simultaneously to minimize their costs. The
network capacity model, with a non-uniform growth based on the ultimate capacity concept, is
also a bi-level program. The upper-level problem maximizes the zonal trip productions subject
to the roadway and zonal capacity constraints, while the lower-level problem is a combined trip
distribution and assignment model. The bi-level program is formulated as follows.

Max Zoi (2a)
icl
subject to

ve(0)<CyVa € A (2b)
0; = Zqij(o)s o™ Viel (2¢)

jel
dj = Z gij(0)<d™ NjeJ (2d)

icl
Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:79-104

DOL: 10.1002/atr



88 A. CHEN ET AL.

0:=0Viel (2e)

where ¢;i(0) and v,(o) are obtained by solving the combined trip distribution—assignment
problem:

Min Z J“t[,(x)dx—l—%ZZq,-j(ln q;—1) (2f)

acA Y0 iel jel
subject to
Y gi=o,Viel 2g)
jeJ
S fi=gqyvieljel (2h)
FER,’/’

Va= Y ) > fIisY,VacA (2i)

icl jeJ reRy
gi=0,Yieljel i)
fi>0,viel,jel,reRry (2k)

The upper-level problem determines the maximum total trip productions from all origins in
Equation (2a) subject to roadway capacity constraints in Equation (2b), maximum trip production
and trip attraction constraints in Equations (2c) and (2d), and non-negativity constraints in Equation
(2e). The total number of trips generated in each origin can be determined by translating the maximum
development potential that is suitable and available for residential use. For commercial use, the total
number of trips attracted to each destination zone can be determined by translating the maximum
number of job opportunities, parking capacity, and others. The O-D demand matrix (g;(0)) and
equilibrium link-flow pattern (v,(0)) are solved by the lower-level problem. Both destination choice
and route choice are simultaneously considered in the combined trip distribution—assignment model.
Equations (2g) and (2h) represent the flow conservation constraints. Equation (2i) is the incidence
relationship that expresses the link flows in terms of path flows. Equations (2j) and (2k) are the non-
negativity conditions for O-D flows and path flows, respectively. The impedance parameter 6 for trip
distribution in Equation (2f) reflects the sensitivity of network users to travel time from an origin to a
destination. As shown by Oppenheim [55], existence and uniqueness of solution can be proved as long
as the link cost and functions and destination cost functions are strictly increasing in terms of link flows
and O-D flows, respectively.

3.2.4. Network capacity model based on the practical capacity concept

Network capacity with the practical capacity concept is defined as the summation of the current O-D
demand and the additional demand that the network can accommodate. This concept, using the
network capacity and the level-of-service problem described in Yang et al. [54], allows only the
additional demand to choose both destination and route based on the attractiveness measures of
destinations, while the current demand pattern is preserved (i.e., only route choice is allowed). To
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choose the destination, travelers consider both cost of traveling to the destination and cost at the
destination. In this model, the upper-level problem maximizes the additional zonal trip productions
subject to the roadway and zonal capacity constraints, while the lower-level problem is a combined trip
distribution—assignment model with variable destination costs. The bi-level program is formulated as
follows.

Max Zéi (3a)
iel
subject to

v4(0)<C,,Va € A (3b)
0; = qu(o)s o™ —o;,Viel (3¢)

jel
di=> Gyo)<d™ —d;,VjelJ (3d)

icl
0;=0,Viel (3e)

where g;;(0) and v,(0) are obtained by solving the combined trip distribution-assignment problem with
variable destination costs:

Ziel (qUJrq‘J')
. E 1 - .
Min 3" J ta(x)dx+5zzq,j(1n q[j—l) +3 J ¢i(y)dy 3f)
acA Y0 icl jel jel 0
subject to
> Gy=onviel (3g)
Jjel
Y hil=ggvieljel (3h)
reR;; .
S fi=gpvieljel (3i)
reR;

Vo= 3 N (fI+hi)sh, VacA 3j)

il jel reRy
g; =0,vViel,jel (3k)
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fi>o0,vieljeJ,reRr; 3

W >0, VieljeJ,reR; (3m)

The upper-level problem determines the maximum additional productions from all origins in
Equation (3a) subject to roadway capacity constraints in Equation (3b), maximum trip produc-
tion and trip attraction (excluding the current trip productions and attractions) constraints in
Equations (3¢) and (3d), and non-negativity constraints in Equation (3e). Similar to the ultimate
capacity concept, the total number of trips generated in each origin zone can be determined by
translating the maximum amount of vacant land that is suitable and available for residential use.
For commercial use, the total number of trips attracted to each destination zone can be deter-
mined by translating the maximum number of job opportunities, parking capacity, and others
(see Yang et al. [54] for further discussions on this issue using demand-supply equilibrium
concept). The additional O-D demands (?]U(o)) and equilibrium link-flow pattern (v,(0)) are
solved in the lower-level problem together with the current O-D demands (or background traffic
demands), which are assigned to the network in the deterministic user-equilibrium manner. On
the other hand, the additional demand or the traffic growth at each origin zone is distributed
among various destination zones by a multinomial logit model, depending on the O-D travel
times and the destination costs. The destination cost is an increasing function of the total num-
ber of trips attracted to destination j (i.e., d; = Z; ((Zj +q,j) ). Equation (3f) is the objective

e

function of the ETDA-VDC model given by Oppenheim [55]. Equations (3g) to (3i) are the flow
conservation constraints for the additional O-D demands, the existing path flows, and the
additional path flows, respectively. Equation (3j) is the incidence relationship that expresses
the link flows in terms of path flows. Equations (3k) to (3m) are the non-negativity conditions
for the additional O-D demands, the existing path flows, and the additional path flows,
respectively. The impedance parameter 6 for trip distribution in Equation (3f) reflects the
sensitivity of network users to travel time from an origin to a destination. The existence and
uniqueness of the solution in terms of link flows and O-D flows have been proved by
Oppenheim [55].

3.3 Capacity reliability measure

Reliability is defined as the probability that the system of interest has the ability to perform
an intended function or goal. It can be formulated as the determination of the (supply) capacity
of the system to meet certain (demand) requirements [19]. Therefore, the reliability of the system
can be defined as an adequacy problem to determine whether the network capacity is sufficient
to accommodate the required demand. Capacity reliability in a transportation network explicitly
considers the uncertainties associated with the link capacities by treating roadway capacities as
continuous quantities subject to routine degradation due to physical and operational factors.
Sources of capacity uncertainty include weather conditions, traffic incidents, work zones and
construction activities, traffic management and control, etc. (also refer to Chen et al. [59] for a
detailed description of the sources of uncertainty from both supply and demand). Let NetCap
be the network capacity determined by the network capacity problem for a uniform O-D growth
(the reserve capacity concept) or a non-uniform growth (the ultimate and practical capacity
concepts). Let Op be a required demand level. The capacity reliability that can satisfy 6p is
given as

R(6p) = Pr(NetCap=>0p) )
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This probability estimates how reliable the existing network is with degradable links in accom-
modating a required demand level 0p. The boundary conditions must satisfy the following cases:

(1) R(0p=0)=1.0
2) R(0p=00)=0.0

The system is 100% reliable when there is no demand and 0% reliable when the demand is
infinite.

4. CAPACITY RELIABILITY EVALUATION PROCEDURE

The capacity reliability evaluation procedure adopted in this study is based on the Monte Carlo
simulation framework developed by Chen er al. [9]. It consists of three main modules: (1)
random variate generation (RVG) module, (2) network capacity module, and (3) reliability calcu-
lation module. These three modules are synthesized together in a Monte Carlo simulation frame-
work to evaluate the capacity reliability of a transportation network. A flowchart of the procedure
is given in Figure 1, and the steps are described as follows.

Step 1: Initialize parameter values: (1) distribution of C,, (2) initial demand level 6 and ABp, and
(3) number of simulations M.

Step 2: Set sample number m=1.

Step 3: Generate values of link capacities according to the distribution properties specified in Step 1:
C"={...,C,...}.

Initial Parameter Values:
(1) Distribution of C

(2) Demand level 6, and set A8,
(3) Number of simulations M

Generate C" using RVG

\4

Solve Network Capacity Problem

Y

Collect Statistics

Reliability

Compute Capacity Reliability Measure

Demand

Figure 1. Flowchart of the capacity reliability evaluation procedure.
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Step 4: Solve the network capacity problem for a given realization of link capacities using: (1)
the network capacity model based on the reserve capacity concept, (2) the network
capacity model based on the ultimate capacity concept, or (3) the network capacity model
based on the practical capacity concept.

Step 5: Collect statistics.

Step 6: If sample number m is less than the required sample size M, then increase the sample number
by one increment (m=m+ 1) and go to Step 3. Otherwise, go to Step 7.

Step 7: Compute the capacity reliability measure.

Step 3: Random variate generation procedure. We adopt the RVG procedure developed by
Chang et al. [61], which is capable of generating multivariate, non-normal, and correlated random
variables. Consider that the original random capacities are non-normal and correlated with the

vector of mean C and a covariance matrix Cov(C). The following steps are performed to generate
multivariate random variates.

(1) Transform the original random capacities to the standard normal condition C ~ N(p, > ), where p
and ) are the mean and correlation matrix of a standard normal.

(2) Decompose the standard normal correlation matrix to its corresponding eigensystem » | = VAV,
where V is the eigenvector matrix and A=diag(4,4,...,4,) is a diagonal matrix of the
eigenvalues.

(3) Generate Y=(Yy,Y>,... Yu)Tas independent standard normal variates.

(4) Compute the correlated normal random variates given by C = p + VA'/?Y.

(5) Invert the transformation from standard normal to the original space.

Step 4: Solution procedures for solving the bi-level network capacity models. Bi-level network
capacity models are generally difficult to solve because evaluation of the upper-level objective
function requires solving the lower-level subprogram. In Step 4, we use an incremental assign-
ment-based procedure to solve the network capacity model based on the reserve capacity concept
and a genetic algorithm (GA) combined with a partial linearization algorithm for solving the
network capacity models based on the ultimate and practical capacity concepts.

Step 4: (1) Incremental assignment-based procedure. The incremental assignment-based procedure
for solving the reserve capacity model can be summarized as follows:

(1) Incremental setting. Select an appropriate u" applied to a given existing O—-D demand matrix
so that u"q can be allocated to a network without violating the link capacities C, and set
n=1. Then, set an appropriate incremental amount 9.

(2) Initialization. For a given 1"’q, perform all-or-nothing assignment based on 7, =1,(0). This yields i}
Set the counter k=1.

(3) Update. Set #* =1,(}), Va.

(4) Direction finding. Perform all-or-nothing assignment based on #X. This yields a set of auxiliary flow
{51

(5) Line search. Find o, that solves

ak ok
o (Yh—v%)

Min Z= Z J ta(w) dw
O0<oy <1 0

(6) Move. Set VAT =& oy (y& — k).

(7) Convergence test. If the convergence criterion is met, stop (the current solution is the set of
equilibrium link flows v¥) otherwise, set k=k+1 and go to 3.

(8) Constraint check. For each link a € A, if v’; < Cy let g™ V=p™ 16 and n=n+1, return to 2.
Otherwise, let iy =u™ and stop.
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Step 4: (2) Genetic algorithm procedure

In the GA, the best solution is chosen from a number of possible solutions. The approach of the
GA implementation for the network capacity problems is that decision variables in the upper-
level problem are coded as chromosomes and the chromosomes evolve through successive itera-
tions called generations. During each generation, the chromosomes are evaluated using some
measure of fitness, which is calculated by solving the lower-level problem. In the GA evolution
process, there are three operators including reproduction, crossover, and mutation operators.
Reproduction is the selection process of the chromosomes from the population set for mating
purposes. The crossover operator gets genetic material from the previous generation to the subse-
quent generation. Mutation is a process that introduces a certain amount of randomness to the
search and enables the search to find solutions that crossover alone may not encounter. The
GA procedure for solving the network capacity models based on the ultimate and practical capac-
ity concept can be summarized as follows:

(1) Select the population size (NP) and maximum number of generations (N ). Define the crossover
rate (p.) and mutation rate (p,,).

(2) Initialization: Code the decision variables in terms of trip production for all origins (.. .,0;...).
Then, set the generation number n= 1.

(3) Calculate the fitness for individual chromosomes by solving the lower-level problem using
Equations (2f) to (2k) for the ultimate capacity concept or Equations (3f) to (3m) for the
practical capacity concept.

(4) Carry out the GA evolution process:

4.1 Reproduce the population according to the fitness function values.
4.2 Conduct the crossover operator through a random choice with p..
4.3 Conduct the mutation operator through a random choice with py,,.
This step yields a new population at generation n+ 1.

(5) If n=N, the sample with the highest fitness is adopted as an approximate optimal solution of the
problem. Otherwise, set n=n+ 1 and go to 3.

(a) Partial linearization algorithm for the ultimate capacity model

The solution algorithm is based on the partial linearization method, which is a descent algorithm
for continuous optimization problems [62]. Only a part of the objective is linearized in each
iteration. A search direction is obtained from the solution of a convex auxiliary problem defined
by an approximation of the original objective through the first-order approximation of the additive
part of the objective function. A line search is made in the direction obtained with respect to the
objective function, and the resulting step size defines a new solution with a reduced objective value.
The procedure of solving the combined trip distribution—assignment model is as follows:

(1) Find a set of feasible flows {v } {qf?j}, and set k=1.

(2) Calculate link costs tk = ta( ) Ya.

(3) Find the search dlrectlon.
3.1 Calculate the minimum travel-time path from each origin i to all destinations based on {z{}. Let
cf-‘]. denote the minimum travel time from origin i to destination j
3.2 Determine the auxiliary O-D flow by applying a logit distribution model, that is,

_ 0ok
oie "

1
Ze ef\m’

m

di = VieljelJ

3.3 Assign dk to the minimum travel-time path between origin i and destination j. This also yields a
link-flow pattern { ya}
(4) Determine the step size. Find o, that minimizes the function
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s, [T e S (ot ) > (n(a (- ) <)

iel jeJ

(5) Update O-D and link flows. Set
¢+ = qg +uk(d’i - q{;),\ﬁ cljeJ
k‘“ =Vt —h),VacA

(6) Test the convergence. If the convergence criterion is not achieved, set k=k+1 and go to 2.

Otherwise, terminate: the solution is {Vk+1} q"“

(b) Partial linearization algorithm for the practical capacity model

The partial linearization algorithm given by Yang ef al. [54] can be summarized as follows:

(1) Determine an initial value {V%}, {E]{j} and set k=0.

(2) Calculate link cost tk = ta( ) the minimum travel time from origin i to destination j, ¢ ( ), and
destination cost C}' =¢j (Zl (th.'/‘ + Z]U))
(3) Find the descent direction by obtaining Zzij(k) that minimizes program P1, which is
o 7= 35 () o0 (i) ) |
i€l jeJ reR;
subject to
Y Y a®W =50 vier, a¥=0 Vieljel,reR;
JE€J reR;;
and d;ﬂk) that minimizes program P2, which is
P2Min 2= 30303 Wit
i€l jeJ reRy
subject to
Y alW =gy vieljel, al>0,VieljelreRy
r€R,;,>
Then, set y =3 3 3 (&™) + al®) 67 ,Va € A
i€l jeJ reRy
dy=>"a vierjeJ
rER,_»,»
(4) Determine the step size. Find o, that minimizes the function
. v (- v’; -
Min 20 = 3 5 e g 05 (g (8- 4) )+
0= o=l acA i€l jeJ
> (faren (3-2))
(ln (q + o (q,, d,-)) - 1) +3 Jo ¢i(v)dy
jeJ
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(5) Update O-D and link flows. Set

~ ~ k q 1 /
gt =g+ O‘k(dij - qj;),w €hies

i

=k oy (v —E) Va e A

(6) Test the convergence test. The condition of convergence is

g oo(-0(4ra(5a)))
o Z exXp <_0 (C{Fm +Cm (Z qﬁn) ))
meJ iel

If convergence is not achieved, set k=k+1 and go to 2. Otherwise, terminate and use the
solution {vA*1}, {Z]g“ }

<eViel

Remark 1

In Step 4, a GA procedure is adopted to solve the ultimate and practical network capacity models. Typical
GA operators (i.e., reproduction, crossover, and mutation) are performed to evolve the chromosomes (or trip
production from each zone) to obtain better solutions. Detailed descriptions of the GA implementation can
be found in Gen and Cheng [63] and Kasikitwiwat’s dissertation [64].

Remark 2

The bi-level network capacity models are intrinsically non-convex and hence difficult to solve for a
global optimum [65]. Heuristics are typically developed to tackle this class of problems. In Yang
et al. [54], they developed a successive linear programming (SLP) approach that iteratively solves the
lower-level distribution—assignment problem using a partial linearization method and the upper-
level trip production problem using a localized linear approximation of the upper-level constraints
to solve the resulting linear program. In this study, we developed a GA procedure to solve the
ultimate and practical network capacity models. Comparisons using the same test network
(see Figure 2 in Section 5) with different initial solutions were conducted in Kasikitwiwat [64]
but not reported here for conciseness. The results show that the GA procedure is capable of finding
near-optimal solutions (or at least not worse than the SLP approach). For the reserve capacity
model, we adopted the incremental assignment-based procedure embedded with a convex combination
method (also known as the Frank—Wolfe algorithm) to determine the largest multiplier p. Care should
be exercised in choosing a judicious incremental amount J. In general, é should be chosen sufficiently
small to increase the estimation accuracy of fipax.

Origin Destination
Origin Destination
Figure 2. Test network.
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Remark 3

For each set of link capacities generated, a network capacity problem (e.g., reserve capacity, ultimate
capacity, and practical capacity) is solved to determine the maximum network capacity. In Step 5, var-
ious statistics (e.g., link-flow pattern, O-D travel-time pattern, objective value for each capacity con-
cept, etc.) are collected to compute the capacity reliability measures in Step 7.

5. NUMERICAL RESULTS

In this section, we present some numerical results using the reliability evaluation procedure
described earlier. We apply the procedure to a simple network given in Figure 2. The network
consists of six nodes, seven links, two origins, two destinations, and four O-D pairs. The link
travel-time function used is the standard Bureau of Public Road function:

4
Va
ta =1t/ (1 + 0.15(Ca> )
where v,, ¢

/., and C, are the flow, free-flow travel time, and random capacity on link a, respec-
tively. Link characteristics are provided in Table II. In the absence of link degradation data,
we assume a uniform distribution with an upper bound and a lower bound to generate the random
link capacities. Note that the RVG procedure in Step 3 is capable of generating multivariate
random capacities that preserves the marginal distribution of random capacities and their correla-
tion structure if link degradation data were available (see Chen et al. [9] for results with correla-
tion). As in Table II, the means and standard deviations resulting from 200 Monte Carlo
simulations are close to the theoretical values.

5.1. Network capacity analysis

This section compares the network capacity results using three different network capacity models.
For the reserve capacity concept, a pre-determined O-D demand pattern is required. This pattern
remains fixed while the network capacity model determines the maximum O-D demand multiplier
that can be accommodated by assigning the scaled O-D demand matrix to the network using the
user-equilibrium assignment method without exceeding the roadway capacity constraints. For the
ultimate capacity concept, O-D flows do not need to follow a pre-determined O-D demand pattern
because a combined trip distribution—assignment model is adopted in the bi-level program to simul-
taneously determine both destination choice and route choice of all users. However, physical road-
way and zonal capacity constraints are required in the upper-level problem to constrain the
maximum total trip production from all origins. Network capacity under this model is treated as
the ultimate capacity, which is the upper bound because all network users can choose both desti-
nation and route simultaneously. For the practical capacity concept, an existing O-D demand is

Table II. Link free-flow travel times and statistical properties of link capacities.

Theoretical Estimated
Free-flow Lower Upper
Link # travel time bound bound Mean SD Mean SD
1 10.00 75.00 100.00 87.50 7.22 87.33 7.28
2 4.00 60.00 80.00 70.00 5.77 69.91 5.77
3 12.00 60.00 80.00 70.00 5.77 69.98 5.82
4 4.00 37.50 50.00 43.75 3.61 43.52 3.53
5 5.00 90.00 120.00 105.00 8.66 105.39 9.12
6 5.00 37.50 50.00 43.75 3.61 43.80 3.56
7 4.00 37.50 50.00 43.75 3.61 43.71 3.82
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preserved (i.e., only route choice is allowed). Only the additional demands or travelers can choose
both destination and route. To choose the destination, network users consider the cost of destina-
tion in addition to the cost of traveling to the destination. Therefore, a combined distribution—
assignment model with variable destination costs is applied only to the additional demands.
Function and data of the destination costs are shown in Table III.

The complete results of these three models are provided in Table IV and graphically presented
in Figure 3 to highlight the distinct feature of the three network capacity concepts. For the
reserve capacity model, the maximum network capacity is 227.92. The pre-determined O-D
demand pattern is preserved with a uniform growth rate (or maximum O-D demand multiplier)
of 2.072 for all O-D pairs. For the ultimate network capacity model that allows both destination
choice and route choice for all network users, the maximum network capacity with an impedance
parameter value of 0.5 is 262.54, an increase of 15.19% compared with the reserve capacity
model. For the practical network capacity model that only allows the additional demands to have
both destination choice and route choice, the maximum network capacity with an impedance
parameter value of 0.5 is 257.58, an increase of 13.08% compared with the reserve capacity
model. It is 1.89% less than the network capacity model using the ultimate capacity concept.
Moreover, it is observed that the O-D patterns resulting from the three capacity models are quite
different. For example, the results indicate that the flows on O-D (1-3), O-D (1-4), and O-D
(2-3) from the practical and ultimate capacity models are higher than those in the reserve capac-
ity model, while flows on O-D (2—4) show the opposite. However, the net increase in network
capacity is larger in the network capacity models that allow partial and full destination choice.
Network capacity estimated with the reserve capacity concept is underestimated because the same
increase rate is applied to all O-D pairs. If flows on one O-D pair cause some links in the
network to reach the roadway capacities, flows on other O-D pairs will also stop increasing.
In this network, link 3, which serves O-D (2-4), is the bottleneck link. The practical and ultimate
network capacity models can achieve more network capacity by having more demands in O-D
(1-3) (link 1), O-D (1-4) (links 2-5-7), and O-D (2-3) (links 4-5-6) because the capacities
of these routes serving these O-D pairs are underutilized in the reserve capacity model. Note that
the volume-to-capacity (V/C) ratio of link 4, for the practical network capacity model, is less than
the V/C ratio for the reserve capacity model, because link 4 is also used by flows on O-D (2-4)
in the reserve capacity model.

In general, using the reserve capacity concept will underestimate the maximum network capacity
because of the requirement of preserving the pre-determined O-D pattern, while the network capacity
with the ultimate capacity concept will overestimate the maximum network capacity because it does
not account for maximum acceptable cost. Therefore, the network capacity with the practical capacity
concept, considering background traffic be preserved, may be more practical to achieve.

5.2. Capacity reliability analysis

The capacity reliability measure is calculated via the capacity reliability evaluation procedure.
When the capacity of every link is fixed at the upper bound of the uniform distribution (i.e.,
non-degraded capacity), the maximum network capacity under the non-uniform O-D growth
model based on the ultimate capacity concept is 262.54. This value serves as the upper bound
for the degradable network; a travel demand level greater than 262.54 cannot be satisfied.
The maximum network capacity under the non-uniform O-D growth model based on the practical
capacity concept is 257.58. This value serves as the upper bound for the degradable network
of the practical capacity concept, and the upper bound of the reserve capacity concept is
227.92.

Table III. Destination cost data ¢; (d]) = ajd_f" — mj used in the practical capacity model.

Destination m; o Bi

3 1.20 0.15 0.25
4 1.50 0.10 0.25
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Practical capacity
concept

Initial O-D demands

Reserve capacity
concept

Ultimate capacity
concept

@ O-D(1-3) M O-D(1-4)
0 0-D(@2-3) [ O-D(2-4)

Figure 3. O-D demand patterns and link volume-to-capacity ratios of three network capacity models.

Capacity reliability is dependent on a number of factors. The results are depicted in Figure 4 as
a function of demand levels. For demand levels less than 175, the network is 100% reliable for
all network capacity models. As the demand levels increase, the capacity reliability starts to
deteriorate and completely fails when the demand level is beyond 262.54 (the maximum network
capacity under the non-degradable condition). Moreover, capacity reliability is also dependent on
the network capacity concept. The capacity reliability calculated using different network capacity
concepts deteriorates at different rates. With a demand level of 185 as an example, the capacity
reliability using the reserve capacity concept is 85% reliable but 100% reliable for ultimate and
practical capacity concepts.

Similarly, using the 85th percentile reliability as a criterion, the capacity reliability using the
non-uniform O-D growth model can accommodate a demand level up to 212 for the method
considering the practical capacity concept, 217 considering the ultimate capacity concept, and
only 185 for the reserve capacity concept. Because the non-uniform O-D growth model corrects
the underestimated biased problem in the uniform O-D growth model, the capacity reliability
using the non-uniform O-D growth model can accommodate a higher demand level than the
capacity reliability using the uniform O-D growth model. As can be seen in Figure 4, the differ-
ence of reliability curves between the reserve capacity model and non-uniform models (ultimate
and practical capacity concepts) is significant, while the difference of reliability curves between
the ultimate capacity concept and the practical concept is not as significant.

’ —&— Reserve capacity —o— Practical capacity —4&— Ultimate capacity

85-percentile reliability

Capacity Reliability
(=)
2

SN

175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255
Demand Level

Figure 4. Capacity reliability for different network capacity concepts.
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To obtain more details in the capacity reliability analysis, the statistical values of link flows,
O-D costs, and the link-flow distribution are investigated. Tables V and VI present the statistical
values of O-D cost and link flows for different network capacity concepts. Statistical values of
O-D costs are slightly different with different capacity concepts. For O-D (1-3), O-D (1-4),
and O-D (2-3), the mean O-D cost values resulting from the ultimate and practical capacity
concepts are higher than O-D costs from the reserve capacity concept, while the mean O-D
cost between O-D (2-4) shows the opposite. This is because the O-D pattern for the reserve
capacity has the highest demand on O-D (2-4). For the standard deviation of O-D costs, the
values are low. The highest standard deviation of O-D cost is the value for O-D (1-3) from
the reserve capacity concept. Note that link 1 used in O-D (1-3) has high capacity and free-flow
travel time.

For link flows, the statistical values from various concepts of network capacity are different. In most
links, the minimum, maximum, mean, and standard deviation of link flows (from 200 realizations),
from the ultimate and practical capacity concepts, are higher than those from the reserve capacity
concept, for example links 2 and 5. The increase of flows on O-D (1-4) and O-D (2-3) can result
in the increase of flows on links 2 and 5 when the network capacity is estimated from the practical

Table V. Statistical values of O-D costs for different network capacity concepts.

O-D 1-3 1-4 2-3 2-4

Reserve capacity concept

Min 10.27 13.24 14.23 13.72
Max 11.50 13.61 14.63 13.80
Mean 10.76 13.43 14.46 13.79
Standard deviation 0.30 0.08 0.08 0.01
Practical capacity concept

Min 10.75 13.28 14.28 13.41
Max 11.56 13.85 14.95 14.04
Mean 11.43 13.64 14.66 13.76
Standard deviation 0.15 0.12 0.14 0.08
Ultimate capacity concept

Min 11.45 13.25 14.69 13.59
Max 11.50 13.64 15.28 13.80
Mean 11.49 13.44 15.04 13.79
Standard deviation 0.01 0.08 0.12 0.02

Table VI. Statistical values of link flows for different network capacity concepts.

Link # 1 2 3 4 5 6 7
Reserve capacity concept

Min 63.83 15.96 60.02 3391 50.17 15.96 3391
Max 80.68 20.17 79.96 43.50 63.05 20.17 43.50
Mean 72.12 18.03 69.94 38.24 56.28 18.03 38.24
Standard deviation 4.05 1.01 5.79 2.25 2.74 1.01 2.25
Practical capacity concept

Min 74.93 22.61 59.31 24.23 58.81 21.79 34.32
Max 99.44 39.53 79.49 47.05 76.52 32.23 48.20
Mean 86.12 29.23 69.61 38.80 68.02 27.10 40.92
Standard deviation 6.80 3.46 5.73 3.50 3.89 2.26 2.77
Ultimate capacity concept

Min 75.00 28.12 59.93 34.63 66.54 33.94 30.09
Max 99.97 37.68 79.63 46.70 78.05 43.36 40.92
Mean 87.22 32.65 69.85 39.51 72.16 3791 34.26
Standard deviation 7.22 1.99 5.76 2.26 2.55 1.75 2.12
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and ultimate capacity concepts. Thus, the network capacity and capacity reliability can be increased.
The distributions of link flow and link capacity for links 2 and 5 are graphically shown in Figure 5.
The link flow curves resulting from the ultimate and practical capacity models are closer to the link
capacity curve than the link flow curve resulting from the reserve capacity model. These distributions
indicate that the ultimate and practical capacity concepts utilize the capacities of links 2 and 5 better
than the reserve capacity concept.

The capacity reliability assessment results from this specific network indicate that the network
capacity models indeed can have a significant impact on the capacity reliability. The general
trend is that the reserve capacity model typically underestimates network capacity and hence
results in a lower capacity reliability measure for a given demand level. On the other hand, the
ultimate capacity model typically overestimates network capacity because it assumes that the
O-D demand pattern is completely flexible (i.e., all users are allowed to freely choose both
destination and route in the network). This results in overestimating the capacity reliability.
The practical capacity model assumes that only the additional demand can deviate from the fixed
demand pattern (i.e., only part of the demand can have both destination choice and route choice,
while the fixed demand part only has route choice because it must preserve the existing O-D
demand pattern). The capacity reliability measure estimated using the practical capacity model
is in between those estimated by the reserve capacity model and the ultimate capacity model.
It serves as a compromise in determining the capacity reliability of an existing city with a fixed
demand pattern, and some spare capacity still exists in the current transportation network.
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Figure 5. Distributions of link capacity and link flow for different network capacity concepts.
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6. CONCLUSIONS

In this paper, alternate capacity reliability measures were proposed for transportation networks.
The core of the alternate measures is the network capacity models used to calculate the capacity
reliability measures. Three different concepts of capacity (i.e., reserve capacity, ultimate capacity,
and practical capacity) were used to determine transportation network capacity. These network
capacity models were then integrated into the capacity reliability evaluation procedure developed
by Chen et al. [9] to assess the capacity reliability measures.

In the previous studies, network capacity determination was based on the premise of preserving a
pre-determined (or fixed) O-D pattern, and capacity reliability was evaluated for a prescribed level
of service. This reserve capacity model is simple and easy to calculate. It is useful for estimating net-
work capacity when zonal land use information is not available. However, it can only capture the
changes in demand volume by uniformly scaling all O-D pairs with the same multiplier (i.e., changes
in demand pattern are not considered). Note that the demand response due to changes in demand pat-
tern may require a different time scale as compared to the capacity fluctuations. Nevertheless, the com-
mon multiplier assumption was relaxed in this study by adopting two non-uniform network capacity
models from two different concepts: ultimate capacity for estimating network capacity of a newly de-
veloped city and practical capacity for estimating additional network capacity of an existing city. The
practical capacity reliability measure estimates how much more demand volume could be added to a
fixed demand pattern by allowing the additional demand to deviate from the fixed demand pattern,
while the ultimate capacity reliability measure estimates the maximum network capacity by allowing
all users in the network to choose both destination and route. These two alternate capacity models
not only allowed a non-uniform O-D growth in the spatial distribution of the O-D demand pattern
but also corrected the underestimated biased problem in the reserve capacity model and provided a
higher behavioral richness in modeling the interaction between network capacity and level of service
of a road network with consideration of zonal development. The practical and ultimate capacity reli-
ability measures can complement the existing reserve capacity reliability measure by allowing the
analysis of zonal activity allocations in relation with the physical capacity of zonal land use and net-
work characteristics, which enable evaluating both changes in demand volume and variations in de-
mand pattern. These network capacity models can also be used to assess the capacity flexibility of a
road network because of external changes in terms of traffic demand level and traffic demand patterns
as demonstrated by Chen and Kasikitwiwat [66]. It is defined as the ability of a road network to accom-
modate changes in both volume and pattern of traffic demand while maintaining a satisfactory level of
performance. Both capacity reliability and capacity flexibility are two useful performance measures
that can be used to assess the adequacy of a road network under supply uncertainty and demand
changes. It would be interesting as a future research to integrate both capacity reliability and capacity
flexibility to assess the system uncertainty with both supply and demand simultaneously.
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