Development of interharmonics identification using enhanced-FFT algorithm
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Abstract: The fast Fourier transform (FFT) is a mostly used tool to measure power system harmonics. FFT, however, is not applicable to
analyse interharmonics due to spectral leakage effect. Although International Electrotechnical Commission (IEC) standard is recommended
for interharmonic measurement, the individual interharmonic frequency and respective amplitude cannot be worked out under this framework.
For this reason, this paper proposes an enhanced-FFT model to build up the relationship between interharmonic frequency and dispersed
leakage energy. The mathematical equation is thus established to find actual value of interharmonic frequency. Moreover, the true interhar-
monic amplitude can be retrieved from the dispersed energy collection. In other words, the sampling window length is no longer required to
match the interharmonic period and the correct measurement results can be achieved. The proposed model is developed using a simple arith-
metic equation so that it is feasible for more efficient calculation for interharmonic analysis. Performance results verify that the proposed

scheme can achieve accurate, rapid and reliable outcomes.

1 Introduction

With an increasing number of power electronics facilities used in
industry, the power line pollution has been seriously deteriorated
due to harmonics generated in electric power system. The situation
even worsens when the applications of periodical time-varying
apparatuses grow and produce interharmonics sequentially in
recent years. It is well known that interharmonics frequencies are
not an integer of the fundamental components, and it is thought
as the inter-modulation between the fundamental and harmonic
components in the system. Major sources have been found in cyclo-
converters, wind turbine, double conversion system, time-varying
loads, variable-load electric drives and unexpected sources [1-3].
In addition to typical problems caused by harmonics, interharmo-
nics bring new problems such as thermal effects, cathode ray tube
flicker, saturation of current transformers, low-frequency oscillation
in a mechanical system, voltage fluctuations, subsynchronous oscil-
lation etc. Even under low amplitude of interharmonic, the above
phenomena may still exist [4—6].

Although FFT is still the most popular method in harmonics ana-
lysis, incorrect results may arise if the sampling window length is
not properly chosen. When the measured waveforms contain inter-
harmonics, FFT will suffer from low accuracy and less computa-
tional efficiency [7-9]. For this reason, an adaptive window width
approach was announced to estimate harmonics/interharmonics
[10]. However, a large initial value is required for the generic wave-
form to avoid deceptively strong correlation. A long computational
time during the iteration process is therefore needed. Another way
that combined Prony-based and downsampling techniques was
reported for harmonics and interharmonics measurement [11].
Unfortunately, the selection of the downsampling coefficient and
estimation order is difficult to be formulated because of sensitivity
to the measured signal. The exact model order ESPRIT algorithm
based on the RD plot is another approach that improved the sliding-
window ESPRIT method; however, its computational time was
a big concern in practice [12]. An interpolated discrete Fourier
transform (DFT) can reduce the spectral leakage and thus find the
correct parameter values of signals [13]. The measurement accur-
acy, however, may be influenced by the location of the interharmo-
nic frequency component. The sliding-window ESPRIT algorithm
was proposed for the frequency estimation of interharmonics [14].
In this model, the interharmonic number is required prior to imple-
mentation, and it may lead to spurious components, line splitting
and occasional failure. Recently, a new approach using single
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channel independent component analysis for both harmonics and
interharmonics was reported. The orthogonal vector of the proposed
model may be unconvinced in convergence [15]. Recently, a group-
harmonic power minimising algorithm for harmonics and inter-
harmonics estimation was reported [16]. Although this method
can achieve an accurate measurement, a searching procedure was
required to reach the solution. Some studies have applied neural
network models to carry out both harmonic/interharmonic analysis
[17-19]. However, their initial parameter settings usually rely on
trial and error. This is somehow discouraged in a real application.

Indeed, the presence of interharmonics poses measurement more
difficulties for some reasons: (i) very low values of interests of
interharmonics (about one order of quantity smaller than harmo-
nics); (ii) variability of frequency, and amplitude; (iii) variability
of the waveform periodicity; (iv) great sensitivity to the spectral
leakage phenomenon. To address aforementioned issues, a guide-
line for interharmonics measurement based on grouping concept
was suggested by IEC 61000-4-7 standard [20]. A 5 Hz frequency
resolution with rectangular window is recommended to be adopted;
however, individual interharmonic information is unavailable from
such a measurement.

2 Enhanced-FFT (e-FFT) model
2.1 Background of Fourier transformation

A periodical waveform can be reconstructed by series harmonic
components via the Fourier transform (FT) analysis, where har-
monic frequency is defined as a multiple of fundamental. Assume
a waveform i (¢) is periodical with satisfaction of Dirichlet con-
dition, it can be expressed as

i(0=) i (1)
n=—oo
where i, = (1/T) fg is(t)eszmﬁ dt, and T(=1/f") is the signal period.
iy is the dc component.
For performing FT, DFT is then introduced as

=
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where L[k] = (1/N) Y= i [n]wy ™, and Wy, = exp (;27/N).
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The Fourier fundamental angular frequency (Aw) for i [n] with
the period T is defined as

_277

Aw T

3)

When the waveform is sampled using p(p > 1) periods, Aw can be
represented as

Aw=—=— 4

where w, = 27/T.
From (4), the Fourier fundamental frequency (Af) is defined as

1 1 1
pT — pNJT, NI, N

where N AN /p, and T 2 /fs. It is noted that N points is sampled
using the sampling rate f;.

The waveform power (P) can be expressed by the Parseval rela-
tion as [21, 22]

PRALI 6)

The power at the frequency f; can be expressed as
PUfi] = LIKP + LIN — k = 21 [k}’ ™

where k=0, 1, 2,...,N2 - 1.
The amplitude of the mth harmonic at f; is then calculated as

A1 = VPIR] = V2Ik] ®)

where m=1, 2,... .M.

It is known that interharmonics contained in a waveform is not
synchronised with the fundamental. As a result, the mth harmonic
power at f; disperses over around the f;. Based on the concept of
group harmonics, all spilled power around the adjacent harmonics
can be collected into a ‘group power’ as [20]

+7

Pl = Y )’ ©)

Ak=—71

where 7 denotes the group bandwidth.
As above, the true harmonic amplitude can be retrieved from col-
lection of all dispersed power as

A1 = VP (10)

2.2 e-FFT algorithm

The proposed e-FFT model is based on the FFT for suiting interhar-
monics measurement. According to the FFT analysis, the relation-
ship between harmonic frequency and dispersed energy can be
classified into two cases: small and big frequency deviation [23].
Case 1: Depiction for small frequency deviation is shown in
Fig. 1a, where the second larger magnitude (4,,[f,,1]) at f;,, is
located at the right side of the dominant frequency at f; with
ALl > Aulfiq]. In view of practice, however, f; may be
wrongly interpreted as the dominant harmonic. The situation is
that the true frequency is equal to f; plus the ‘frequency deviation’
(Af,) defined in (11). On the other hand, it reveals that higher
A, [fy41] introduces more amount of deviation (Af;) distant from
Ji- Case 2: Depiction for a big frequency deviation is shown in
Fig. 1b, where the second larger amplitude (4,[f;]) at f; is
located at the left-hand side of the dominant frequency at f;
with 4, [f;] < A4,,[fi+1]- The f,,; may be wrongly interpreted as
the dominant harmonic frequency in this case. Indeed, the true
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Fig. 1 Relation between harmonic frequency and dispersed energy [23]
a Small frequency deviation
b Big frequency deviation

frequency should be equal to f; plus the ‘frequency deviation’
(Af;)- Higher 4,,[f;,,] also introduces more amount of deviation
(Af,) distant from f;. As illustrated above, both small and big fre-
quency deviation are defined based on the generic phenomenon
of frequency deviation condition, where ‘small’ and ‘big’ only
denotes the deviation status rather than a real value.

The e-FFT model is formulated from the relation between the
frequency deviation amount and dispersed energy distribution [6].
It is induced that the real frequency can be represented by the dom-
inant frequency (f,) plus ‘frequency deviation’ (Af}), i.e. f; + Af;.

The frequency deviation range (FDR) is defined as

+7 2
Ak=1 An1[ﬁc+Ak]

M == SAf (1)
\/ZAk:—q—Am[fk+Ak]2 + \/ZX;:1 Aplfisail

where Af is determined by N and f; due to Af =f;/N, and
7=0,1,2,3, ...

From the group-harmonic concept, the dispersed energy around
the major harmonic can be efficiently collected for retrieving the
original amplitude [20]. Thus, the Restored Amplitude (RA) can
be defined as

+7 5
Z Am [fk+Ak]

Ak=—1

R.A.

(12)

where =0, 1, 2, 3, ...
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Fig. 2 Spectrum of v(t) using FFT
a Waveform
b Spectrum

The following example is used to demonstrate the calculation of
Af and RA. Assume the signal, i.e. i(f) = 0.25sin(27-33 - 1)+
1.0sin (277 - 238 - t), contains two major harmonics located at 33
and 238 Hz, and their amplitudes are set as 0.3 and 1.0, respective-
ly. Please note that f;=1.28 kHz, N=256 and 7= 5, where Af=
5 Hz. The waveform and its spectrum using FFT are shown
in Figs. 2a and b, respectively. At both 33 and 238 Hz, it can be
seen that some energy are dispersed around the neighbour sides
considerably.

At 33 Hz, the FDR beyond 30 Hz can be calculated using (11) as

(see equations (13) and (14))

This interharmonic frequency (33 Hz) is found equal to 30 Hz (f;)
plus 2.5 Hz (Af}), close to the actual frequency value (33 Hz). Its
RA is 0.24 that is close to the actual amplitude value (0.25).

At 238 Hz, the FDR beyond 235Hz can be calculated
using (11) as

(see equations (15) and (16))

This interharmonic frequency (238 Hz) is found equal to 235 Hz
(fy) plus 2.9 Hz (Af,), very close to the actual frequency value
(238 Hz). Its RA is 0.98 that is very close to the actual amplitude
value (1.0).

The 7 is set as five for the above case. In reality, the selection of
group bandwidth (7= 1-5) should consider harmonics locations to
avoid overlapping between each other. Based on this principle, the
e-FFT model is formulated by the following rule:

[A-Al<4af=r=1
40 < |fi—fo| <6Af = T=2
6Af < |fi —fo| <8Af=>1=3
BAf < |fi —f| < 10Af = 7=4
|fi —f] = 10Af = 7=5

where f; and f, are assumed as two arbitrary near major harmonics
in the waveform.

The flowchart of the proposed e-FFT model is shown in Fig. 3,
and its performance procedure is demonstrated as follows [24].

(i) Select f;, N and sample the signal.
(i) Perform FFT.
(iii) Determine the number (M) of major harmonics.
(iv) Define the biggest amplitude and second big amplitude at f;
and f,, respectively.
(v) Check if | - fzy < 4Af. If yes, select 7=1 and go to Step
10. Otherwise, go to next step.

V0.17% +0.0372 + 0.0152 + 0.00782 + 0.0057>

Af, =

Af

0.175

= .5>~25H
017510175 0 = 2o (H2)

V0.037 4 0.041% + 0.048 + 0.066% + 0.14> + /0.172 + 0.037> + 0.0152 + 0.0078? + 0.0057> (13)

RA. = v0.037% + 0.041% + 0.048% + 0.066% + 0.14% & 0.17% + 0.037% + 0.015% + 0.00782 + 0.0057>

(14)
~0.24
A V0.752 +0.212 + 0.122 + 0.086% + 0.0662 Af
k= .
V0.069> +0.087% + 0.122 + 0.19% + 0.512 + /0.75% + 0.212 + 0.12% + 0.086% + 0.066> (15)
0.8
=—— - 5~29(H
057108 0 =20
RA. = v/0.069% + 0.0872 4+ 0.122 + 0.19% + 0.512 4 0.752 + 0.212 + 0.122 + 0.086? + 0.066 (16)

~0.98 = 1.0
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Fig. 4 Analysis of s(t) with Af=5 Hz
a Waveform of s(¢)
b Spectrum of s(¢) using FFT

(vi) Check if 4Af < |f; — f3]| < 6Af. If yes, select 7=2 and go
to Step 10. Otherwise, go to next step.
(vii) Check if 6Af < |f; — f3| < 8Af. If yes, select 7=3 and go
to Step 10. Otherwise, go to next step.
(viii) Check if 8Af < |f; —f;| < 10Af. If yes, select 7=4 and go
to Step 10. Otherwise, go to next step.
(ix) Select 7=5.
(x) Calculate Af;, RA
(xi) Exclude the f; component (the biggest amplitude) that has
been identified, and M=M — 1.
(xii) Check if M=0. If yes, the procedure stops. Otherwise, go
back to Step 4.

3 Model verification
3.1 Model performance

To verify the proposed model, the waveform s(¢) is tested.

s(t)=a;sinQRm-f; - t)+a;sinQw-f; - )+ apsinRm-f, - )
+assinQRm-fi3-t)+aysinRw-fiy - )+ a;ssin Q- fis - )
(17)

where a; = 1.0 is the amplitude of the fundamental, and its respect-
ive frequency is f; = 50 Hz. The amplitudes of interharmonics are
a; =03,a,=04,a;=0.2,a, =0.2,a; =03, and their re-
spective frequencies are f;; = 68 Hz, f,, = 96 Hz, f;; = 134 Hz,
fu = 183 Hz, f;s = 253 Hz.

The waveform of s(f) shown in Fig. 44, and its spectrum using
FFT is shown in Fig. 4b. It is obvious that a considerable dispersed
power always comes with interharmonics and thus causes incorrect
results.
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3.1.1 Analysis with Af = 5 Hz: The parameters of e-FFT model are
set as f;=1.28 kHz, N=256, i.e. Af=5 Hz. The interharmonics
analysis using e-FFT model is carried out by the following five
cases from (17). According to the rule of group bandwidth (7) selec-
tion, 7 is chosen as follows:

(i) For f; = 68Hz,
T=1

(ii) For f, =96 Hz, 4Af(=20)<|f,—fy|=196—68] <6
Af(=30)=7=2

(iii) For f;; = 134 Hz, 6Af(=30) < |fi — fo| = 1134 — 96| < 8
Af(=40)=7=3

(iv) For f;; = 183 Hz, 8Af(=40) < |fy — fis| = 1183 — 134| <
10Af(=50) = 7=4

|fi = fi] = 168 — 50| < 4Af(=20) =

(v) For  f; =253Hz, | fis = fiul (= 253 — 183) > 10Af
(=50)=7=5
Consequently,

Case I:a;; =0.3,f; =68Hz, 7=1

— \/m .Af
V0.0752 £ 0.172 + +/0.212 (18)
0.21
T 0.186+0.21

Ay

.5 ~2.7 (Hz)

RA. = /0.0752 +0.172 + 0.212

~0.28 (19)
The measured frequency is equal to f, = 65 Hz plus Af,=2.7 Hz,
i.e. 67.7 Hz, very close to the real one (68 Hz). On the other
hand, the measured amplitude is ~0.28 that is also close to the
real one (0.3).
Case 2:ap =04, f, =96 Hz, =2

The measured frequency is equal to f, = 95 Hz plus Af;=1.0 Hz,
i.e. 96 Hz, same as the real one (96 Hz). The measured amplitude
is ~0.39 that is very close to the real one (0.4).

Case 3:a;3, =02, f; =134Hz, 7=3

_ V0.182 + 0.022% + 0.00682 "
1/0.0232 4-0.0292 + 0.0552 + +/0.182 + 0.0222 + 0.00682
0.18

~0.066 + 0.18

A

-5~ 3.66 (Hz)
(22)

R.A. = v/0.0232 + 0.0292 + 0.0552 + 0.182 + 0.0222 + 0.0068>
~0.19
23)

It is found that the measured frequency is equal to f;, = 130 Hz plus
Af;=3.66 Hz, i.e. 133.66 Hz, almost same as the real one (134 Hz).
The measured amplitude is ~0.19 that is very close to the real
one (0.2).

Case 4:ay, =02, f, =183 Hz, 7=4

(see equations (24) and (295))

The above results indicate that the measured frequency is equal to
f = 180 Hz plus Af;=2.87 Hz, i.e. 182.87 Hz, almost same as
the real one (183 Hz). The measured amplitude is ~0.19 that is
very close to the real one (0.2).

Case 5:a;5 =03, fis =253 Hz, 7=5

(see equations (26) and (27))

As above, the measured frequency is equal to f; = 180 Hz plus Af; =
2.87 Hz, i.e. 182.87 Hz, almost same as the real one (183 Hz). The
measured amplitude is ~0.19 that is very close to the real one (0.2).

The measured spectrum using e-FFT is shown in Fig. 5, indicat-
ing no dispersed power around harmonics/interharmonics.

Af = 0.093% + 0.041 -Af The comparison between FFT and e-FFT is concluded in Fig. 6.
/0.0612 + 0.372 + +/0.093? + 0.041° (20) As can be seen, the results from e-FFT model are almost identical to
0.10 N the real values for either amplitude or frequency identification, but
T 0384010 5> 1.0 (Hz) traditional FFT is unable to achieve a correct analysis except at fun-
damental component (50 Hz). The maximum error for amplitude
RA. = 00612+ 0372 + 00932 + 0.0412 and frequency estimation using FFT is up to 30 and 4.41%, respect-
v + + + (21) ively. By contrast, the maximum error for amplitude and frequency
~0.39 estimation using e-FFT is only 6.67 and 0.44%, respectively.
v/0.152 4 0.0392 + 0.022 + 0.0122
Af, = -Af
£ J0.015% +0.0232 + 0.0392 1 0.12 + +/0.152 + 0.0392 + 0.022 + 0.0122
24
0.155
=———— - 5~287(H
0.115+0.155 (Hz)
R.A. =+/0.0152 + 0.0232 + 0.0392 4 0.12 + 0.15% + 0.0392 + 0.022 + 0.0122 25)
~0.19
4/0.232 +0.072 + 0.0422 4 0.0312 + 0.0242
A, = -Af

K J/0.0122 + 0.0182 + 0.0282 + 0.0512 + 0.152 + +/0.232 + 0.072 + 0.0422 + 0.0312 + 0.0242

(26)
0.249
0.158 + 0.249 ()

R.A. =+/0.0122 + 0.0182 + 0.0282 + 0.0512 4 0.152 4 0.232 + 0.072 + 0.0422 + 0.0312 + 0.0242 @

~0.3
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Fig. 6 Comparisons of FFT and e-FFT with Af =5 Hz
a Amplitude measurement
b Frequency measurement

3.1.2 Analysis with Af=2.5 Hz: The parameters of e-FFT model
are set as f;=1.28 kHz, N=512, i.e. Af=2.5 Hz. The interharmo-
nics analysis using e-FFT model is carried out by the following
five cases from (17). According to the rule of group bandwidth
(7) selection, 7 is chosen as follows. The spectrum of s(z) using
FFT is shown in Fig. 7. It is obvious that a considerable dispersed
power always comes with interharmonics and thus causes incorrect
results.

12

o 0.8-
% 0.6-

& o04-
o.:_;- | .LI L |
200 300

100

400 =)
Frequency (Hz)

Fig. 7 Spectrum of s(t) using FFT with Af=2.5 Hz

(i) For f;; =68 Hz,
8Af(=20)= 7=3
(i) For f, =96Hz, |f,—fy|=196—68] > 10Af(=25)=

6Af(=15) < |fy —f] = 168 = 50| <

T=75

(i) For f3 = 134 Hz, |f5 — f| = [134 — 96| > 10Af( = 25) =
T=5

(iv) For  f, =183 Hz, |fis = f3] = 1183 — 134 = 10Af
(=25=71=5

(v) For fis =253 Hz, |fis —fu]( =253 — 183) > 10Af( = 25)
=7=5

Case I: a;; =03, f;;, =68 Hz, 7=3

_ +/0.06% +0.022% + 0.0152

~ V0.0362 1 0.057% + 0297 + +/0.067 + 0.022% + 0.015
0.07

T 03+0.07

Ay

Af

-2.5 ~ 0.47 (Hz)
(28)

R.A. = /0.0362 + 0.0572 + 0.292 + 0.062 + 0.0222 + 0.0152
~0.3
(29)

The measured frequency is equal to f;, = 67.5 Hz plus Af;, = 0.47
Hz, i.e. 67.97 Hz, almost same as the real one (68 Hz). On the other
hand, the measured amplitude is ~0.3 that is also same as the real
one (0.3).

Case 2:ap, =04, f, =96 Hz, 7=5

(see equations (30) and (31))
The measured frequency is equal to f; = 95 Hz plus Af,=1.0 Hz, i.
e. 96 Hz, same as the real one (96 Hz). The measured amplitude is
~0.39 that is very close to the real one (0.4).

Case 3: a3 =0.2, f3 =134 Hz, 7=5
(see equations (32) and (33))

The measured frequency is equal to f, = 132.5 Hz plus Af;=
1.57 Hz, i.e. 134.07 Hz, almost same as the real one (134 Hz).

£/0.22 +0.074% + 0.0442 4+ 0.0312 + 0.0232

Ay

Af

0.22

-t 25~ 10H
0327022 2> =10y
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The measured amplitude is ~0.196 that is very close to the real one
0.2).
Case 4:ay, =0.2,f, =183 Hz, =5

(see equations (34) and (35))

The above results indicate that the measured frequency is equal to
Jr = 182.5 Hz plus Af;=0.6 Hz, i.e. 183.1 Hz, almost same as
the real one (183 Hz). The measured amplitude is ~0.196 that is
very close to the real one (0.2).

Case 5: a;5; =03, fis =253 Hz, 7=5

(see equations (36) and (37))

As above, the measured frequency is equal to f, = 252.5 Hz plus
Af,=0.6 Hz, i.e. 253.1 Hz, almost same as the real one (253 Hz).
The measured amplitude is ~0.29 that is very close to the real
one (0.3).

The measured spectrum using e-FFT is shown in Fig. 8, revealing
no dispersed power around harmonics/interharmonics.

The comparison between FFT and e-FFT is concluded in Fig. 9.
It can be seen that the results from e-FFT model with Af=2.5 Hz
provides even better performance outcomes than Af=5 Hz.
Although the measurement in frequency estimation is improved
from traditional FFT, it cannot achieve a correct analysis for most
of amplitude estimation. The maximum error for amplitude and fre-
quency estimation using FFT is 20 and 1.12%, respectively. On the

Amplitude
o o o
S

o
i

o

1 1 I 1 1
100 200 300 400 500
Frequency (Hz) I

o

Fig. 8 Spectrum of s(t) using e-FFT with Af=2.5 Hz

other hand, the maximum error for amplitude and frequency estima-
tion using e-FFT is only 3.33 and 0.05%, respectively.

3.1.3 Analysis with Af =10 Hz: The parameters of e-FFT model
are set as f,=1.28 kHz, N=128, i.e. Af=10 Hz. The interharmo-
nics analysis using e-FFT model is carried out by the following
five cases from (17). According to the rule of group bandwidth
(7) selection, 7 is chosen as follows. The spectrum of s(f) using
FFT with Af=10 Hz is shown in Fig. 10.

(i) For f; = 68 Hz,

T=1

|fii = fi] = 168 — 50| < 4Af( = 40) =

R.A. = /0.0272 + 0.0352 + 0.0512 4 0.0872 4 0.32 + 0.22 + 0.074 + 0.0442 + 0.0312 + 0.023

~0.39 Gl
A — V0.16% +0.0487 + 0.032 + 0.0222 + 0.0182 A
k7 /0.000082 + 0.000142 + 0.000312 + 0.0012 + 0.00912 + +/0.162 + 0.048% + 0.032 + 0.0222 + 0.0182 52)
0.17
011017 0= 197HY
R.A. = /0.000082 + 0.000142 + 0.000312 + 0.0012 + 0.00912 + 0.16 + 0.0482 + 0.032 + 0.022% + 0.0182
~0.196 33)
A — V0052 +0.0242 +0.0172 + 0.0132 1 0.0112 N
k7 /0.0069% + 0.00892 + 0.0142 + 0.0282 + 0.182 + ~/0.052 £ 0.024% + 0.0172 + 0.0132 + 0.0112 o4)
0.06
= > 25~06(H
0187 1 0.06 2> = 06(Hz)
R.A. = /0.0069% + 0.00892 + 0.014% + 0.028% + 0.18% + 0.052 + 0.0242 + 0.0172 + 0.013% + 0.0112
~0.196 33)
A= V0.075% +0.0367 + 0.0252 1 0.0192 + 0.0162 N
kT /0.0086% + 0.0132 + 0.0212 + 0.0422 + 0.282 + /0.0752 + 0.0362 + 0.0252 + 0.0192 + 0.016 6)
0.09
= 25~06(H
0.28 + 0.09 (H2)
R.A. = v/0.00862 + 0.0132 + 0.0212 + 0.0422 + 0.28% + 0.0752 + 0.0362 + 0.0252 + 0.0192 + 0.016? a7

~0.29
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(i) For f, =96 Hz, |fy—fy| =196 — 68] < 4Af( = 40) =

T=1
(iii) For f;; = 134 Hz, |f; —fi2| = [134 — 96| < 4Af(=40) =
T7=1

(iv) For f,, = 183 Hz, 4Af(=40) < |f;y —fis| = 1183 — 134| <
6Af(=60) = 7=2
(v) For fis =253 Hz, 6Af( = 60) < |fis — fi4|( = 253 — 183) <
8Af(=80)= =3
Case I: a;; =03, f;; =68 Hz, 7= 1

V0242
Af, = 0 Af
V0.0762 + 0.12% + /0.242 (38)
0.24
= "7 10~632(H
014 024 [0=0632(H)
R.A. = 1/0.0762 + 0.122 + 0.242 39)

~0.28
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The measured frequency is equal to f; = 60 Hz plus Af; = 6.3 Hz,
i.e. 66.3 Hz, close to the real one (68 Hz). On the other hand, the
measured amplitude is ~0.28 that is also close to the real one (0.3).

Case 2:a;, =04, f, =9 Hz, 7=1

A, = V0.292 Af

00792 + 0212 + /0297

(40)
0.29
= 2 10~5.6(H
0.23 +0.29 (Hz)
— 2 2 2
R.A. = /0.0792 +0.212 4+ 0.29 D

~0.37

The measured frequency is equal to f; = 90 Hz plus Af,=5.6 Hz, i.
e. 95.6 Hz, very close to the real one (96 Hz). The measured amp-
litude is ~0.37 that is close to the real one (0.4).

Case 3: a3 =0.2,f;=134Hz, 7=1

_ /0.12 A
- . . .
/0.0482 + 0.15% + 4/0.12 2)
ol
T 0.16+0.1

Ay

.10 ~ 3.8 (Hz)

R.A. = v/0.0482 4+ 0.152 + 0.12

“3)
~0.19
The measured frequency is equal to f; = 130 Hz plus Af;, =3.8 Hz,
i.e. 133.8 Hz, almost same as the real one (134 Hz). The measured
amplitude is ~0.19 that is very close to the real one (0.2).
Case 4: a;, = 0.2, f;, = 183 Hz, 7= 2

A= V0.0742 +0.0292 Af
K /00362 + 0.172 + +/0.074% + 0.029? 44)
0.08
= _10~32(H
017 5008 [0=32(Hy)
R.A. = 1/0.0362 + 0.172 + 0.0742 + 0.0292 45)

~0.19

The measured frequency is equal to f; = 180 Hz plus Af,=3.2 Hz,
i.e. 183.2 Hz, very close to the real one (183 Hz). The measured
amplitude is ~0.19 that is very close to the real one (0.2).

Case 5: a;5 = 0.3, fis =253 Hz, 7=3

_ v/0.122 4 0.0567 4 0.038?

~ V0.019% + 0.0467 + 0.257 + +/0.12% + 0.0567 + 0.038?
0.14

T 0255+ 0.14

Ay Af

-10 ~ 3.5 (Hz)
(46)

R.A. = v/0.0192 + 0.0462 + 0.25% + 0.122 + 0.056? + 0.038>
~0.29
(47)

As above, the measured frequency is equal to f, = 250 Hz plus Af;
=3.5 Hz, i.e. 253.5 Hz, very close to the real one (253 Hz). The
measured amplitude is ~0.29 that is very close to the real one (0.3).

The measured spectrum using e-FFT is shown in Fig. 11, indicat-
ing no dispersed power around harmonics/interharmonics.

The comparison between FFT and e-FFT is concluded in Fig. 12.
Clearly, the results from e-FFT model are close to the real values for
either amplitude or frequency identification, but traditional FFT is
unable to achieve a correct analysis except at fundamental
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component (50 Hz). The maximum error for amplitude and fre-
quency estimation using FFT is up to 27.5 and 11.76%, respective-
ly. By contrast, the maximum error for amplitude and frequency
estimation using e-FFT is only 7.5 and 2.5%, respectively.

3.2 Determination of group bandwidth (), sampled point (N)
and sampling rate (f,)

The group bandwidth (7) may influence the measurement accuracy,
and it should be chosen appropriately. The larger group bandwidth
(7) can collect all dispersed power and then regain the actual amp-
litude more accurately. However, a large 7 may lead to a dispersed
power overlapping within near major harmonics. For this reason, 7
should be chosen sufficiently large but to avoid the overlapping
from neighbour harmonics. The selection rule of 7 (1-5) is thus for-
mulated depending on the distribution range of dispersed energy.
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It notes that the N is chosen as N=2", e.g. 64, 128, 256, 512,
1024,....., using f;=128kHz, where Af =20, 10,5,2.5,
1.25, ..., respectively. Correspondingly, the sampling time will
take 50, 100, 200, 400, 800 ms etc., respectively. Clearly, an in-
creasing N can obtain lower Af,, but it will sacrifice for longer sam-
pling time. Hence, a compromise should be reached by both Af and
sampling time.

4  Conclusions

Although FFT is now widely applied to harmonics analysis,
it cannot be directly delivered to interharmonics measurement.
From the proposed e-FFT model, the dispersed energy can be col-
lected efficiently and the interharmonic original amplitude is thus
retrieved. In addition, the interharmonic frequency can be found
using a simple arithmetic computation. The selection of group
bandwidth (7) has been formulated to effectively avoid overlapping
between two close interharmonics. In this model, Af=5Hz is
chosen based on a compromise between the measurement accuracy
and sampling time. Accordingly, even a rapid change of signal vari-
ation can be responded sufficiently fast. For future work, it is sug-
gested to study the case that is involved in different harmonics
sources. This situation may generate unexpected sideband interhar-
monic frequencies that cannot be resolved by current techniques.

5 References

[1] Testa A., Akram M.F., Burch R., £7 4L.: ‘Interharmonics: theory and
modeling’, [EEE Trans. Deliv., 2007, 22, (4), pp. 2335-2348
[2] Karimi-Ghartemani M., Reza Iravani M.: ‘Measurement of harmo-
nics/inter-harmonics of time-varying frequency’, IEEE Trans.
Power Deliv., 2005, 20, (1), pp. 23-31
[3] Lin H.C.: ‘Identification of interharmonics using disperse energy dis-
tribution algorithm for flicker troubleshooting’, IET Sci. Meas.
Technol., 2016, 10, (7), pp. 786-794
[4] Tayjasanant T., Wang W., Li C., £r 4r.: ‘Interharmonic-flicker
curves’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 1017-1024
[5] LiC., Xu W., Tayjasanant T.: ‘Interharmonics: basic concepts and
techniques for their detection and measurement’, Electr. Power
Syst. Res., 2003, 66, (1), pp. 39-48
[6] Lin H.C.: ‘Separation of adjacent interharmonics using maximum
energy retrieving algorithm’, [ET Sci. Meas. Technol., 2016, 10,
(2), pp- 92-99
[7]1 Lin H.C.: ‘Fast tracking of time-varying power system frequency and
harmonics using iterative-loop approaching algorithm’, [EEE Trans.
Ind. Electron., 2007, 54, (2), pp. 974-983
[8] Aghazadeh R., Lesani H., Sanaye-Pasand M., £7 4..: ‘New technique
for frequency and amplitude estimation of power system signals’, /[EE
Gener. Transm. Distrib., 2005, 152, (3), pp. 435440
[9]1 Lobos T., Kozina T., Koglin H.-J.: ‘Power system harmonics estima-
tion using linear least squares method and SVD’, [EE Proc., IEE
Gener. Transm. Distrib., 2001, 148, (6), pp. 567-572
[10] Zhu T.X.: ‘Exact harmonics/interharmonics calculation using adap-
tive window width’, IEEE Trans. Power Deliv., 2007, 22, (4),
pp. 2279-2288
[11] Chang G.W., Chen C.-L.: ‘An accurate time-domain procedure for
harmonics and interharmonics detection’, IEEE Trans. Power
Deliv., 2010, 25, (3), pp. 1787-1795
[12] Jain S.K., Singh S.N.: ‘Exact model order ESPRIT technique for har-
monics and interharmonics estimation’, IEEE Trans. Instrum. Meas.,
2012, 61, (7), pp. 1915-1923
[13] WuR.-C., Tai C.C.: ‘Analysis of the exponential signal by the inter-
polated DFT algorithm’, [EEE Trans. Instrum. Meas., 2010, 59, (12),
pp. 3306-3317
[14] Gu LYH., Bollen M.H.J.: ‘Estimating interharmonics by using
sliding-window ESPRIT’, IEEE Trans. Power Deliv., 2008, 23, (1),
pp. 13-23
[15] He C., Shu Q.: ‘Separation and analyzing of harmonics and inter-
harmonics based on single channel independent component analysis’,
Int. Trans. Electr. Energy Syst., 2015, 25, pp. 169-179
[16] Lin H.C., Chen C.H., Liu L.Y.: ‘Harmonics and Interharmonics
Measurement ~ using  Group-harmonic ~ Power  Minimizing
Algorithm’. Proc. of the World Congress on Engineering, London,
U.K., July 2011, pp. 1300-1305

This is an open access article published by the IET under the Creative Commons
Attribution-NonCommercial-NoDerivs License (http:/creativecommons.org/

licenses/by-nc-nd/3.0/)



[17]

[18]

[19]

[20]

This is an open access article published by the IET under the Creative Commons
Attribution-NonCommercial-NoDerivs License (http:/creativecommons.org/

Lin H.C.: ‘Intelligent neural network based adaptive power line con-
ditioner for real-time harmonics filtering’, /EE Proc., IEE Gener.
Transm. Distrib., 2004, 151, (5), pp. 561-567

Chen C.I: ‘Virtual multifunction power quality analyzer based on
adaptive linear neural network’, IEEE Trans. Ind. Electron., 2012,
59, (8), pp- 3321-3329

Valtierra-Rodriguez M., de Jesus Romero-Troncoso R., Osornio-Rios
R.A., ET 4L.: ‘Detection and classification of single and combined
power quality disturbances using neural networks’, IEEE Trans.
Ind. Electron., 2014, 61, (5), pp. 2473-2482

IEC 61000-4-7: Electromagnetic compatibility (EMC) Part 4:
testing and measurement techniques Section 7: general guide
on  harmonics and interharmonics = measurements  and

licenses/by-nc-nd/3.0/)

[21]

[22]

[23]

[24]

instrumentation for power supply systems and equipment connected
thereto, 2002

Oppenheim A.V., Schafer R.W.: ‘Discrete-time signal processing’
(Prentice Hall, Upper Saddle River, NJ, 1989)

Press W.H., Flannery B.P., Teukolsky S.A., £r 4r.. ‘Numerical
recipes-The art of scientific computing’ (Cambridge University
Press, Cambridge, 1986)

Lin H.C.: ‘Development of leakage energy allocation approach for
time-varying interharmonics tracking’, I[ET Gener. Transm.
Distrib., 2015, 9, (9), pp. 798-804

Lin H.C., Ye Y.C., Huang B.J., ET 4L.: ‘Bearing vibration detection
and analysis using enhanced fast Fourier transform algorithm’, Adv.
Mech. Eng., 2016, 8, (10), pp. 1-14

J Eng, 2017, Vol. 2017, Iss. 7, pp. 333-342
doi: 10.1049/joe.2017.0133



	1 Introduction
	2 Enhanced-FFT (e-FFT) model
	3 Model verification
	4 Conclusions

