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Abstract: Cooperative behavior is the subject of intense study in a wide range of scientific
fields, yet its evolutionary origins remain largely unexplained. A leading explanation of
cooperation is the mechanism of altruistic punishment, where individuals pay to punish
others but receive no material benefit in return. Experiments have shown such punishment
can induce cooperative outcomes in social dilemmas, though sometimes at the cost of
reduced social welfare. However, experiments typically examine the effects of punishing
low contributors without allowing others in the environment to respond. Thus, the full
ramifications of punishment may not be well understood. Here, | use evolutionary
simulations of agents playing a continuous prisoners dilemma to study behavior subsequent
to an act of punishment, and how that subsequent behavior affects the efficiency of payoffs.
Different network configurations are used to better understand the relative effects of social
structure and individual strategies. Results show that when agents can either retaliate
against their punisher, or punish those who ignore cheaters, the cooperative effects of
punishment are reduced or eliminated. The magnitude of this effect is dependent on the
density of the network in which the population is embedded. Overall, results suggest that a
better understanding of the aftereffects of punishment is needed to assess the relationship
between punishment and cooperative outcomes.

Keywords: strong reciprocity, cooperation, altruism, retaliation, simulation, network,
social behavior.

Introduction

Explaining the evolution of cooperation is one of the greatest unanswered questions
facing evolutionary biologists today (Maynard Smith and Szathmary, 1997; West, Griffin,
and Gardner, 2007). Cooperation is instrumental in maintaining human social institutions
(Ostrom, Walker, and Gardner, 1992) and is required among nations to effectively address
global-scale problems (Kaul and Mendoza, 2003; Sandler, 1997). Thus, understanding the
mechanisms that result in cooperation is important to both scientists and policy makers.
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Yet, despite its fundamental importance, the evolution of cooperative behavior remains
largely unexplained.

Several mechanisms have been previously suggested to explain the evolution of
cooperation, including kin selection (Hamilton, 1964), multi-level selection (Fletcher and
Zwick, 2004; Goodnight, 2005; Reeve and Holldobler, 2007; Wilson and Wilson, 2007;
Wilson and Hélldobler, 2005), direct reciprocity (Axelrod and Hamilton, 1981; Trivers,
1971), indirect reciprocity (Boyd and Richerson, 1989; Leimar and Hammerstein, 2001,
Nowak and Sigmund, 2005), and tag-mediated altruism (Axelrod, Hammond, and Grafen,
2004; Riolo, Cohen, and Axelrod, 2001; Spector and Klein, 2006). While these
mechanisms explain some instances of cooperation, they generally apply to limited cases or
special circumstances such as genetic relatedness or long-term relationships between
individuals. The search for a more broadly applicable explanation has increasingly focused
on altruistic punishment, where individuals incur a cost to punish others without receiving
any material benefit in return.

Punishment is ubiquitous among social organisms and wherever cooperating
individuals have an incentive to cheat or free-ride, punishment behavior usually exists as a
deterrent (Frank, 1995). This includes toxin release in colonial bacteria that affects only
non-cooperators (Travisano and Velicer, 2004), the destruction of eggs laid by workers in
social insect colonies (Foster and Ratnieks, 2001), and enforcement of dominance and
mating hierarchies in non-human mammals (Clutton-Brock and Parker, 1995). Even the
process of cellular meiosis can be viewed as a form of policing selfish genes (Michod,
1996). In humans, punishment and policing are common across many diverse societies and
cultural groups (Marlowe et al., 2008) and are prevalent in local-scale management of
common property (Coleman and Steed, 2009). Policy makers view punishment institutions
as key to resolving social conflict both at local scales, in governance of common pool
resources (Dietz, Ostrom, and Stern, 2003; Ostrom et al., 1992), and at global scales where
it is considered a prerequisite for successful international agreements (Barrett, 2003).
Laboratory and simulation experiments generally support the idea that altruistic punishment
can lead to the provisioning of public goods (Boyd, Gintis, Bowles, and Richerson, 2003;
Fehr and Géchter, 2000; Gurerk, Irlenbusch, and Rockenbach, 2006; Ostrom et al., 1992;
Shutters, 2012), though others have demonstrated exceptions to this finding (Cinyabuguma,
Page, and Putterman, 2006; Fehr and Rockenbach, 2003; Herrmann, Thoni, and Gachter,
2008)

While it is fine to propose that altruistic punishment is a mechanism leading to the
evolution of cooperation, this only shifts the underlying question from “why should an
individual cooperate?” to “why should an individual altruistically punish?” As research
begins to focus on the latter question, cultural group selection (Hagen and Hammerstein,
2006; Richerson and Boyd, 2005) and the feedbacks of social structures (Shutters, 2012)
have been recently suggested as mechanisms leading to the evolution of altruistic
punishment.

What has not been adequately addressed is how punishment affects the efficiency of
cooperation, a measure of the net increase in payoffs that result when punishment is used to
induce cooperation (Nikiforakis, 2008; Sefton, Shupp, and Walker, 2007). Even if
punishment induces a society to cooperate there are costs associated with punishing and
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being punished that reduce the overall gains from cooperation, and these must be accounted
for when discussing the efficacy of punishment as a cooperative mechanism.

Previous experiments using punishment show that its use can increase contributions
to a public even though total payoffs decrease compared to a population comprised only of
defectors (Fehr and Géchter, 2000; Ostrom et al., 1992). This negative affect on efficiency
has been demonstrated when interactions are not repeated sufficiently, though increasing
the number of repeat interactions eventually led to positive gains in total payoffs (Gachter,
Renner, and Sefton, 2008; Gilrerk et al., 2006). Thus, it remains unclear in a world of
increasingly frequent one-shot interactions how punishment used to induce cooperation
might affect total payoffs.

Understanding how punishment-induced cooperation affects payoff efficiency is
especially important when considering the aftermath of punishment. Experiments with
punishment typically include only a round of game play and a round in which agents can
punish cheaters. These experiments ignore the fact that punishment in real-world situations
usually elicits further responses of some type.

Thus, the purpose of the current study is not to support or refute mechanisms that
may lead to the evolution of altruistic punishment. Instead, its purpose is to understand how
the efficiency of punishment-induced cooperation is affected when a more realistic range of
behavior is allowed to take place. In this study, the specific behaviors of retaliation and
second-order punishment are allowed in a simulated society and their effects on the
efficiency of cooperation are examined.

Second-order punishment

Sanctioning and policing institutions often exist in human societies to deter cheating
in the provisioning of public goods. But a paradox arises, known as the second-order free-
rider problem, regarding what motivates those who are supposed to punish cheaters
(Hodgson, 2009; Sigmund, De Silva, Traulsen, and Hauert, 2010). Without deterrents
and/or incentives, enforcement agents are expected to avoid the costs and risks of punishing
and to simply ignore cheaters. These agents that avoid their policing duties have an
evolutionary advantage over those that do punish (Dreber, Rand, Fudenberg, and Nowak,
2008) and the mechanism of second-order punishment often exists as a deterrent against
policing agents that do not do their jobs. Second-order punishment occurs when an agent
declines to punish cheaters when given the chance, and is itself punished as a result (Boyd
and Richerson, 1992). Even though such individuals may otherwise cooperate and
contribute substantially to a public good, they are punished because they take no action
against cheaters.

But what is the effect on payoff efficiencies when agents are seemingly coerced into
punishing cheaters? One may reason that, since punishing cheaters induces public good
contributions, punishing those that ignore cheating will only further enhance public good
contributions. On the other hand, laboratory experiments with human participants have
demonstrated the opposite, showing that sanctioning otherwise cooperative agents because
they ignore cheating can inhibit the emergence of cooperation (Denant-Boemont, Masclet,
and Noussair, 2007). This leads to the first question addressed in this study:
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Q1) When agents may altruistically punish others that permit cheating, how is efficiency of
cooperation affected?

Retaliation

Another under-addressed behavior that often co-occurs with punishment is
retaliation. Research has shown that humans and other animals are not indifferent to being
punished and often retaliate at a cost to both themselves and their punisher (Clutton-Brock
and Parker, 1995; Molm, 1994). The prospect of suffering retaliation can deter agents from
punishing free-riders (Nikiforakis and Engelmann, 2011) and ultimately negate the
cooperative effects of punishment (Nikiforakis, 2008). This consequence is frequently
overlooked in studies of punishment-induced cooperation (Denant-Boemont et al., 2007),
which typically allow only punishment of cheaters and do not allow a response from the
punished party. Thus the third simulation allows the ability to retaliate when punished and
seeks to answer the gquestion:

Q2) When a punished agent may retaliate against its punisher, how are aggregate levels of
cooperation affected compared to simulations without retaliation?

Social welfare

In both treatments, second-order punishment and retaliation, the focus of this study
is not simply on how contributions to a public good are affected, but on how a population’s
overall payoffs are affected. Increased contributions to a public good are typically assumed
to be due to cooperative behavior but it may also be that contributions increase because of
coercion. This is an important distinction that becomes clearer when analyzing how a given
treatment affects total net payoffs or payoff efficiency. This study draws a distinction
between cooperation, increasing both contributions and payoffs, and coercion, increasing
contributions at the expense of lower payoffs. Thus, this study also seeks to answer the
question:

Q3) If either retaliation or second-order punishment induces higher levels of cooperation
does it also increase aggregate payoffs?

Population structure

Research has demonstrated that populations embedded in spatially explicit grids can
evolve different aggregate attributes than non-structured populations (Boyd and Richerson,
2002; Killingback and Doebeli, 1996; Killingback and Studer, 2001; Nowak and May,
1992; Page, Nowak, and Sigmund, 2000). More importantly, several studies show that
network structure plays a critical role in the evolution of aggregate behavior such as
cooperation (Chen, Fu, and Wang, 2007; Chwe, 1999; Gould, 1993; Huang, Wang, Xu, and
Wang, 2008; Hui, Xu, and Zheng, 2007; Ifti, Killingback, and Doebelic, 2004; Ohtsuki,
Hauert, Lieberman, and Nowak, 2006; Santos, Rodrigues, and Pacheco, 2006), especially
when those networks are dynamic and coevolving with the agents they govern (Hales,
2005; Santos, Pacheco, and Lenaerts, 2006; Shutters and Cutts, 2008; Takéacs, Janky, and
Flache, 2008).
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Therefore, it is critical to understand not only how second-order punishment and
retaliation affect the efficiency of cooperation but also how differences in population
structure influence outcomes. This study examines the role of social structure by analyzing
evolutionary outcomes both with and without structured societies.

Materials and Methods

To test the questions outlined above, various punishment options were incorporated
into evolutionary simulations of the continuous prisoner’s dilemma. Social simulations,
including agent-based models, individual-based models, and other evolutionary
computational techniques, offer unique insights into dynamic behavior (North, 2005) such
as the relationship between individual behavior and emergent properties at higher scales
(Anderies, 2002; Harrison and Singer, 2006), that are typically not provided by formal
models of social systems (Harrison and Singer, 2006; Sawyer, 2005). Social simulations
also allows careful control over factors that may confound empirical studies such as
emotion, reputation, visual cues, anonymity, or cultural influences (Cederman, 2001), while
probing vast expanses of evolutionary space that would be impractical in laboratory
settings due to cost or time constraints. It should be noted that social simulations are
generally designed as a complement to laboratory experiments and cast studies, not as a
replacement.

To understand the effects of social structure, which are known to significantly
influence results of social simulations (Santos, Rodrigues, and Pacheco, 2006), simulations
were conducted both with and without social structure. When added, social structure
consisted of regular networks of varying density.

The continuous prisoner's dilemma (CPD)

In the standard prisoner’s dilemma players are limited to two choices - cooperate or
defect. Here, that requirement is relaxed and players select a level of cooperation on the
continuum between full cooperation and full defection. This presents an arguably more
realistic picture of choices facing those in social dilemmas (Killingback and Doebeli, 2002;
Sandler, 1999) and is known as the continuous prisoner's dilemma (CPD).

In a CPD game i and j are each given an endowment standardized here to one unit.
From this they independently and simultaneously contribute a portion x € [0,1] to a public
good pool, while keeping the remainder, so that x = 1 represents full cooperation and x =0
full defection (Deng and Chu, 2011; Schofield, 1977). For any given contribution by j, i's
payoff is maximized when x; = 0. This is the expected rational choice or Nash equilibrium
of the CPD. The dilemma arises, however, because total social welfare, measured as total
net payoffs, is maximized when both individuals cooperate fully and x; = x; = 1.

Social Structure

At the beginning of each simulation, a specific network is generated that structures
the population and determines the allowable interactions between agents. All networks are
non-directed, unweighted, and static.

To understand the effects of social structure on outcomes, a number of regular
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networks are used. Often represented as lattice structure, are those in which all nodes have
the same degree d (or number of neighbors) and are arranged in a regular repeating pattern.
In addition, these networks are torroidal, meaning that they have no edges but instead loop
around onto themselves such as the surface of a sphere. Two regular networks used
commonly in simulations, including this study, are the von Neumann network (d = 4) and
the Moore network (d = 8). Hexagonal networks (d = 6) are also used as well as one-
dimensional rings known as linear networks (d = 2). Though regular networks bear little
resemblance to interaction patterns in real-world social systems, their use in simulation
studies reduces confounding effects of social structure because they have no variance in
degree, no edge effects, and uniform distances among individuals in a population. When
used in this study, regular networks are referenced throughout this paper by their degree d.

In contrast to structured societies, complete networks are used in this study to
understand how the absence of social structure affects outcomes. Complete networks are
those in which every node is linked to every other node in the population. Though
technically a regular network with d = N — 1, where N is the population size, an agent in a
complete network has equal probability of interacting with any other agent. Thus, complete
networks are analogous to homogeneous, well-mixed systems that have no social structure.
Throughout this study, simulations using complete networks are synonymous with
unstructured populations.

Base game play

In the base game, agents play the CPD followed by a single round of punishment. A
single simulation run initiates with creation of a social network. Each node is occupied by a
single agent i consisting of strategy (X, ti, Ci, Si) wWhere x; = the contribution i makes to the
public good in the CPD, t; = the contribution below which the agent will punish another
agent in a game being observed by i, ¢; = how much i spends to punish an observed agent
whose contribution is too low, and s; = the amount i spends to retaliate when it has been
punished (in simulations that allow retaliation). In other words, t; determines if agent i will
punish and c; determines how much agent i will punish. Each strategy component x;, ti, Ci, Si
e [0,1] and is generated randomly from a uniform distribution at the beginning of each
simulation. To control for other factors that might contribute to the maintenance of
cooperation, such as history or reputation, agents have no memory of prior interactions or
agents. Every game is effectively one-shot and anonymous.

During a single CPD game an agent i initiates the encounter by randomly selecting j
from its neighborhood, which consists of all nodes one link away from i in the given
network type. Agents are given their endowment of one unit from which each
simultaneously contributes a portion to the public good pool. Payoffs are then calculated as
in Table 1. The initiating player i then randomly selects a second neighbor k, who is tasked
with observing and evaluating i's contribution. If k judges the contribution to be too low (X;
< t), k pays ck to punish i by the amount cM, where M is the relative strength of
punishment referred to here as the punishment multiplier. During a single generation of the
simulation each agent initiates three CPD games and, on average, acts as an observer (and
possible punisher) three times. A single simulation run execute for 10,000 generations.

Each generation consists of three routines - game play, observation and punishment
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(including retaliation and punishment of non-punishers), and selection and reproduction.
During each routine an agent interacts only with its immediate neighbors as defined by the
network type and all interactions take place in parallel. For each agent, p represents the net
payoffs (benefits — costs) an agent earns during a generation. At the start of a new
generation p = 0. It is increased by the amount earned in each CPD but is decreased when
the agent is punished by other agents or when the agent pays to retaliate or punish someone
else.

Table 1. Payoffs p in a CPD with:

(a) players i and j and punisher k observing and possibly punishing i

Payoff Xi >t (k does not punish i) Xi <tk (k punishes i)

Pi 1-x+ I’(Xi + Xj)/2 1-x+ I’(Xi + xj)/2 -cM
Pj 1—x+r(x +x)/2 1—x;+ r(x + x)/2

Px 0 — Ck

(b) punisher k being observed and possibly punished by second-order punisher |
Payoff ty <ty (I does not punish k) ti >t (I punishes k)

Pk 0 -cM

o] 0 —C

(c) player i retaliating when punished by k

Payoff Xi >tx  (k does not punish i) t >t (K punishes, i retaliates)
Pi 1—x+r(x+x)/2 1—x+r(x+x)/2—cM—x
Pk 0 —Ck— XiM

Following game play and punishment, agents compete with one another in the
reproduction routine for the ability to pass offspring to the next generation. During this
routine each agent i randomly selects a neighbor j with which to compare respective
payoffs accumulated during the generation. If p; > p;, i's strategy remains at i's node in the
next generation. However, if p; < p; j's strategy is copied onto i's node for the next
generation. In the event that p; = p;, a coin toss determines the prevailing strategy. As
strategies are copied to the next generation each strategy component of every agent is
subject to mutation with a probability m = 0.10. If selected for mutation, Gaussian noise
with mean = 0 and standard deviation + 0.01 is added to the component. Should mutation
drive a component's value outside [0,1] the value is adjusted back to the closer boundary
value.

Introducing second-order punishment

In a second simulation, second-order punishment was introduced and agents were
given the ability to punish observers who were too lenient on cheaters. In a CPD game with
observer k, a new agent | makes an assessment of whether k’s definition of a cheater is
more lenient than I’s. It does this by determining whether k’s threshold for punishment t is
greater than its own t;. If and only if t, > t, then | inflicts second-order punishment on k, and
| pays an amount c; to have ¢;M deducted from k’s net payoffs.

Evolutionary Psychology — ISSN 1474-7049 — Volume 11(2). 2013. -333-



Collective action and punishment

Introducing retaliation

The third simulation examined the effect of retaliation on cooperative outcomes.
The base case simulation was modified so that an agent i automatically retaliated after
being punished by paying an amount s; € [0,1] to have its punisher sanctioned by the
amount siM. Since s; could evolve to 0, agents might evolve so that they did not retaliate,
even when punished. Three different rules were implemented for calculating how much a
punished agent spent on retaliation. All methods of retaliation are arbitrary in the sense that
their construction was intentionally limited to existing parameters of the model, but are
nonetheless intuitive given the constraint of available variables. The three rules are:

1. s; equals the same amount the punished agent would have spent to punish a low
contributor (s; = ¢;). This assumes that a single strategy component dictates how
much an agent spends to punish others regardless of the reason.

2. si is an independently evolving strategy component (s; is independent of c;). This
assumes that retaliation is a separate form of punishment and governed by its own
strategy component.

3. si equals the amount the agent contributes to the public good in the CPD (si = X).
This reflects the idea that both punishment and public good contributions are non-
selfish behaviors, and so may be governed by the same strategy component.

Simulation variables and output

The important parameter governing the mechanism of altruistic punishment is the
ratio of costs incurred by the punishing party to those of the party being punished (Casari,
2005; Shutters, 2009). Defined above as the punishment multiplier M, this parameter is
analogous to the strength or efficiency of punishment and, along with network type, is an
independent variable in these simulations. The dependent variables of interest are the mean
contribution and the mean payoff which evolve in a population after 10,000 generations.
The mean contribution represents the population's level of cooperativeness while the mean
payoff is a measure of the population's social welfare.

It is important to note that the magnitude of payoff values collected is somewhat
arbitrary. A more meaningful measure is the magnitude of change in payoffs due to the
various punishment and structural treatments. Thus, payoff results are presented in this
study by a measure known as payoff efficiency, where 0% efficiency means that payoffs
equal those expected in a population composed entirely of defectors without any form of
punishment (6.0 in this case) and 100% means that all members of the population
contribute their entire endowment to the public good and that no punishment of any kind
takes place (for a mean payoff of 9.0 in this case). While it is not possible for a population
to evolve higher than 100% payoff efficiency, it is possible for populations under
punishment treatments to evolve negative payoff efficiencies. This is due to the additional
costs incurred during acts of punishment, both by the punishee and the punisher.

For any given parameter set (Table 2), 100 replications were conducted at M = 0.0

Evolutionary Psychology — ISSN 1474-7049 — Volume 11(2). 2013. -334-



Collective action and punishment

and then at subsequent values of M in increments of 0.5, up to M = 10.0. Because aggregate
outcomes using retaliation still showed considerable variability when M > 10.0, simulations
were run additionally from M = 10.0 to M = 30.0 in increments of 5.0.

Table 2. Simulation parameters and their values used in the continuous prisoner’s dilemma.

Parameter Values
Population size (N) 400
Generations per simulation run 10,000
Games initiated by each agent in a generation 3

Value range for strategy components (x, t, c, ) [0,1]
Probability of strategy component mutation (m) 0.1

Mean £SD of Gaussian noise added during mutation 0+0.01
Punishment multiplier (M), [begin : end : step] [0:10:0.5]
Public good multiplier (r) 1.5

Results and discussion

Control case: effects of first-order punishment only

In the first simulation agents played the CPD followed by a single round of
punishment. Agents could pay c to have a low contributor punished by an amount cM. This
is the control case as neither second-order punishment nor retaliation was allowed.
Consistent with previous studies (Gurerk et al., 2006; Shutters, 2012), cooperation evolved
despite the fact that cooperators had no direct incentive to punish and could ignore cheaters
without repercussions (Table 5). As M increased in these simulations, cooperation evolved
in all simulations with social structure (Figure 1, solid lines). For each regular network, at
some threshold value of M (Table 3) the population underwent a rapid transition from
nearly full defection to nearly full cooperation. In simulations without social structure
cooperation never evolved and mean contributions to the public good evolved to
approximately 0.

Previous studies have suggested that altruistic punishment may only be sustained
through group selection (Boyd et al., 2003). One may be puzzled then that this result
exhibits sustained punishment without discrete groups. However, Wilson and Wilson
(2007) assert that what is important for group selection is not that agents form discretely
bounded groups, but that their social interactions are local compared to the entire
population. This assertion is supported by the current results from simulations with simple
(first-order) punishment only. Not only did punishment, and subsequently cooperation,
emerge in networked populations where interactions are local, but the more localized,
measured as lower average degree d, the more readily punishment proliferated (Table 3).

The value of M at which populations transitioned to cooperation was particularly
influenced by the mean degree of the network. This relates to a debate regarding the effect
that network density has on the ability of a networked population to evolve cooperative
behavior. Researchers have previously asserted that the more densely connected a
population, the more likely that it will evolve cooperation (Marwell and Oliver, 1993; Opp
and Gern, 1993), an assertion supported by Jun and Sethi’s (2007) simulation experiment.
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However, many recent studies suggest the opposite, showing that cooperation is inhibited
in denser networks (Flache, 2002; Flache and Macy, 1996; Takacs et al., 2008) and that
increasing average degree requires increasing the relative benefit of cooperative acts before
cooperation can emerge (Ohtsuki et al., 2006). Results from this study strongly support the
latter view that denser networks inhibit the evolution of cooperation. Though full
cooperation eventually evolved on all regular networks, the severity of punishment, M,
required to evolve cooperative populations increased as the density of the network
increased (Table 3). This finding is similar to that of Ifti et al. (2004) which showed that as
neighborhood size increases beyond a critical threshold, cooperation collapses.

Table 3. Approximate value of M required for transition from defection to cooperation,
without and with second-order punishment (20P).

Approximate transition value of M

Network type d Without 20P With 20P
Complete 399 N/A? 11.0
Regular networks 2 1.5 1.6

4 1.8 2.8

6 2.2 4.1

8 2.8 5.7

% no transition occurred with increasing M even at values as high as M = 5,000.

Effects of second-order punishment: Structured societies

In the second set of simulations, agents could not only pay c to punish low
contributors by an amount cM, they could also pay to punish those who had a higher
tolerance for cheaters than themselves. Previous simulations have shown that when using a
cultural group selection mechanism, second-order punishment may help to stabilize
cooperative behavior in a population (Henrich and Boyd, 2001). However, results here
show that instead of enhancing the cooperative effect of punishment, simulations using
second-order punishment required higher values of M to induce cooperative behavior than
simulations without social structure (Figure 1). In effect, punishment needed to be more
severe to achieve cooperation than when there was no option for second-order punishment
(Table 3).

One possible reason for this result is that in simulations with second-order
punishment, agents that contributed fully to the public good could still suffer punishment
for other reasons. Regardless of how cooperative they were, if they were lenient on
cheaters, they might be the target of second-order punishment. Thus, many cooperative
agents that might have helped move the population toward full cooperation could be
injured through sanctions, making these punishers less fit and decreasing the overall
effectiveness of punishment. This finding suggests that attempts to incite individuals to
police each other through the threat of peer punishment may have unintended and adverse
consequences.

Evolutionary Psychology — ISSN 1474-7049 — Volume 11(2). 2013. -336-



Collective action and punishment

Figure 1. Results of simulations with first-order punishment only and with both first- and
second-order punishment.

1.0

o°

0.5 1 : unstructured

1.0 ¢

Mean Ending Contribution

0.5 1

: : 0.0 oo :
0 5 10 0 5 10

Punishment Multiplier M

Note: Results of simulations with first-order punishment only (solid lines) and with both first- and second-
order punishment (dashed lines). Mean ending CPD contributions vs. M are presented for populations on a
complete network and on three regular networks of varying degree. Each data point represents the mean
ending contribution rate of 100 simulation runs.

It is important to understand that there are multiple ways to implement second-order
punishment. In this study, an agent | bases its decision to inflict second-order punishment
solely on an assessment of the traits of the observed first-order punisher k. Namely, |
compares its own threshold for defining a cheater to the threshold of k. One alternative
method of implementing second-order punishment is for | to observe the behavior of k in
response to a third party i, where i is a participant in a CPD game. Once k determines
whether or not to punish i, | then determines whether it would have taken the same action.
If k reacted differently, then | inflicts second-order punishment on k. In other words, if |
determines that i was a cheater and that k did not punish i, then | punishes k. Likewise, if |
determines that i was a cooperator but was still punished by k, then | punishes k for being
overly punitive. These last two cases may be implemented separately as well, leading to
many alternative mechanisms for implementing second-order punishment. Therefore,
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future research should seek to isolate the effects of different mechanisms of second-order
punishment.

Effects of second-order punishment: unstructured societies

A surprising result was the ability of second-order punishment to induce
cooperative outcomes in unstructured populations. Though simulations on complete
networks evolved to full defection in every other treatment in this study, the addition of
second-order punishment both increased cooperation and aggregate payoffs to relatively
high levels (Table 4). With increasing M, levels of both public good contributions and
payoffs using complete networks eventually surpassed those using regular networks (Figure
2).

This result suggests that at some point in a continuum of social structures, altruistic
punishment alone becomes insufficient as a mechanism for upholding cooperation and
second-order punishment emerges as a solution (see also Sigmund et al., 2010). If one
considers this structural continuum as describing not simply the average degree of a
society, but its overall size and complexity then a plausible example of the need for higher-
order punishment can be viewed in the developmental dynamics of police agencies. As
cities increase in population, and their policing agencies grow in size, the agencies typically
add second-order punishment organizations (Wilson, 1963). Known variously as internal
affairs, internal investigations, or similar designations, these organizations are responsible
for policing the police. Evidence for this trend toward a need for higher order punishment
may be further seen among the largest cities where citizen panels are frequently instituted
to monitor the activities of internal affairs divisions. This emergence of third-order
punishment may indicate that as societies continue along a continuum of societal size and
complexity, increasingly higher order punishment levels are required to maintain
cooperation.

Table 4. Mean ending payoff efficiency under different social structures, both without
punishment and with different punishment treatments.

No Punishment  Second-order Retaliation
Network type d punishment  only? punishment®  (type 3)*
Complete 399 0.003 -0.007 0.883 -0.043
Regular networks 2 0.006 0.541 0.157 -0.090
4 0.005 0.712 0.552 -0.028
6 0.005 0.736 0.663 -0.060
8 0.004 0.752 0.716 -0.085

#mean ending payoff efficiency of 100 runs at M = 15

Effects of retaliation

In the third set of simulations, a punished agent was allowed to immediately
retaliate against its punisher using one of three different rules (described above) to
determine the amount s that the retaliating agent spent to impose a cost of sM on its
punisher. Using retaliation rule 1 (s; = ¢;), cooperation did not evolve on any network. The
ability to retaliate led to the collapse of cooperation that evolved when there was no

Evolutionary Psychology — ISSN 1474-7049 — Volume 11(2). 2013. -338-



Collective action and punishment

retaliation. Likewise, under rule 2 (s;i is independent of c;) full defection evolved on all
social structures. In simulations using rule 3 (si = x;) results were more complex. As with
simple punishment, simulations with structured populations underwent a rapid transition
from almost no contributions to some positive level of contributions with increasing M.

However, contributions did not transition to full cooperation as before but instead
plateaued at a value between full cooperation and full defection, a value that varied by
network density (Table 5). In addition, payoff efficiency initially rose with increasing M
but then fell to negative levels (Figure 3), meaning populations with the ability to retaliate
fared worse than populations composed entirely of defectors and no punishment. Payoff
efficiency decreased in the presence of retaliation even though some level of public good
contribution was achieved. This result demonstrates the provisioning of public goods
through what may be better described as coercion than cooperation.

Because humans often do retaliate after being punished (Molm, 1994; Nikiforakis,
2008), these results challenge the idea that cooperation may be the product of altruistic
punishment in real world situations. If altruistic punishment actually has been an important
mechanism in the evolution of cooperation, then it is likely that other mechanisms also
existed to suppress or avoid retaliatory behavior. This may explain the frequency of
institutional policies like those of the United States Department of Labor, which penalize or
otherwise discourage retaliation against whistleblowers (USDL, 2009).

Table 5. Mean ending contributions £SD under different social structures, without
punishment, with one round of punishment, and with both a punishment and retaliation
(rule 3) round.

Network type d No punishment Punishment® Retaliation”

Complete 399  0.003 +0.001 0.030 £0.010 0.036 +0.050

Regular networks 2 0.006 +0.001 0.996 +0.002 0.949 +0.015
4 0.005 +0.001 0.998 +0.001 0.277 +£0.064
6 0.005 £0.001 0.997 +£0.002 0.115 +0.035
8 0.004 +0.001 0.990 +0.017 0.065 +0.018

#mean ending contribution of 100 runs at M = 4
> mean ending contribution of 100 runs at each M = 10, 15, 20, 25, 30 (500 total runs)
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Figure 2. Effects of second-order
punishment using four different networks.
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Figure 3. Effects of retaliation using four
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Table 6. Summary of effects of different punishment treatments on cooperative outcomes
(public good contributions).

Treatment type Without social structure With social structure

Punishment of cheaters only No cooperation emerged Cooperation emerged at
sufficiently high values of M,
with the required value
increasing as network density

increased
Punishment of cheaters At sufficiently high values of Cooperation emerged as with
followed by second-order punishment multiplier M, punishment of cheaters only, but
punishment nearly full cooperation required significantly higher
emerged values of M to emerge
Punishment of cheaters No cooperation emerged Cooperation emerged as with
followed by retaliation punishment of cheaters only, but

its magnitude was significantly
lower, and decreased as network
density increased

Further considerations of social structure

In this study | have restricted structured populations to homogeneous regular
networks to exclude confounding effects of variation among agents in degree, connectivity,
edge effects, etc. However, regular networks bear little resemblance to the patterns of
interactions among living things, particularly in humans, though they are arguably more
representative of living systems than complete networks in which agents interact equally
with all other members of a society. To briefly assess the effect of subsequent punishment
behavior under more realistic social structures, supplemental simulations were run using
small-world networks (Watts and Strogatz, 1998) and scale-free networks (Barabasi, 2009;
Tomassini, Pestelacci, and Luthi, 2007), both of which are common in complex physical
and social systems (Barabasi and Albert, 1999; Dorogtsev and Mendes, 2003).

Under small-world networks, results in all cases were qualitatively equivalent to
results with regular networks presented in Table 6. However, results using scale-free
networks present a challenge as neither second-order punishment nor retaliation appeared
to have any effect on simulation outcomes. Both cases present ample opportunities for
future research as they not only generate interesting results but are more applicable to the
social structures under which social behavior likely evolved.

Conclusion

This study has built upon empirical studies that suggest altruistic punishment is a
mechanism that leads to cooperation. Specifically, it examines two types of behavior that
often occur in the presence of punishing behavior, retaliation and second-order punishment.
Using computational social simulations, results show that retaliatory behavior almost
always hinders the ability of punishment to induce cooperative behavior and that second-
order punishment is most effective when populations are highly connected and/or well-
mixed. These results concur qualitatively with observations from human social systems —
Evolutionary Psychology — ISSN 1474-7049 — Volume 11(2). 2013. -341-
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that retaliation is often suppressed and that second-order punishment frequently emerges
when social systems grow beyond a certain threshold of size and complexity.
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