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Astragalus polysaccharides (APS) possess a variety of immunomodulatory activities, but the regulation 
on mucosal immunity is not fully understood. In this study, immune suppression in mice was induced 
with cyclophosphamide treatment and APS was used as an intervention and was administrated at 
dosages of 3 g/kg (APS HD) and 1.5 g/kg (APS LD). Intraepithelial lymphocytes (IELs) were isolated from 
the intestines. The mRNA expressions from IELs in different groups of mice were detected using gene 
expression microarray to explore the gene expression profile of IELs, and what are the unique 
pathways related to low and high dosage of APS. 
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INTRODUCTION 
 
The dried root of Astragalus mongholicus (Huangqi) has 
a long history of medicinal use in traditional Chinese 
medicine. Animal experiments and modern clinical trials 
have shown that A. mongholicus has excellent 
immunomodulating effects (Li, 1991). Even with the 
widespread use, a complete understanding of the 
biological effects and mechanisms regarding A. 
mongholicus has remained largely unknown. The active 
pharmacological constituents of A. mongholicus include 
various polysaccharides, saponins, and flavonoids. 
Among these, Astragalus polysaccharides (APS) have 
been most widely studied. APS might induce the 
differentiation of splenic DCs with enhancement of T 
lymphocyte immune function in vitro (Liu et al., 2011). 
Studies have also shown that APS enhances the 
immunological function of chicken erythrocytes (Jiang et 
al., 2010a). Moreover, APS can modulate the innate 
immune response of  the  urinary  tract  through  inducing  
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increased TLR4 expression in vitro (Yin et al., 2010). 
Apart from these actions, our previous research 
suggested that regulation of the enteric mucosal immune 
response could be one of the important pathways for 
immune modulation by polysaccharides (Zhao et al., 
2010). Likewise, we have demonstrated that herbal 
medicines have a modulating effect on the enteric 
mucosal immune system (Luo et al., 2010; Xiao et al., 
2009).  

The mucosal surface of the intestinal tract is the largest 
body surface in contact with the external environment. It 
is a complex ecosystem generated by the alliance of 
gastrointestinal epithelium, immune cells and resident 
microbiota (McCracken and Lorenz, 2001). Intraepithelial 
lymphocytes (IELs), as the effector cells of the enteric 
mucosal immune system, play a multifaceted role in 
maintaining mucosal homeostasis (Ismail et al., 2009) 
and may be involved in protective cell-mediated immunity 
(Mowat et al., 1986). In general, administration of 
Chinese medicine to individuals is typically done orally, 
leading to intestinal uptake. Thus, there are extensive 
interactions  between  Chinese  medicine   and   intestinal  



 
 
 
 
tract cells. As IELs are located at this critical interface, 
they must balance protective immunity with an ability to 
safeguard the integrity of the epithelial barrier (Cheroutre 
et al., 2011). So, it is of great interest to detect the genes 
expression of IELs by APS. 

The use of microarrays to evaluate the transcriptome 
has transformed our view of biology. As with genomic 
analysis, microarrays are still the best choice for a 
standardized genome-wide assay that is amenable to 
high-throughput applications (Git et al., 2010). Effective 
use of gene expression profiling for biological research 
has been done to better understand the nature of 
intestinal development in response to a treatment (Fleet, 
2007). Immunosuppressant cyclophosphamide is used to 
induce the immune-suppressed model (Fang et al., 
2006). It is considered an ideal model for investigating 
many aspects of immunological response. Therefore, by 
employing immune-suppressed mice, the purpose of the 
present study was to examine global alterations in gene 
expression of the IELs in response to APS. 
 
 
MATERIALS AND METHODS 
 

Experimental animals 
 

Twelve healthy male BALB/C mice, 6-8 weeks old, provided by the 
China Academy of Chinese Medical Sciences were housed under 
constant environmental conditions at 22°C and with a 12 h dark-
light cycle. The mice were fed a commercially obtained diet and 
allowed ad libitum access to water. Mice were randomly allocated to 
four groups: control, cyclophosphamide-induced immune-
suppressed group (Model), APS-treated at a high dose (APS HD), 
and APS-treated at a low dose (APS LD). The approval of the 
Institutional Animal Ethics Committee was obtained before animal 
experiments were carried out. 
 
 

Induction of immune suppression 
 

Immune suppression in the mice was induced with 
cyclophosphamide (CTX) treatment followed a previously described 
protocol (Abruzzo et al., 2000; Sun et al., 2002). The mice in the 
Model, APS HD, and APS LD groups were injected intra-
peritoneally with 80 mg/kg cyclophosphamide (Heng Rui Medicine 
Co., Ltd, China) once each day for three days. The mice in the 
control group were injected with the same volume of saline. 
 
 

Administration of APS 
 

APS, a marked drug and proved by the State Food and Drug 
Administration, China (SFDA No. Z20040086), purchased from 
Tianjin Cinorch Pharmaceutical Co., Ltd. China, were dissolved with 
distilled water at a concentration of 250 mg/ml. On the fourth day 
after induction, all treated mice were given different dosages of 
orally administered APS once a day in the morning and lasting for 3 
days according to their experimental groups: 3 g/kg APS in the APS 
HD group and 1.5 g/kg APS in the APS LD group. The mice in the 
control and model groups were administered an equivalent volume 
of saline. 
 
 

Isolation of IELs 
 

One day after the last dose of APS,  blood  was  taken  through  the  
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retro-orbital artery from the mice, and then the mice were sacrificed. 
The IELs isolation was performed as previously published (Zhao et 
al., 2010). In brief, the intestines from the duodenum to the 
ileocecal junction were removed and flushed with Ca2+ and Mg2+ 

free HBSS (CMF). Peyer’s patches and the mesentery were 
removed, and the intestines were opened longitudinally and cut into 
pieces about 10 cm long. The pieces were digested twice for 30 
min in CMF containing 10 mM HEPES, 25 mM NaHCO3, 2% FBS, 
1 mM EDTA, and 1 mM DTT at 37°C. The eluted cells were 
collected and passed through a 74 μm nylon mesh to remove 
undigested tissue pieces. The IELs were subsequently separated 
from epithelial cells by two centrifugations through a 40/70% Percoll 
(Pharmacia) gradient at 600 × g for 20 min. The IELs were 
harvested from the interface between the 40 and 70% Percoll 
layers. 
 
 
cRNA labeling 
 
Total RNA was isolated from the IELs using the Trizol extraction 
method (Invitrogen, Carlsbad, Canada) as described by the 
manufacturer. mRNAs were amplified linearly using the 
MessageAmp™ aRNA Kit (Ambion, Inc., Austin, USA) in 
accordance with the instructions of the manufacturer. cRNA was 
purified with the RNeasy® Mini Kit (QIAGEN, Hilden, Germany) 
based on a standard procedure.  
 
 
Microarray assay  
 
One color format, whole genome mouse Microarray Kit, 4 x 44K 
(Agilent Technologies) was used in this study. Microarray 
hybridizations were carried out on labeled cRNAs. Arrays were 
incubated at 65°C for 17 h in Agilent's microarray hybridization 
chambers and subsequently washed according to the Agilent 
protocol. Arrays were scanned at a 5-μm resolution using GenePix 
Personal 4100A (Molecular Devices Corporation, Sunnyvale, CA). 
 
 
Statistics and function analysis 
 
All data were analyzed using the SAS9.1.3 statistical package 
(order no. 195557). Differential gene expression was assessed by 
ANOVA with the p value adjusted using step-up multiple test 
correction to control the false discovery rate (FDR). Adjusted p 
values <0.05 were considered to be significant (Tea et al., 2009). A 
bioinformatics approach was used to determine the biological 
context of the large amounts of gene expression data generated by 
the microarray screen. Gene lists from comparisons showing 
significant differences were analyzed using the Gene Ontology 
(GO) classification system, using the DAVID software 
(http://david.abcc.ncifcrf.gov/tools.jsp) (Dennis et al., 2003; Huang 
da et al., 2009). Relationships between differentially expressed 
genes were investigated in pathway analysis using Ingenuity 
Pathway Analysis (IPA) software (Ingenuity, Redwood City, CA). 

 
 
RESULTS 
 
Changes of body weight in the mice 
 
From the second day after CTX injection, the mice in the 
model, APS HD, and APS LD groups showed 
pathological weight loss. The treated mice all displayed 
hallmark symptoms of CTX exposure including lassitude 
and   hypoactivity   while   control  animals  displayed   no  
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Figure 1. Body weight changes in the mice. From the second day after CTX 
injection, the mice in model group, the mice in the APS HD and APS LD groups 
showed pathological weight loss. However, it was noted there was a tendency of 
weight increase in the APS groups after day 4. The mice in the APS HD and APS 
LD groups grew faster after administration of APS compared with the model 
group, although no significant difference was observed in body weight. 

 
 
 

Table 1. The significantly expressed genes in each comparison. 
 

Experimental group Number of gene with significant p values 

Control versus model 204 

APS HD versus model 22 

APS LD versus model 17 

 
 
 
obvious symptoms. However, it was noted that there was 
a tendency of weight gain in APS-treated groups 
beginning on the day 4. Administration of APS could slow 
down the tendency of body weights decrease. The mice 
in the APS HD group and APS LD group grew faster after 
the administration of APS compared with the model 
group, although no significant differences in body weight 
were observed (Figure 1). 
 
 
Differences in gene expression between groups 
 
The number of genes that were significantly over-
expressed or under-expressed is shown in Table 1. 
Comparisons of gene expression between the control 
group and model group showed 204 genes to be 
significantly regulated by CTX. A comparison of APS HD 
group and model group showed that 22 genes were 
differentially expressed to a significant. Similarly, 17 
genes  were  observed  in  APS LD  group compared with  

model group (Table 1). 204 differentially expressed 
genes between model group and control group clearly 
separated the model group from the control group. 
Among these genes, 95 genes were expressed at a 
significantly higher level in the model group. Using 
DAVID, 95 up-regulated genes in the model group were 
found to be involved in functions such as cellular process, 
binding, and cell projection, whereas 109 down-regulated 
genes in the model group participated in cellular 
metabolic processes, catalytic activity, and cell part. The 
GO terms with up-regulated among 95 genes are 
indicated in Table 2. The largest group with respect to 
number of genes (n=55) was the binding in molecular 
function. The other group with a large number of genes 
(n=47) was the cellular process in biological process. 

Among the 109 down-regulated genes, the GO terms 
are indicated in Table 3. There were a number of specific 
GO terms that revolved around the cellular constituent 
theme of cell and cell part (88 genes). A second 
prominent group  was  the  cellular  process  in  biological  
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Table 2. Gene ontology on up-regulated genes in the model group. 
 

GO classification Specific GO term Number of genes p Value 

Biological process 

Response to stimulus 19 8.1E-3 

Response to stress 12 8.7E-3 

Cellular process 47 2.3E-2 

Cellular developmental process 13 3.4E-2 

Negative regulation of biological process 11 4.5E-2 

    

Molecular function 

Protein binding 35 3.6E-3 

Binding 55 5.2E-3 

Ribonucleotide binding 14 2.2E-2 

Purine ribonucleotide binding 14 2.2E-2 

ATP binding 12 2.5E-2 

Adenyl ribonucleotide binding 12 2.7E-2 

Purine nucleotide binding 14 2.9E-2 

Adenyl nucleotide binding 12 3.7E-2 

Purine nucleoside binding 12 3.9E-2 

Nucleoside binding 12 4.1E-2 

    

Cellular constituent Cell projection 7 2.6E-2 
 

P values reflect statistical significance of each GO term being over-represented. 

 
 
 

Table 3. Gene ontology on down-regulated gene in the model group.  
 

GO classification Specific GO term 
Number 
of genes 

p Value 

Biological process 

Cellular process 69 2.97E-07 

Cellular macromolecule metabolic process 42 3.93E-05 

Cellular component organization 24 7.06E-05 

Macromolecule metabolic process 44 1.24E-04 

Cellular metabolic process 48 1.38E-04 

    

Molecular function 

Nucleoside-triphosphatase activity 12 1.57E-04 

Hydrolase activity 24 1.96E-04 

Pyrophosphatase activity 12 2.25E-04 

Hydrolase activity, acting on acid anhydrides, in 
Phosphorus-containing anhydrides 

12 2.38E-04 

    

Cellular constituent 

Intracellular part 83 2.75E-12 

Intracellular 83 6.96E-11 

Intracellular organelle 73 3.29E-09 

Organelle 73 3.38E-09 

Nucleus 48 1.73E-07 
 

P values reflect statistical significance of each GO term being over-represented. 

 
 
 
process containing 69 genes, which included more 
specific GO terms such as metabolic process, cellular 
metabolic process and macromolecule metabolic 
process. The third group was related to various molecular 
functions dealing with binding (64 genes). 

Also, we identified 9 commonly modulated genes in 
either APS HD group or APS LD group (Table 4). The 
genes were regulated in the same direction (towards the 
normal scale). Those genes must be important genes for 
elucidating the network how APS affects IELs. To  further  
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Table 4. Shared altered genes between control and model, APS HD and model, APS LD and model. 
 

Gene symbol Accession # 
Control vs. 

Model (Ratio) 
APS HD vs. 

Model (Ratio) 
APS LD vs. 

Model (Ratio) 
Related function or disease 

Rnf139 NM_175226 ↑(1.57) ↑(1.57) ↑(1.48) Kidney cancer 

2310079N02Rik AK086714 ↑(1.73) ↑(1.54) ↑(1.54)  

Anapc1 AK090134 ↑(1.52) ↑(1.47) ↑(1.43) Gastric cancer 

C030015A19Rik AK028820 ↑(1.44) ↑(1.43) ↑(1.45)  

Fbxo3 NM_212433 ↑(1.46) ↑(1.40) ↑(1.55) Oral squamous cell carcinoma 

Cpd AK134736 ↑(1.25) ↑(1.33) ↑(1.24) Stimulate NO production 

Derl2 NM_033562 ↑(1.26) ↑(1.17) ↑(1.17) Hepatocellular carcinoma 

Ddx17 NM_199079 ↓(0.67) ↓(0.73) ↓(0.72) Dysregulated in cancers 

Arl6ip2 NM_019717 ↓(0.51) ↓(0.53) ↓(0.54)  

 
 
 

 
 

Figure 2. Significant molecular networks of 9 common modulated genes generated by the 
Ingenuity software. Genes or gene products are represented as nodes, and the biological 
relationship between two nodes is represented as a line. Note that the gray symbols 
represent gene entries that occur in our data, while the transparent entries are molecules 
from the Ingenuity knowledge database, inserted to connect all relevant molecules in a 
single network. Solid lines between molecules indicate direct physical relationship between 
molecules; dotted lines indicate indirect functional relationships. 

 
 
 
understand the correlations among the candidate genes, 
bioinformatics  analyses  were  performed  using  the IPA 

software, and these analyses led to the identification of 
biological  association  networks. As  shown  in  Figure 2,  
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Table 5. Genes uniquely regulated by APS HD or APS LD. 
 

Gene symbol Accession # 
Control versus 
model (Ratio) 

APS HD versus 
model(Ratio) 

APS LD versus 
model(Ratio) 

Cdc27 NM_145436 ↑(1.65) ↑(1.49)  

1110007A13Rik NM_145955 ↑(1.18) ↑(1.17)  

Hmgcr NM_008255 ↑(1.51) ↑(1.42)  

Man1a2 NM_010763 ↑(1.44) ↑(1.43)  

D530033C11Rik NM_030132 ↑(1.42) ↑(1.57)  

Ufm1 NM_026435 ↑(1.30) ↑(1.30)  

Zcd2 NM_025902 ↑(1.25) ↑(1.23)  

Txndc9 NM_172054 ↑(1.18) ↑(1.21)  

Zc3h10 NM_134003 ↓(0.79) ↓(0.76)  

Sfi1 NM_030207 ↓(0.65) ↓(0.72)  

Sidt2 AK081177 ↓(0.59) ↓(0.69)  

Nr3c2 NM_001083906 ↓(0.4) ↓(0.49)  

Alpi NM_001081082 ↓(0.31) ↓(0.47)  

     

Tubd1 NM_019756 ↑(1.56)  ↑(1.43) 

AK050250 AK050250 ↑(1.20)  ↑(1.34) 

Hps4 NM_138646 ↓(0.78)  ↓(0.84) 

Ulk1 NM_009469 ↓(0.76)  ↓(0.73) 

Usf2 U01663 ↓(0.72)  ↓(0.67) 

Utrn NM_011682 ↓(0.47)  ↓(0.52) 

Fosl2 NM_008037 ↓(0.42)  ↓(0.53) 

Hbp1 NM_177993 ↓(0.42)  ↓(0.41) 

 
 
 
the main functionalities for the networks are antigen 
presentation, cardiovascular disease, cellular 
development, cancer, cell cycle, cell death, RNA damage 
and repair, protein synthesis, nutritional disease, 
developmental disorder, genetic disorder, neurological 
disease, cellular growth and proliferation. 

As we here observe dose-dependent difference of 
APS, we analyzed special gene expression in IELs. We 
found that treatment with APS HD led to additional 
changes in gene expression compared to APS LD, as 
indicated by the identification of 13 genes regulated 
specifically by APS HD. In contrast, 9 unique genes were 
observed to be induced solely by APS LD (Table 5). IPA 
shows the network about APS HD related genes (Figure 
3), and the main functionalities are lipid metabolism, 
molecular transport, small molecule biochemistry, cancer, 
cell cycle, cell death, RNA damage and repair, protein 
synthesis, nutritional disease, developmental disorder, 
genetic disorder, neurological disease, cellular assembly 
and organization. The network about APS LD related 
genes was shown in Figure 4, and the main 
functionalities given by Ingenuity for the networks are cell 
morphology, cellular function and maintenance, cell-
mediated immune response, antigen presentation, 
cardiovascular disease, cellular development, cancer, cell 
cycle, cell death, RNA damage and repair, protein 
synthesis,   nutritional  disease,  developmental  disorder,  

genetic disorder and neurological disease. 
 
 
DISCUSSION 
 
The major finding in this study is that APS might play 
critical in transcriptional regulation of cancer, since the 
gene expressions of Rnf139, 2310079N02Rik, Anapc1, 
C030015A19Rik, Fbxo3, Cpd, Derl2, Ddx17, and Arl6ip2, 
were significantly regulated to normal levels in the APS 
HD and APS LD treated mice, in which 7 were up-
regulated and 2 down-regulated.  

Cpd is a type 1 transmembrane protein the cycle 
between the trans-Golgi network and the plasma 
membrane. It performs a wide variety of functions, 
ranging from the digestion of food to the selective 
biosynthesis of hormones and neuropeptides(Kalinina 
and Fricker, 2003, Kalinina et al., 2002). Cpd expression 
is enhanced during inflammatory processes and may 
stimulate NO production by cleaving Arg from peptide 
substrates (Hadkar and Skidgel, 2001). Another hallmark 
of response in the APS-treated mice is the up-regulation 
of Anapc1, RNF139, Fbxo3, and Derl2 gene expression. 
A mitotic gene (Fong et al., 2007), The Anapc1 gene was 
found to contain a long open reading frame of 1944 
amino acids, encoding a polypeptide with a calculated 
molecular mass  of  216,087 Da  (Starborg et al., 1994). It 
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Figure 3. Significant molecular network of APS HD related genes. Genes are represented as nodes, and the biological 
relationship between two nodes is represented as a line. Note that the colored symbols represent gene entries that occur in our 
data, while the transparent entries are molecules from the Ingenuity knowledge database. Red symbols represent up-regulate 
genes, green symbols represent down-regulate genes. Solid lines between molecules indicate direct physical relationship 
between molecules; dotted lines indicate indirect functional relationships. 

 
 
 
is a centromere-associated protein that appears to have 
a transient function during mitosis. Anapc1 was identified 
and shown to be related to an Aspergillus nidulans mitotic 
checkpoint regulator (Jorgensen et al., 1998). Moreover, 
Anapc1 may be a possible candidate for causing the 
chromosomal instability seen in gastric cancer (Lima et 
al., 2008). RNF139 encodes an endoplasmic reticulum-
resident E3 ubiquitin ligase that inhibits growth in a 
RING- and ubiquitylation-dependent manner (Lee et al., 
2010). RNF139 is similar to the Patched family of 
proteins, with a putative sterol-sensing domain and an 
extracellular loop capable of interaction with the 
hedgehog  protein   (Cho  et   al.,   2005).   Chromosomal 

translocation of this gene may be important in the 
development of kidney cancer (Gemmill et al., 2002). The 
Fbxo3 gene may be associated with oral squamous cell 
carcinoma (OSCC) tumorigenesis and/or progression 
(Cha et al., 2011), and Fbxo3 can synergistically increase 
p53 transcriptional activity (Shima et al., 2008). Derl2, a 
member of the Derlin family, is a putative proto-oncogene 
and has a direct role in oncogenic transformation (Hu et 
al., 2007). Increased expression of Derl2 is confirmed in 
hepatocellular carcinomas (Ying et al., 2001). Taken 
together, these reports support that the actions of APS 
might play critical roles in transcriptional regulation in 
cancer.
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Figure 4. Significant molecular network of APS LD related genes. Genes or gene products are represented as nodes, 
and the biological relationship between two nodes is represented as a line. Note that the colored symbols represent 
gene entries that occur in our data, while the transparent entries are molecules from the Ingenuity knowledge database. 
Red symbols represent up-regulate genes, green symbols represent down-regulate genes. Solid lines between 
molecules indicate direct physical relationship between molecules; dotted lines indicate indirect functional relationships. 

 
 
 
The DEAD box RNA helicase Ddx17 plays important 
roles in multiple cellular processes, including 
transcription, pre-mRNA processing/alternative splicing, 
and miRNA processing, which are commonly 
dysregulated in cancers (Fuller-Pace and Moore, 2011). 
Blocking Ddx17 acetylation caused cell cycle arrest and 
apoptosis, revealing an essential role for Ddx17 
acetylation (Mooney et al., 2010). The ability of Ddx17 
suggests that transcriptional regulation in cancer were at 
work not only in the up-regulated genes but also in the 
down-regulated genes. In addition, the Arl6ip2 gene 
found to be down-regulated in APS-treated groups has 
been reported in U937 cells exposed to various NO 
fluxes (Turpaev et al., 2010). However, with few studies 
of the gene, its relationship with the activity of APS 
remains unclear. Future studies are needed to test the 
exact efficacy  of  interventions  that  specifically  address 

the processes suggested by the present gene expression 
studies. 

Many of the genes uniquely induced by APS HD or 
APS LD represented functional families of genes. In the 
APS HD group, the expressions of Cdc27 and Zc3h10 
were induced. In the APS LD group, the expressions of 
Tubd1 and Fosl2 were modulated. The literature implies 
that phosphorylation of Cdc27 is involved in TGF-β-
induced activation of APC (Zhang et al., 2011), and it is 
suggested that Cdc27 itself may be a tumor suppressor 
(Pawar et al., 2010). Zc3h10 inhibits anchorage-
independent growth in soft agar, suggesting a tumor 
suppressor function for this gene (Guardiola-Serrano et 
al., 2008). The candidate oncogene Tubd1 is associated 
with breast cancer risk (Kelemen et al., 2009). Fosl2 is a 
member of the Fos family of AP-1 transcription factors 
that is often up-regulated in mammary carcinomas.  Fosl2 
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over-expression is associated with a more aggressive 
tumor phenotype and is probably involved in breast 
cancer progression in vivo (Milde-Langosch et al., 2008). 
Interestingly, these 4 unique genes again show the ability 
to regulate cancer development and progression, a 
function similar to that of the genes previously mentioned. 
In addition, Hmgcr, a unique gene affected by APS HD 
which converts HMG-CoA to mevalonate and catalyzes 
the rate-limiting step in cholesterol biosynthesis (Ohashi 
et al., 2003), and upstream stimulatory factor Usf2, a 
unique gene affected by APS LD which regulates the 
transcription of genes related to immune response, the 
cell cycle, and cell proliferation (Bussiere et al., 2010) are 
needed for further exploration on the association between 
APS and the activities. 

The IPA results showed that the main functionalities for 
the networks of APS are antigen presentation, cellular 
development, cell cycle, RNA damage and repair, protein 
synthesis, cellular growth and proliferation. While the 
unique pathways in the network of APS LD include lipid 
metabolism, molecular transport, small molecule 
biochemistry, and the pathways for APS HD are cell 
morphology, cellular function and maintenance, cell-
mediated immune response. Antigen presentation is the 
key process for immune response, and it is closely 
related to RA development (Lebre and Tak, 2009; 
Wenink et al., 2009; Yanaba et al., 2008). Cell cycle, 
cellular growth and proliferation, and apoptosis are 
considered the vital components of various processes 
including cell turnover, proper development and 
functioning of the immune system, hormone-dependent 
atrophy, embryonic development and chemical-induced 
cell death related to RA pathogenesis (Elmore, 2007; 
Jiang et al., 2010b; Ryu et al., 2010). APS might 
demonstrate its pharmacological activity via acting on 
these pathways. However, the differences between the 
low dosage and high dosage of APS are still waiting for 
further validation, though there are evidence 
demonstrating the correlation between lipid metabolism, 
cell mediated immune response and RA development 
(Hansel and Bruckert, 2010; Toms et al., 2010). The 
results further support the findings in DAVID analysis. 
Though the data presented provides a more 
comprehensive picture on how APS mediates biological 
effects on IELs, there is a limitation in this study. RT-PCR 
did not be conducted for verification. However the 
clusters of genes and pathway networks are the main 
purpose to demonstrate the complicated biological 
networks induced by APS in the mice, and singe gene 
verification is hard to meet the requirement.  Future 
pharmacological studies are needed to test the efficacy of 
APS interventions which specifically address the 
processes suggested by our microarray analysis.   
 
 

Conclusions 
 

2310079N02Rik,   C030015A19Rik,    Rnf139,     Anapc1,  

 
 
 
 
Fbxo3, Cpd, Derl2, Ddx17, Arl6ip2 and the related 
pathways may be modulated by APS on IELs, and APS 
might play critical in transcriptional regulations of cancer.  
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