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SUMMARY

Decision planning for an efficient fleet management is crucial for airlines to ensure a profit while
maintaining a good level of service. Fleet management involves acquisition and leasing of aircraft to meet
travelers’ demand. Accordingly, the methods used in modeling travelers’ demand are crucial as they could
affect the robustness and accuracy of the solutions. Compared with most of the existing studies that consider
deterministic demand, this study proposes a new methodology to find optimal solutions for a fleet manage-
ment decision model by considering stochastic demand. The proposed methodology comes in threefold.
First, a five-step modeling framework, which is incorporated with a stochastic demand index (SDI), is
proposed to capture the occurrence of uncertain events that could affect the travelers’ demand. Second, a
probabilistic dynamic programming model is developed to optimize the fleet management model. Third,
a probable phenomenon indicator is defined to capture the targeted level of service that could be achieved
satisfactorily by the airlines under uncertainty. An illustrative case study is presented to evaluate the appli-
cability of the proposed methodology. The results show that it is viable to provide optimal solutions for the
aircraft fleet management model. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fleet management determines the optimal number of aircraft needed by an airline to maintain a targeted level
of service while maximizing its profit. Two major decisions are to be made, that is, to determine the number of
aircraft to be purchased and leased at any point in time (say every year or half a year) to meet the demand.
Proper fleet management is important as it would affect the economical efficiency of the airline and it has
an influential impact on customer satisfaction 1. An oversized fleet implies an increased cost, whereas an
undersized fleet implies an unsatisfied demand and results in a decrease in revenue and profit [2—4.]

In the optimization of the supply of aircraft in fleet management, how the demand is forecasted is
important as it could influence the results’ robustness. Most of the existing studies, such as those by
New 5, Abara 6, Hane et al. 7, Desaulniers et al. 8, Barnhart ef al. 9, and Yan et al. 10, adopted the
deterministic approach in forecasting the travelers’ demand level. However, Barnhart et al. 11
highlighted that stochastic demand should be considered because the airline’s operating environment
is stochastic in nature because of the presence of uncertainty. Stochastic demand refers to the demand
fluctuation that is uncertain at varying degrees primarily because of the occurrence of uncertain events,
which could take place unexpectedly. According to airlines [12,13,] the possible unexpected events
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include the volatility in fuel prices, political instability including terrorist attacks, global economic
uncertainties, natural disasters, and others. When these events occur, demand would decrease
tremendously. For instance, the volcano eruption in Iceland has caused a decline in demand for about
10 million travelers because of the cancellation of substantial flights 14.

Several studies had attempted to model the stochastic demand in air transportation. List et al. 15 used a
partial moment measure of risk to inspect the uncertainty of travel demand. Listes and Dekker 16 adopted
the scenario aggregation-based approach to determine the best choice of aircraft by assuming that travel
demand follows normal distribution. Yan et al. 17 captured the demand fluctuations by developing the
passenger flow networks and passenger choice model for which the passenger utility and market demand
functions are formed to determine the choice probability function of travelers. Pitfield et al. 18 employed a
simultaneous-equations approach to analyze the demand elasticity and aircraft choice. Hsu ef al. adopted
the grey topological models with Markov chain to capture demand fluctuations 19 and combined the grey
topological forecasting results with the Markov chain model to investigate demand fluctuations and to
determine the probability of demand 20. They imposed a penalty cost function if the actual demand is
more than the forecasted demand. In other areas (not air transportation), stochastic demand is assumed
to follow a certain distribution. For example, Berman et al. 21 and Batta et al. 22 adopted the Poisson
distribution to model the stochastic demand for queuing systems. Du and Hall 23 proposed a dynamic
model to capture the stochastic demand for port operation. Bojovic 24 modeled the demand of railroad
network as a Gaussian probability density function whereas Tan et al. 25 assumed that the stochastic
demand has a normal distribution in solving a vehicle routing problem.

The proposed methods used in the past studies to capture stochastic demand are interesting, but they
have limited applicability. They did not quantify the occurrence of unexpected events in their attempts
to model stochastic demand. For example, List et al. 15 modeled the demand entirely on the basis of a
one-sided risk measure (rather than on demand variation) for which the likelihood of the objective
function in meeting the demand is controlled not to exceed the threshold value. Hsu ez al. 20 adopted
the Markov chain model by taking into account one set of transition probability only to model the travel
demand. Both studies ignored the possibility of unexpected events that could take place unexpectedly.
Instead of demand fluctuations modeling only, the probability of unexpected event occurrence should be
quantified systematically as it could affect the stochastic demand to vary differently. Without this element,
the level of stochastic demand may not be modeled as accurately close to reality as possible. Moreover,
the assumption of fixed types of distribution to quantify the demand fluctuations might be too restrictive.
The methodology proposed might not be applicable if the real demand pattern did not follow the types of
distribution as assumed. Furthermore, the demand forecasting methods proposed in the existing studies
are for short-term periods only. For example, Tan et al. 25 and Yan et al. 17 modeled the demand fluctu-
ations within a day. Listes and Dekker 16 and Pitfield ez al. 18 modeled weekly and monthly demand,
respectively. Such short-term forecasting methods are not applicable to modeling long-term (more than
a year) demand fluctuations, which is required in solving the fleet management problem.

From the operating statistics of the airlines 13,12, it could be found that the travel demand fluctuated
from year to year without a specific pattern and trend. Furthermore, the fluctuation is affected by the
occurrence of unexpected events. For example, the travel demand reduced tremendously during the
volcano eruption in Iceland in 2010 14. Accordingly, we propose a five-step modeling framework to
forecast the travelers” demand by considering the occurrence of unpredicted events. In the framework,
a stochastic demand index (SDI) is defined to quantify the level of stochastic demand. This is carried
out by considering the possible occurrence of unexpected events as one of its inputs. The probability of
negative effects (such as a sudden decrease in demand) could be simulated independently. A Monte
Carlo simulation is then adopted to predict the probability of the uncertainty and travel demand for
each operating period. As such, there is no need to assume a fixed distribution to forecast the demand.
By properly integrating the probability of both elements (with the aid of a simulation approach), the
fluctuations of demand throughout the planning horizon can be captured precisely. The developed
framework relates the current and previous level of demand. The continuous relation of successive
operating periods consecutively will quantify the level of stochastic demand over a long-term period.
Accordingly, the proposed methodology could address the existing limitations to some extent.

Past studies had adopted various approaches to formulate and optimize the fleet management
problem. Wei and Hansen 26 built a nested logit model to inspect the influence of aircraft size, service
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frequency, seat availability, and fare on the airline’s demand. They highlighted that aircraft size, which
could affect the travelers’ choice, needs to be considered for fleet planning. Later, Wei and Hansen 27
developed game-theoretic models to investigate the airlines’ decisions on aircraft size and service
frequency. They revealed that aircraft size is a significant factor for fleet management decision making,
depending on the type of markets. Wei 28 employed the game-theoretical model to investigate how airport
landing fees could influence airlines’” decisions on aircraft size and service frequency. Kozanidis 29 devel-
oped a multiobjective optimization model to maximize the availability of the aircraft. He showed that flight
and maintenance requirements are two important factors for fleet planning while Givoni and Rietveld 30 an-
alyzed the environmental impacts of airlines’ choice on aircraft size. More recently, Hsu ez al. 19 formulated
a stochastic dynamic programming model to optimize the airline decisions in purchasing, leasing, and dis-
posing aircraft. Hsu et al. 20 developed a dynamic programming model that deals with the fleet purchase,
dry/wet leases, and disposal of aircraft by considering the impact of a strategic alliance between airlines.
These are interesting but posed some limitations. For example, the methods proposed by Hsu et al. 19,20
are used to tackle the fleet management problem with stochastic demand, but they did not capture the oc-
currence of unexpected events in modeling the stochastic demand. In addition, their formulation might be
too simplistic by considering the demand as the only constraint. In fact, there are other crucial constraints,
such as budget constraint, lead time, and selling time constraint, which are important in fleet management.

Accordingly, there is a need to improve the existing approach. It was found that the inclusion of stochastic
demand in fleet management formulation introduces a probabilistic element. Given the current situation, the
optimal solution for the next operating period could not be determined because of the possible occurrence of
unexpected events that can affect the demand level. As such, we proposed a probabilistic approach in the
fleet management decision model to capture the uncertainty. A probable phenomenon indicator is used to
capture the likelihood of the airlines (in terms of aircraft supply) in meeting the stochastic demand. It is nec-
essary because there are chances that the travel demand could not be met perfectly because of the uncer-
tainty. With this indicator in place, the airlines could monitor their level of service closely. Furthermore, a
dynamic programming model is adopted to formulate the fleet management problem as it has the capability
to decompose the proposed model into a series of simpler single-period subproblems. This allows the deter-
mination of the optimal solution for more tractable subproblems for each operating period. The objective of
the fleet management decision model is to maximize the operational profit of the airlines, subject to several
practical constraints. The decision variables are the number and types of aircraft that need to be purchased
and leased. An illustrative case study is shown to test the feasibility of the proposed methodology. The find-
ings revealed that the results are sensitive to the modeling parameters, and the proposed methodology is
viable in solving the fleet management problem.

This paper is organized as follows. Section 1 introduces the scope of this paper by addressing the related
literature review and the significance of and a brief introduction about the proposed methodology. Section 2
lists the notations used throughout the paper, whereas Section 3 explains the modeling framework to model
stochastic demand. Section 4 outlines the formulation of the developed model (for fleet management) and
the incorporation of probable phenomena in the developed optimization model. Section 5 explains the
solution method, and an illustrative case study is then presented in Section 6 to examine the feasibility of
the proposed methodology. Subsequently, the computational results of the case study are discussed in
Section 7. Section 8 concludes the findings of this paper and suggests prospects for future research.

2. NOMENCLATURE

For the operating period #, the notations used in this study (applied for n types of aircraft at age y) are
listed as follows:

PARAMETERS

T Planning horizon
MAXpyqgerry  Allocated budget for aircraft acquisition and leasing

Df Stochastic demand (corresponding to phenomenon )

Index, Index of stochastic demand

Dy Forecasted demand with mean i, and standard deviation o
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P(If +1})
f(D}, A7)
gf (D7, A7)
hef (D7, A)
C(fuelm)
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Possible increment of forecasted demand

Projected stochastic demand

Total number of aircraft that could be purchased in the market
Area of hangar as a geometry limitation

Discount rate for which the discount factor is (1+r,) "
Significance level of the demand constraint

Significance level of the lead time constraint

Significance level of the selling time constraint

Expected value of flight fare per passenger

Expected value of flight cost per passenger

Probability of having I” and I* (corresponding to phenomenon S)
Total operated aircraft

Product of the probability of uncertainty ¢

Probability that the uncertainty ¢ happens with a probable occurrence of &

FUNCTIONS

Function of discounted profit by having I” and I*
Function of the number of flights in terms of D} and A

Function of the traveled mileage in terms of f (D, A7)
Maintenance cost function in terms of g

Function of fuel expenses

SETS
XP = (5,25, xh) Number of aircraft to be purchased
Xt = (x5, x5, .. ) Number of aircraft to be leased
Ir = (Infly, nh,, ... ,In;';,y) Initial number of purchased aircraft
If = (ki 1k, . ) Initial number of leased aircraft
0,=(04,0,, ...,0,,) Number of aircraft to be ordered
R,=(R;.Rp, .. ..R,) Number of aircraft to be released for sales
U= U g,y - - Usy,) Setup cost for aircraft acquisition
S=(51,52, - - -»5%) Phenomenon of having I” and -
PURC,=(purc,;, purcsy, . . ., purc,) Purchase cost of aircraft
LEASE, = (lease,y, lease,,, . . ., lease,,) Lease cost of aircraft
DP,=(dp,,dpp, - - ..dpy,) Payable deposit for aircraft acquisition
DL,=(dl,,dlp, ..., dl,) Payable deposit for aircraft leasing
SEAT, = (seaty, seat», . . ., seat,,) Number of seats of aircraft
SOLD, = (sold,y, sold,, . . ., sold,,) Number of aircraft sold
RESALE,= (resaleyy, . . ., resaley,) Resale price of aircraft
DEP! = (dep,’]y, deph,, . . ., dep{;_v) Depreciation value of purchased aircraft
DEPF = (dep{‘ly, dephy,, . . ., dept,,)  Depreciation value of leased aircraft
SIZE = (size;, sizes, . . ., Size,,) Size of aircraft
RLT,=(RLT,;,RLT,, ...,RLT,,) Real lead time of aircraft acquisition
DLT,=(DLT,,DLT,,...,DLT,,) Desired lead time of aircraft acquisition
RST,=(RST,,RST,, . . .,RST,,) Real selling time of aging aircraft
DST,=(DST,,,DSTy, . ..,DST,,) Desired selling time of aging aircraft
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3. MODELING OF STOCHASTIC DEMAND

Globally, the airlines forecast the future growth of travelers annually to obtain the latest trend in
travel demand. Typically, the forecasting (or prediction) of the growth of demand is found to be
positive (i.e., implying positive growth) in accordance with the increase in population size and
income level 12,31. However, when there is an occurrence of an unpredicted event that could
affect the traveler’s decision, there would be a reduction in demand during the period. This is
referred to as a negative effect. We develop a five-step modeling framework (as displayed in
APPENDIX A) to forecast the demand and its fluctuations during a study horizon. In the
framework, an SDI is defined to quantify the probability of the possible occurrence of the demand
uncertainty. It is assumed that the value of SDI for the base year (year 0) is 1. A Monte Carlo simulation
32,33 is used to determine the occurrence probability of positive and negative effects with no prior as-
sumption of a fixed distribution. The step-by-step procedure of the proposed framework is elaborated
as follows:

Step 1: Determine the possible event’s occurrence

Consider a set of uncertain events that could affect the travelers’ demand. For example, the occur-
rence of a biological disease, economic downturn, and natural disaster could take place unexpect-
edly in real life. The probability of the occurrence of these events is determined. One way to
estimate the probability could be from the historical data of the event’s occurrence over a period.

Step 2: Determine the probability of the event’s occurrence (negative effect)

The probability of the event’s occurrence is simulated by using the Monte Carlo simulation, based
on the predetermined probability distribution in step 1. The probability of the occurrence is
expressed as follows:

" 1, if h happens

0, if & does not happen M

C
PP = 11" P(he)® fort_1,2,...,T,d)_{
c= 1

h=

for which P(hc) is the probability that the uncertainty ¢ happens with a possible occurrence of h.
Step 3: Determine the possible increment of the forecasted demand Dgipc)

The possible increment of the forecasted demand (positive effect) needs to be estimated. The demand
growth projection is estimated from past travel trend (through the historical data published by the
airlines or air transportation nongovernment organizations) and future travel trend forecasting. The
probability distribution that describes the projected growth of demand needs to be modeled as well.

Step 4: Determine the probability of the increment of the forecasted demand Dginc)

From the demand growth projected in step 3, the possible increment of the forecasted demand for
each operating period as well as its probability is determined accordingly with the aid of the Monte
Carlo simulation.

Step 5: Determine the value of SDI for each operating period

For each operating period, the SDI, Index, is determined subject to both positive and
negative effects. The probabilities of both effects are compiled together to work out the
SDI because of the fact that the level of stochastic demand is not only affected by the occur-
rence of uncertainty (negative effect) but also influenced positively by the demand growth
(positive effect). By considering both effects (i.e., to sum up both effects), the SDI could
be expressed as
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Index; = (PP + Dyine)) + 1 for t=1, 2,...,T,c=1, 2,...,C )

for which the constant of 1 is the index value for the base period (year 0). Index, > 1 means
that overall (because of both positive and negative effects), the level of stochastic demand in
year t is higher than the level of demand in the previous year (i.e., year f— 1). Similarly,
Index, <1 indicates that the level of stochastic demand in year ¢ overall is lower than the
level of demand in year f— 1. Index,=1 implies that the demand in year ¢ and its previous
year (i.e., year t— 1) is the same. This is possible because of the nature of uncertainty and
the growth of demand, which is stochastic.

By using the SDI, the demand level of each operating year, D,, is determined from the following
equation:

D, — {Index, X Dy, for t =1 3)

Index, x D,_y, for t=2, 3,..., T

For operating year 1, the demand level is determined by using the convolution algorithm as de-
scribed by Winston 33 (APPENDIX B). According to Winston 33, the convolution algorithm can
be adopted to generate normal random variates. Besides, this algorithm incorporates a random number,
which is a significant component for simulation to capture vagueness and randomness. The demand
level of the operating year 1 could be defined as follows:

12
Do = iy + o (Z R — 6) @

r=1

Note that for the subsequent operating period, the level of stochastic demand is determined by con-
sidering the current SDI and the level of the stochastic demand of the previous operating period.

4. FLEET MANAGEMENT OPTIMIZATION MODEL

The fleet management decision model is formulated as a probabilistic dynamic programming model.
For a set of the origin—destination pairs, assume that there is a selection of n types of aircraft that could
be purchased or leased. The decision variables of the model are the number and types of aircraft to be
purchased or leased to maximize the operational profit of the airlines. The stochastic demand from
Section 3 is used as one of the inputs to the model.

4.1. Stage, state variable, and optimal decision

The stage of the model is the planning horizon of the fleet management decision model. In this study,
the operating period, ¢, in terms of years is the stage variable of the model. The state variable at each
stage ¢ consists of various intercorrelated variables, namely the number of aircraft to be purchased or
leased (i.e., main decision variable), total operated aircraft, number of aircraft to be sold, number of
aircraft to be ordered, and number of aircraft to be released for sales. The optimal decision, that is,
the alternative at each stage, is the aircraft acquisition and leasing decision to meet the stochastic
demand while making a decision to sell aging aircraft with the goal to maximize the operational profit
of the airlines. For a particular operating period, although the state variables and the corresponding
optimal solutions could be obtained, the optimal decision for the next operating period is unknown
because of uncertainty. The states of the next operating period are uncertain given the current state
and current decision because many factors may not be known with certainty in practice 32,33.
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4.2. Constraints
The practical constraints considered for the fleet management decision model are as follows:
Budget constraint
The budget constraint ascertains whether or not the solution is financially feasible for the airlines.

For this constraint, the sum of the purchase and lease cost of the aircraft should not be more than
the allocated budget, which could be expressed as follows:

Zpurct,-xﬁ + Z leaseﬂxﬁSMAXbudget(t) fort=1,2,...,T 5)
i—1 i—1

Demand constraint

The stochastic demand derived from Section 3 is used to form the demand constraint. To ensure that
travelers’ demand could be met satisfactorily, the demand constraint could be expressed as

n

> (SEAT)(f (D}, A}))=(1 — a)Df for t=1,2,...,T,S =s1,5,...,5% (6)
i=1

where 1 — « is the confidence level (service level) to meet the stochastic demand.
Parking constraint

When an aircraft is not in operation, it has to be parked at the hangar at the airport. In such a case,
the choice of aircraft would sometimes be constrained by the geometry layout of the hangar at the
airport. As such, the parking constraint is ought to be considered feasibly. This constraint is shown
as follows:

m

n
Sy (Ingv +Ink 4l +xf) (SIZE,)<PARK, for t = 1,2,...,T %
i=1 y=0

tiy 1

Sales of aircraft constraint

For some airlines, the aging aircraft, which is less cost-effective, might be sold at the beginning of a certain
operating period when the airlines make the decision to purchase a new aircraft. However, the number
of aircraft sold should not be more than the aircraft owned by the airlines. It is expressed as follows:

solduy<Inf,_py, y) for t=1, 2,....T,i=1, 2,....,n,y=1, 2,....m (8)

Order delivery constraint

The delivery of new aircraft depends on the production and the supply of aircraft manufacturers.
Sometimes, there might be an availability issue in delivering new aircraft. As such, the aircraft to
be purchased should not be more than the number of aircraft available in the market, which is
expressed as follows:

x.<ORDER, for t=1,2,...,T,i=1,2,....n )
For the aircraft leasing, it is assumed that the order delivery constraint is not relevant because of
its possible availability within 1 year (short-term duration) for some circumstances. In addition,
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the number of leased aircraft is relatively flexible at a certain extent (not really limited to
manufacturing constraint).

Lead time constraint

In practice, the airlines would get an agreeable lead time (the period between placing and receiving
an order) from the aircraft manufacturer when they place an order for new aircraft. This constraint
should be considered as it indicates when the airlines are supposed to order new aircraft. For n types
of aircraft, this constraint can be expressed as follows:

P(RLT,>DLT)<B for t=1, 2,..., T,i=1, 2,....n (10)

Because in real life, there are chances that the targeted lead time would change (say, because of the
technical problems of the manufacturer), the lead time should be a random value that could be rep-
resented by a certain distribution. In this study, the lead time is assumed to be normally distributed
with mean y; + and standard deviation oy 1. The constraint could be stated by

2

DLT,>F~'(1 = B)opr + pyy for t=1, 2,....T,i=1, 2,..., n (11)

)

where F~'(1 — p) is the inverse cumulative probability of 1 — f.
Selling time constraint

An aging aircraft, which is considered as less economical, might be sold by the airlines at a certain
operating period. In such a case, the airlines need to know the most suitable time to release their ag-
ing aircraft for sales particularly to look for prospective buyers in advance. In real practice, the real
selling time might be longer than the desired selling time. Therefore, this constraint is formed with
the aim to reduce the possibility of this incident as much as possible. This constraint could be de-
fined as follows:

P(RST;>DST,;)<y for t =1, 2,...,T, i=1, 2,..., n (12)
It is assumed that the selling time has a normal distribution with mean pgr and standard deviation ogr,
DST;>F'(1 —y)ost + ugy for t=1, 2,....T,i=1, 2,...,n (13)

where F~'(1 — y) implies the inverse cumulative probability of 1 — 7.

4.3. Objective function

The objective of the fleet management problem is to maximize the operational profit of the airlines by
determining the number and types of aircraft that should be purchased or leased to meet the stochastic
demand. The operational profit could be derived by subtracting the total operating cost from the total
revenue. For an airline, the total revenue is generated from the operational income (i.e., the sales of the
flight tickets) and the sales of aging aircraft. The total operating cost is formed by the operational cost
of aircraft, purchase and lease cost of aircraft, maintenance cost of aircraft, depreciation expenses of
aircraft, payable deposit of aircraft acquisition and leasing, and fuel expenses.

For the operating period ¢, the total revenue, TR (IZP + ItL), is expressed as follows:

n m
TR(I,P + I,L) = E(farets)DIS + Z Zsold,iyresale,,-y for t=1,2,....T,S=s1, $2,...,8 (14)

i=1 y=1

The first term on the right-hand side of Equation (14) indicates the expected income from the sales
of flight tickets by considering stochastic demand D?. The second term signifies the revenue from the
sales of aging aircraft.
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The total operating cost for the operating period ¢, TC (IZP + I,") is formed as follows:

TC(IF +1F) = E(costd)DS + Zu,, + (purcy) (xl; +Zlease,, X +Zhgf LA}

+zz<mm) (i) zz(fnw) (dery) + 3 )+ Yo

+» Cl(fuel;) for t=1, 2,....,T,S=s1, $2,...,
Z (fuel,;) S1, 82 Sk 15)

The terms on the right-hand side of Equation (15) denote the expected operational cost of aircraft,
purchase cost of aircraft, lease cost of aircraft, maintenance cost of aircraft, depreciation expenses of
aircraft, payable deposit of aircraft acquisition and leasing, and fuel expenses, respectively.

4.4. The probable phenomenon indicator, sy, . . ., Sk

Airlines encounter many challenging uncertainties, for instance, the occurrence of natural disaster,
economic downturn, and outbreak of diseases, which are unpredictable in nature. In accordance with
the occurrence of uncertainties (risks), an efficient risk management is necessary. According to Malaysia
Airlines (MAS) 12, a risk management process produces a risk map and likelihood scale for the manage-
ment to prioritize the action plans in mitigating the possible risks. This highlights that different actions
may be required to solve different issues and a particular issue may be handled differently at different
times. This signifies that the level of stochastic demand that is relatively influenced by the risks
(uncertainties) could be outlined similarly, that is, in terms of the likelihood scale. As such, the probable
phenomena, sy, . . ., s; for a total of k phenomena, are defined to describe the possible scenario of aircraft
possession in meeting the stochastic demand under uncertainty. The probability of probable phenomena,
Ds,» - - -, Ds,» quantifies the likelihood (probability) of meeting the stochastic demand. In other words, they
define how well the supply (aircraft of the airline) meets the demand, which in fact measures the level of
service of airlines. Preferably, the number of operating aircraft should be available adequately to meet a
certain desired service level.

If the probable phenomena and its probability are not defined, it means that the airlines only deal
with one possible scenario of stochastic demand, that is, they have perfect confidence that a certain
level of stochastic demand will occur for a particular operating period during the planning horizon.
However, this should not be the case as there is no perfect forecasting of the future. As such, this
indicator is necessary to take into consideration the uncertainty of the forecast. For example, if the
probability of probable phenomena is 60% and 40%, it signifies that the aircraft acquisition and leasing
decision of the airlines is able to handle the circumstances for which the stochastic demand only
happens with the probability of 60% and 40%.

The probable phenomena and its corresponding probability could be estimated on the basis of the de-
cision policy of the airlines, the qualitative judgment of the experts or consultants, and the past operational
performance of the airlines. The decision policy primarily refers to the compliant business strategies and
corporate framework that have been practiced closely by the decision makers, that is, the managerial
board of the airlines. The qualitative judgment of the experts could be obtained by carrying out the ques-
tionnaire survey study. The past operational performance includes the records of the number of travelers
and the travel trend, which is associated closely to the number of aircraft operated by the airlines.

The number of probable phenomena varies depending on the perception and consideration of the
airlines in their decision making. In this study, two probable phenomena are considered for two major
aspects. First, the operational aspect refers to the relevant perspectives such as high maintenance cost
of the aging aircraft, routes that could be flown with a particular aircraft, ability to secure necessary
approvals to fly particular routes, potential risks/operating difficulties of aircraft type, and others.
Second, the economy aspect covers the perspectives of the benefits of shareholders, cash balance, debt/
lease financing, and economic benefits of new aircraft such as fuel efficiency, high capacity, low mainte-
nance costs, and so on. These are the key considerations of the airlines in fleet management 34,12.
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4.5. The optimization model

In summary, the fleet management optimization model is presented as

Fort=1,2,..,T

E(fare’ D" + iisoldny resale,, —E ( cost! ) D' -

i=1 -1

Zu + purc, (x "y — ZIease (x ) Zhg‘(DS,A;)—
ZZ(ln,{j,)(depf;)—Z(lnf)(depﬁ)—gdp,,(x,{’)—

i=l y=1 i=1

S, () ZC fuel, )

i=1

f (16)
E(fare* )D}* + zz sold,, resale, (cos I )Df‘ -

i=l y=1 . "
D+ ) 1) fease, ()~ S haf D )~
i=1 i=1
P, +P

n t+1

Zi( )(dep:;)7i(lnf)(depi)fgdp“ (xf),

Zd ( ) Zc (fuel,)

subject to Equations (5)—(9), (11), and (13), where D}, X", XL, IP, IE, SOLD,, O,, R,€ Z* u {0}. The term
(1+r,)""is used for the discounted value across the planmng horizon whereas k indicates the kth
possible phenomenon for having I/ and I” as the aircraft at the beginning of each operating period.
The optimal decision (output) of the model, that is, the optimal number of aircraft to be purchased
and leased, could be used as the inputs in optimizing other operational decisions of the airlines, such

as optimization of fleet routing, flight scheduling, and crew assignment 11.

(1’” +1f)

4.5.1. Lower bound and optimal solutions

The solution for the decision variable in model (16) is found to be influenced by the demand constraint
(Equation (6)). In case the change in demand is nonpositive (i.e., no increment of demand), the
lower bound of the solution is 0. This is because the decision variable defined is nonnegative, that

is, x2,xL>0, and the total of n types of aircraft to be purchased and leased is also nonnegative,

that is, Z lxn + xL >0, for a particular operating period. In case the change in demand is positive
(i.e., demand increases), the lower bound will be governed by the demand constraint (Equation (6)).
This is to ensure that the supply of the aircraft (via acquiring or leasing) meets the level of demand
at a certain desired service level. Nevertheless, the upper bound (UB), that is, the maximum aircraft
that could be purchased (or leased), will be subject to the availability of the aircraft in the market,
2.,,ORDER,, which is expressed in the order delivery constraint (Equation (9)). To summarize, the
lower bound, LB, of the optimization model follows

=0, Xt=0 if AD<0
LB = - S i s . s (17)
(Z(SEAT,-)(f(Dt,At))z(l - a)D,)m(x;'jSORDER,) if AD? >0

i=1

where AD? indicates the change of demand from year to year, that is, ADS = DS — D5,

Let Q = {X%, XL : LB<X? XL<UB} be the set of decision variables for the aircraft fleet manage-
ment model and the operational profit (i.e., the objective function to be maximized) of the developed
model be P(IF + I*), where QCIPUI". In such a case, the optimal solution of the developed model
could be written as P* (I,P *+ I,L*), where P is the optimum (maximum) profit of each operating period

t for which I* and I”* denote the corresponding total of aircraft (including the aircraft to be purchased
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and leased) that maximizes P(I,P +IZL). As such, the optimal solution (i.e., maximum operational
profit) of the developed model could be written as follows:

P17 + 1) = MIIaxP(If +1) (18)

5. SOLUTION METHOD

The proposed probabilistic dynamic programming model can be solved by decomposing it into a series
of simpler subproblems. By using the backward working method, the subproblem at the last period of
the planning horizon T is solved first. The current optimal solution found for the states at the current
stage leads to the problem solving at the period of 7— 1, T—2, ..., 1. This procedure continues until
all the subproblems have been solved optimally so that the decision policy to purchase and/or lease
aircraft can be determined strategically. For the developed optimization model, the type of the solution
method, that is, linear programming problem or nonlinear programming problem, can be identified
clearly from the function of the number of flights, f (DtS ,A;’); function of the traveled mileage,
gf (D¥,A?); function of the maintenance cost, hgf (D$, A?); function of fuel expenses, C(fuel,,); and
the practical constraints (5)—(9), (11), and (13). If they are in the form of linear function in terms of
the decision variables, then model (16) will be solved as a linear programming model. Otherwise, it
is converted as a nonlinear programming model. The linearity of these components is primarily based
on the operational data of a particular airline. It shall then be validated by using the regression test with
the aid of mathematical software. For the illustrative case study as shown in the following section, a
nonlinear relationship was adopted for the aforementioned components as the regression relationship
obtained from the published reports 12,13 show nonlinearity. Powell 35 specified that nonlinear pro-
gramming is the possible solution for the dynamic programming model. Nonetheless, it could not be
solved directly with any available conventional methods. The spreadsheet functionality of Excel
2007 coupled with its own developed algorithm was utilized to work out the optimal solutions.

For a larger size of the fleet management decision model, the proposed solution method is still feasible
in generating computational results. However, the computational efficiency reduces when the problem
size gets larger because of additional modeling parameters and variables. As such, more computational
effort is necessary for larger state and stage spaces. There are two major concerns that could affect the
computational efficiency, that is, the planning horizon and types of aircraft. The extension of planning
horizon T would result in an increment ratio of 1/7, that is, an additional 10-20% of computational effort
for each increment (in year). For each additional type of aircraft, there is (ORDER,+ 1) times more
computational time required, where ORDER, refers to the order delivery constraint. For this study, the
computational time required is approximately 50-60 s for each operating period.

6. AN ILLUSTRATIVE CASE STUDY

6.1. Data description

This subsection explains the types of data and their values used in the illustrative case study. Most
of the values are chosen from published reports and accessible websites of the airlines to design a
close-to-reality case study.

6.1.1. Inputs for stochastic demand modeling

Three types of events, that is, biological disaster (e.g., flu disease), economic recession, and natural
disaster (e.g., storm), are assumed to affect the demand level. The modeling of the probability distri-
butions to quantify the uncertainties is carried out on the basis of the published reports. According
to the data obtained from the Centre for Research on the Epidemiology of Disasters 36, the occurrence
of a biological disaster follows the Poisson distribution and has a mean u of 7, that is, Prob
(biodisaster) ~Pois(u="7). This indicates that the biological disaster happens seven times in
average in a year. On the basis of the data from the International Monetary Fund 37,38, it is found
that the occurrence of economic downturn also follows the Poisson distribution in which Prob
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(econ-downturn) ~ Pois(x=1/9). This shows that the economic recession happens once in an
average of 9years. For a natural disaster to occur 36,38, the probability of occurrence is found
to follow a normal distribution, that is, Prob(natural disaster)~N(64, 8).

For the travel growth projection, historical data show that the growth percentage ranges from 5% to
9% 39,40,12,41. As such, we assume an equal probability for each unit of growth, that is, the percent-
age growth of 5%, 6%, 7%, 8%, and 9% has a probability of happening during the planning horizon of
0.2. However, there is no restriction if uneven probability is assumed. Besides, the forecasted demand
Dyis estimated to follow a normal distribution, that is, Dy~ N(1.4141 x 107,9.04 x 1012), according to
the data obtained from the published reports from MAS 12. With the aid of the convolution algorithm,
the projected demand for base year Dy is then determined.

From the aforementioned data, the level of stochastic demand for each operating period throughout the
planning horizon is obtained by applying the modeling framework of stochastic demand as mentioned in
Section 3. The detailed output of the stochastic demand is shown in Table I. Table I reveals the fact that
the possible occurrence of uncertainty and the predicted growth of travel demand could affect the level of
stochastic demand at varying degrees. The SDI value is greater than 1 when the uncertainty does not exist.
Conversely, the existence of uncertainty gives the SDI with the value of at most 1.

6.1.2. Inputs for the fleet management model

In this case study, two types of aircraft, that is, A320-200 (n=1) and A330-300 (n=2), are considered
for a set of origin—destination pairs. Only two types of aircraft are considered as many of the low-cost
carriers operate their business with few varieties of aircraft types, for example, AirAsia (A320-214 and
A320-216), Jetstar Airways (A320-200, A321-200, and A330-200), JAL Express (B737-400 and
B737-800), and Tiger Airways (A320-200) (see 42 for more examples). Furthermore, the airlines tend
to operate the aircraft from the same aircraft manufacturer (mostly Airbus or Boeing). Therefore,
two types of aircraft (both Airbus) as considered in the case study are practical. A320-200 and
A330-300 (i.e., the aircraft of Airbus) were chosen as examples as there are more available information
for these types of aircraft. The proposed methodology is not restricted to the number and type of
aircraft used. In addition, a planning horizon of 8 years is also justified as according to MAS 12 and
AirAsia Berhad 13, on average, the acquisition of new aircraft requires a period of 5years to be
completely delivered. Besides, the desired lead time is assumed to have a normal distribution with
an average of 3 years and a standard deviation of 1.5, that is, DLT ~N(3, 1.5). As such, two types of
aircraft, which are considered for a planning horizon of 8 years, are reasonably practical to reflect
the real operation of the airlines. Tables II and III show the input data of the model.

The capacity of A320-200 and A330-300 is assumed to be 180 (with a total size of 1282 m?) and
295 (with a total size of 3836 m?), respectively 43,44. The expected flight fare and cost as shown in
Table II are generated from the available financial reports of MAS 45. In addition, the purchase prices
of aircraft as shown in Table III are obtained from the published data of Airbus 46. With the purchase
price and the estimated useful life of aircraft (i.e., 5 years), the depreciation values of aircraft are
calculated using the straight-line depreciation approach. By considering the residual value as prac-
ticed by AirAsia 47, the resale price and the depreciation value (as shown in Table III) are obtained
from the assumed residual value (i.e., salvage cost) of aircraft, which is 10% of the purchase cost.
For aircraft leasing, the respective lease cost, residual value, and depreciation value are obtained by
referring to the finance lease of MAS 48.

6.2. Benchmark scenario

A benchmark scenario is created to test the applicability of the proposed methodology. The data input
can be categorized into three categories, that is, by definition, by assumption, or by assumption based
on real data. They are shown as follows:

By definition:

* Two possible phenomena are considered, where k=2 for model (16).
e The discount rate is r,=5% fort=1, 2, ..., T.
¢ The significance level of demand constraint is «=5%.
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Table II. The expected value of flight fare and flight cost per passenger.

811

Operating period, ¢

1 2 3 4 5 6 7 8

E(fare!") ($) 235 243 254 263 273 284 294 304
E(fare?) ($) 205 216 228 237 246 256 265 274
E(costy) ($) 152 158 162 167 171 176 181 186
E(cost?) ($) 135 140 146 150 154 158 163 167
Table III. The resale price, depreciation value, purchase cost, lease cost and residual value (million dollars).
y resale;, resale,, depfly depfzy purcfl purcg dep,Lny Residual value lease,,
1 67.24 174.66 14.76 38.34 82 213 26.66 121.43 148.09
2 52.48 136.32 14.76 38.34 26.66 94.77
3 37.72 97.98 14.76 38.34 26.66 68.12
4 22.96 59.64 14.76 38.34 26.66 41.46
5 8.2 21.3 14.76 38.34 26.66 14.81
Average 14.76 38.34 82 213 26.66 68.12 148.09

* The significance level of lead time constraint is f=5%.

» The significance level of selling time constraint is y =5%.

D' =D, and D =(1 —a)Dj* for t =1, 2,..., T (19)

By assumption:

At t=1, the probability to have the aircraft is p;, = 0.5 and p,, = 0.5.

e At =1, the initial number of A320-200 and A330-300 that is 3 years old is Inf,; = Inf,; = 4.
* The setup cost to acquire n types of new aircraft is u,,=0 fortr=1,2, ..., 7, i=1,2, ..., n.

By assumption (based on real data):

Copyright © 2013 John Wiley & Sons, Ltd.

At t=1, the initial number of A320-200 and A330-300 is Inf, = 50 and Inf, = 50, respec-

tively (i.e., Ink, = Int, = 0).

The allocated budget is MAXyyggerry = $6,500,000,000.

The area of hangar is PARK,= 500,000 m>.

The order delivery constraint is ORDER,=5.

The salvage cost of an aircraft is 10% of the purchase cost of the aircraft.

The deposit of aircraft acquisition, DP,, is 10% of the purchase cost of aircraft for =1, 2, ...

The deposit of aircraft leasing, DP,, is 10% of the lease cost of aircraft for =1, 2, ..., T.
For n types of aircraft, the function of the number of flights is

f= 22.57(/4;‘)2 —9.776 x 10°A} +7.83 x 10*, t=1, 2,..., T [R*=0.97]
The function of the traveled mileage is
g =2,060f — 2,875,383 [Rz = 0.83]
The function of the maintenance cost is
h=5177x10°+7.97 x 10°g  [R* = 0.94]

For n types of aircraft, the function of fuel expenses is

C(fuely,) = 7.46f +8.3 x 107f> — 98,572 [R* = 0.88]

(20)

2n

(22)

(23)

J. Adv. Transp. 2014; 48:798-820

DOL: 10.1002/atr



812 H. L. KHOO AND L. E. TEOH

e The number of aircraft is
NA=10"°NP—-173.6 [R*=0.92] (24)

where NP is the number of travelers.

From the data reported by MAS 12 and AirAsia Berhad 47, Equations (20)—(24) are obtained by
conducting a polynomial regression analysis 49. Equations (20)—(22) are anticipated to be correlated
with stochastic demand, Df , and the total operated aircraft, A}. The regression analysis shows that
Equations (20)—(22) are fitted fairly well as nonlinear functions in terms of A}. Similarly, the analysis
reveals that Equation (23) is best fitted as a quadratic function in terms of the number of flights, which
could be consequently, expressed as a non-linear function in terms of A} via Equation (20). Besides, the
regression analysis exhibits that Equation (24) is best fitted as a linear function in terms of the number
of travelers.

Equation (19) implies the proportion of stochastic demand, which corresponds to the phenomenon
of s; and s,. Equation (20) indicates that the number of flights is affected by the total operated aircraft,
which is gained from the aircraft acquisition and leasing. Equation (21) denotes that a flight flies
2066 km in average. Equation (22) signifies that a unit cost of 0.00797 is charged as maintenance cost
for each additional unit of mileage traveled. For this equation, $5177 indicates an overall estimated
maintenance cost without considering an additional traveled mileage. Equation (23) shows that total
of fuel expenses depends on the number of flights, which are operated during the planning horizon.
This implies that the fuel expenses associate with the total operated aircraft, A}, which depends on
the aircraft acquisition and leasing decision. Equation (24) displays that every addition of 100,000
travelers requires one additional aircraft. In other words, one traveler requires 0.00001 aircraft.

According to Meyer and Krueger 49, the intercept of the regression equation carries no practical
meaning if the range of the independent variable does not include 0. The number of flights, f, in
Equation (20) falls within the range of 67,460 < f<79,927 (based on the real data). Accordingly,
the constant in Equation (20) has no practical interpretation. In addition, it can be shown that the
traveled mileage in Equation (21) is always positive. Such an explanation is also applicable to
Equations (20), (23), and (24).

For r=T=8, the developed optimization model could be simplified to models (25)—(33) as

PUL 1) /

118D +(8.2x10° s0ldy,; +2.13x10" soldy,, ) — (8.2x10xf; +2.13x10%xy, ) 2

2.67x107 (x{; + x5, ) —(5.177x10° +7.97x10” g ) -
Py, +
(1476107 In; +3.834x10 Inf, ) =2.67x10° (Inf, + Iny, )

=max——

% (1.05) 101.65D" +(8.2x10° soldy; +2.13x107 sold, )= (8.2x107 x, +2.13x10°x), ) -

815

1 (8:2x10°xf, +2.13x107x, ) = 1.48x107 (x; + xy, ) —(7.46 £ +8.3x107 1 —98,572‘)//

2.67x107 (x;; + x5, ) —(5.177x10° +7.97x10° g ) -
| (1:476x107 Inf; +3.834x107 I, ) = 2.67x10° (Inf, + Inf, )

(8:2x10°x] +2.13x107x), ) ~1.48x107 (x; +xy; ) —(7.46 / +8.3x10°7 /% ~98,572)

(25)
subject to
82xf) + 213x%, + 26.7 (x5, + x5,) <6500 (26)
22.57(A)% — 977.6A% + 11,321=0 Q7)
DY = 16,744,756 and D = 15,907,518 (28)
(Inf, + Infy + x§, + x§,) (1,282) + (Ind, + Inf, + x§, + x%,) (3, 836) <500, 000 (29)
soldgs Slngl , soldgys Slngz (30)
Copyright © 2013 John Wiley & Sons, Ltd. J. Adv. Transp. 2014; 48:798-820
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xg) <5, x5, <5 (31)
DLTg>32, DLTg,>32 (32)
DSTg>24, DSTg,>24 (33)

D3, X¥, D&, DE, D%, SOLDs, Os,Rs € Z*0{0} and A7 = Inf, + Ink, + Ink, + Ink, + xL, + xL, +
x§, + x&,. Equation (26) takes the budget constraint of $6.5 x 10” to purchase and/or to lease aircraft. If
we apply the simulation approach as elaborated earlier, the stochastic demand simulated for 7=8 is
16,744,756. With a 95% confidence level, it is found that the total number of aircraft that should be
operated for this operating period appears to be a nonlinear function, which is indicated in Equation
(27). Equation (28) indicates that the stochastic demand for =8 is predicted to be 16,744,756 for
the probable phenomenon of s; and 15,907,518 for the probable phenomenon of s,, which is derived
by Equation (19). Equation (29) is the parking constraint as a geometry limitation; Equation (30) is the
sales of aircraft constraint, which is derived with the assumption that an aircraft of 5 years old or more
are considered to be sold; thus, solds;s<Ink,, and soldsys<Inb,,. Because Ink,,<Inf, and In,,<In,,
these expressions subsequently result in solds;s<In%, and soldsys<Inf, as could be seen in Equation
(30). Equation (31) indicates the order delivery constraint to purchase new aircraft. With the assumed
normal distribution of RLTg, ~N(2,0.4) and RSTg, ~N(1.5,0.3), Equations (32) and (33) represent the
lead time and selling time constraints, respectively, for which the desired period to order new aircraft is
at least 32 months (i.e., 2.66 =~ 3 years) whereas the desired period to release aging aircraft for sales is
at least 24 months, that is, 2 years in advance. For model (25), the functions of the number of flights,
traveled mileage, maintenance cost, and fuel expenses as depicted by Equations (20)—(23) are found to
be nonlinear functions in terms of the total operated aircraft, A}. Hence, the developed model (25) is
solved as a nonlinear programming model. By working backwards, the procedure can be repeated to
formulate the optimization model for the operating period, =7, 6, 5, 4, 3, 2, 1.

6.3. Sensitivity analysis

To investigate the impact of changes of the inputs to the computational results, six scenarios with var-
iations to some of the modeling parameters used in the benchmark scenario are developed. The follow-
ing lists the outlined scenarios.

» Scenarios A and B have the confidence level of 90% and 99%, respectively.

e Scenarios C and D have the probable phenomenon indicators (i.e., probability of having the air-
craft) of 0.6:0.4 and 0.4:0.6, respectively.

e Scenarios E and F have the order delivery constraints ORDER,=4 and 6, respectively.

7. RESULTS AND DISCUSSIONS

7.1. Results for benchmark scenario

The computational results of the benchmark scenario are shown in Table IV. Table IV shows a consis-
tently increasing trend on the discounted annual profit except where there is a decrease in the stochastic
demand or when a cost is charged to purchase new aircraft, to lease aircraft, or to order new aircraft in
advance. In particular, the operating period from 1 to 3, which involves aircraft leasing and higher
demand, produce a higher operational profit as compared with the subsequent operating periods. For
the operating period with aircraft acquisition, that is, the operating period from 4 to 8, the earned profit
for the airline increases gradually, mainly because of an increment in stochastic demand. This shows
that the proposed methodology is capable of capturing the demand uncertainty in real practice when
producing optimal profit. Certainly, this would provide a better insight for the airlines when making
a decision to manage their fleet under the inconsistency of demand subject to the operational
constraints as elaborated earlier.

Copyright © 2013 John Wiley & Sons, Ltd. J. Adv. Transp. 2014; 48:798-820
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7.2. Results for sensitivity analysis

The graphical results of scenarios A—F are illustrated in Figures 1-3. The results of scenarios A and B
(in Figure 1) display that when the confidence level changes, it has an impact on the operational profit.
The confidence level signifies the service level (i.e., level of demand) targeted by the airlines,
and hence, the profit is affected if the targeted service level changes. Apart from this, the results of
scenarios A and B established the fact that a higher profit is gained when the value of confidence level
increases, that is, when the level of service rises. The results also show that there is a tendency for the
airlines to purchase and/or to lease more aircraft to meet a higher level of demand but subject to
operational constraints. In particular, for operating periods 5, 6, and 8, the operational profit of the bench-
mark problem is higher than that of scenario B because of the aircraft acquisition decision to meet a higher
demand. Overall, the sensitivity results show that the airlines have to make their operational decision
wisely as well as to set their target properly to maximize operational profit.

Figure 2 shows the sensitivity results in setting the probability of the probable phenomenon.
Scenario C has the probability of 0.6:0.4, scenario D has the probability of 0.4:0.6, and
the benchmark scenario is 0.5:0.5. The results show that scenario C, which has the highest
probability in meeting the demand (i.e., highest level of service) could yield the highest operational profit,
which is in average 21% more than scenario D and 11% more compared with the benchmark scenario.
Comparatively, the benchmark scenario generates 12% more profit than scenario D. As such, it could
be seen that an increment of approximately 1% of the stochastic demand would generate an

Millions
700 -
600 -
500 -
Profit, $ 460 -
300 A
200 -
100
0 e
1 2 3 4 5 6 7 8 Operating
period
M Benchmark problem = ScenarioA M ScenarioB
Figure 1. The results of scenarios A and B.
Millions
700 -
600 + @l
500 -
Profit, $ 1
400 -
300 -
200 -
0 - Operating
1 2 3 4 5 6 7 8 period
M Benchmark problem  m ScenarioC M Scenario D
Figure 2. The results of scenarios C and D.
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Figure 3. The results of scenarios E and F.

additional 1% of the operational profit. This could be explained by the fact that the service level,
which is met at a higher chance (probability) is likely to generate more revenue for the airlines
(from the sales of flight tickets). Hence, it could be seen that the probable phenomena and its
probability associates closely with the level of stochastic demand, which could affect the
operational profit of the airlines.

As displayed in Figure 3, the results of scenarios E and F show that the order delivery constraint
could affect the optimal decision and the level of operational profit. The results illustrate that the higher
the value of the order delivery constraint is, the lower the profit is. For the operating periods 1, 4, 5, and
6, scenario E produces the lowest profit because of the acquisition deposit and cost that are incurred for
aircraft acquisition decision making. Besides, the decision making to purchase and/or to lease aircraft
is also affected by the consideration of the airlines in obtaining the least number of aircraft as long as
the total number of aircraft is adequate to provide the targeted level of service. Hence, it is important to
note that it is not certainly profitable to purchase or lease more aircraft. The decision to purchase (or
lease) lesser aircraft probably contributes a higher profit because of the less charged costs.

7.3. Consistency and stability of results

The consistency and stability of the results could be empirically confirmed by comparing the findings
with the actual operational statistics of the airlines 13,12. Table V summarizes the fleet size of the
airlines (i.e., AirAsia and MAS) as compiled from their annual reports and the fleet management
decision of each operating period as obtained from the model. It could be observed that the fleet size
of AirAsia and MAS during the operating years of 2006-2010 falls within the range of 2 standard
deviations from its average. The fleet management solutions obtained from the benchmark problem
and other scenarios show a similar pattern, that is, the fleet size for the operating periods from 1 to
8 falls within the range of 2 standard deviations from its average. Therefore, the solutions are coherent
with the operating performance of the airlines. As such, the findings in this paper are consistent with
the actual practice, and hence, the stability of the results (as well as the developed model) could be
empirically confirmed.

7.4. Summary

The results obtained from the model are reasonable and stable when compared with the empirical data.
The sensitivity analysis shows that the model and the solutions are sensitive to the choice of parame-
ters. This implies that the values of these parameters need to be chosen with care. In addition, it is
important to note that there is no ideal means to obtain a supreme profit as the optimal fleet management
decision is affected decisively by several factors, that is, management policy of the airlines (for instance,
as reported by MAS 47, as a 100% leased structure is not optimal in the long term, MAS intends to shift to
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Table V. The summary of the fleet management decision.

Fleet size

Empirical (from reports) Model

Scenario

Year AirAsia MAS t Benchmark A B C D E F

Operating year 2006 42 97 1 100 100 100 100 100 100 100
2007 65 102 2 110 110 110 110 110 108 112

2008 78 109 3 102 102 102 102 102 100 104

2009 84 112 4 105 105 106 105 105 104 107

2010 77 117 5 108 108 110 108 108 108 110

6 113 112 115 113 113 113 115

7 118 117 120 118 118 118 120

8 124 122 125 124 124 123 126

Average (AG) 69 107 110 110 111 110 110 110 112
Standard deviation (SD) 17 8 8 7 9 8 8 8 8
AG+2SD 103 123 126 124 129 126 126 126 128
AG —2SD 35 91 94 9 93 94 94 94 96

an optimal mix of leased/owned fleet), the desired scenarios to be optimized, and also the occurrence of
unpredictable uncertainty. Therefore, to assure an optimal operation and fleet management, the aspects as
illustrated earlier should be taken into consideration wisely.

8. CONCLUSION

This study proposed a new methodology to solve the fleet management decision model under
uncertainty. The methodology comes in threefold. First, a five-step framework, which is incorporated
with the SDI, is developed to quantify the demand level under uncertainty for each operating period.
Secondly, a probabilistic dynamic programming model is formulated to determine the optimal number
and types of aircraft to be purchased and/or leased so that the stochastic demand could be met profit-
ably. Thirdly, a probable phenomenon indicator is defined to ensure that the aircraft possession of the
airlines is appropriate at a desired service level. The results of the illustrative case study demonstrated
that the proposed methodology is sensitive to the modeling parameters and it is viable in providing an
optimal solution for the fleet management decision model.

The proposed study reflects the actual situation of the airline industry, ranging from the challenge of
the uncertainty to the practical issues in purchasing and leasing aircraft. Subject to the uncertainty and
operational constraints, the proposed study could produce viable solutions for a long-term aircraft
acquisition and leasing decision model. For the airlines, this is crucial to ensure the efficiency of
management from the operational (by ensuring the supply of aircraft meets the travelers’ demand
level) and sustainability (by maximizing profits) perspectives.

One of the limitations of this study is that the element of service frequency is partially considered. It
could be further extended in the future by incorporating the service frequency as one of the constraints.
The computational efforts could be improved by having computational programming, for example,
MATLAB, C++, and Visual Basic, for better computational efficiency. In addition, a framework will
be derived to illustrate how to quantify the probable phenomena for future study.
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APPENDIX A: MODELING FRAMEWORK OF STOCHASTIC DEMAND.

STEP 1 STEP3
Determine the possible event’s occurrence Determine the possible increment of forecasted demand
STEP2 STEP 4
— Determine the probability of event’s Determine the probability of increment
occurrence (negative effect) of forecasted demand
y
STEP5 P - -
Determine the value of SDI for each CO"VO!u“O“ Algorithm
operating period (Winston, 2004)
Ist<T?
Yes
No
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APPENDIX B: CONVOLUTION ALGORITHM [32].

According to the central limit theorem, the sum Y of n independent and identically distributed random
variables (say, Yi, Y», ..., ¥,,), each with mean u and variance 62, is approximately to have a normal
distribution with mean nu and variance no”. This implies that the random variable ¥ could be
expressed as

YN (npt, no?) B1)

for which ¥ = ¥, + Y, + -+ ¥, =Y Y. With this fact, the normal distribution for the random
number R is formed as
non
RN (— ,—) B2
212 (B2)
for whichR=R; + Ry + -+ R, = Zr:: er is the sum of n random numbers. (Note that each ran-

dom number has a uniform distribution U(0, 1) with mean 1/2 and variance 1/12).
Corresponding to Equation (B2), in order to generate the standard normal variates for the origin dis-
tribution of random number, that is, uniform distribution, the following expression could be formed.

n
SR -t
r=1

I=——F.

n
12

(B3)

could be formed, where z ~ (0, 1). To simplify the computational procedure, n= 12 is used for Equation
(B3), and this results in

12
7= ZR, -6 (iv)
r=1

for which ZZ | R, is the sum of 12 random numbers. On the basis of the standard relation of z= (X — p)/a for

normal distribution, X=u+ oz is obtained subsequently. As such, for the modeling framework of
stochastic demand as elaborated in Section 3, the projected demand, D, could be formed as

12
DOZﬂf+af<ZRr_6> (V)

r=1

for which the forecasted demand, Dy, has mean pand standard deviation ¢

Note that according to Winston 33, n=12 has the advantage to simplify the computational proce-
dure especially the time consumption on a computer. However, there is no problem in using any other
value of n. In other words, other than n =12, the usage of any other value of n would increase the com-
putational difficulty and hence to avoid the difficulty from this aspect, n=12 is chosen particularly to
simplify the computational, by reducing the computational difficulty with the formula.
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