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Abstract: In the field of hot rolling process monitoring, the activation of non-linear dynamic behaviour may render the procedure of fault
diagnosis more difficult. Principal component analysis (PCA) is known as a popular method for diagnosis but as it is basically a linear
method, it may pass over some useful non-linear features of the system behaviour. One possible extension of PCA is kernel PCA
(KPCA), owing to the use of non-linear kernel functions that allow introduction of non-linear dependences between variables. The objective
of this study is to address the problem of fault diagnosis (in terms of non-linear activation) in hot rolling automation system using a
KPCA-based method. The detection is achieved by comparing the subspaces between the reference and a current state of the system
through the concept of subspace angle. It is shown in this work that the exploitation of the measurements in the form of KPCA can effectively
improve the detection results.
1 Introduction

A significant process in the areas of manufacturing and processing
of metals is the tandem rolling of hot metal strip. In the case of steel,
almost one-half of the finished product made in the world is in the
form of sheet and strip that originally is produced in a hot strip
rolling process. While this unquestionably reflects a fundamental
drive of the industry for higher efficiency production, more specific
factors include operation rationalisation moves such as the syn-
chronisation with continuous casting plant, and a series of equip-
ment refurbishments aimed at higher product quality [1].
Hot strip rolling is a kind of high-production and high-efficiency

industrial process. Its purpose is to process cast steel slabs into steel
strip with a wide range of thickness. Because of its huge size and
large investment a hot strip mill need to have a lifetime of sev-
eral decades. The mill must be capable of meeting the market
demands for a wide range of steel grades, in particular, high strength
and advanced high strength steels with good cold formability and
with superior strip properties.
The primary function of the hot strip mill (HSM) is to reheat

semi-finished steel slabs of steel nearly to their melting point,
then roll them thinner and longer through some successive rolling
mill stands driven by motors, and finally coiling up the lengthened
steel sheet for transport to the next process. The slabs, of up to 35 t
weight, are typically 250 mm thick and 10 m long, and the rolled
strips are typically 2 mm thick and 1250 m long. The reheat
furnace ensures that the slab is at a suitable temperature to start
hot rolling, which is ∼1200°C. The next unit, the roughing mill
(RM), is responsible for major reductions in slab thickness (e.g.
a reduction from 200 to 30 mm). The transfer table carries the
slab, now called a transfer bar, from the RM to the finishing mill
(FM). The transfer bar is typically 40–90 m long and 0.5–1.5 m
wide. A relatively recent development in hot strip mill design, the
coilbox, is sometimes used to wrap the transfer bar into a coil in
order to obtain a more uniform temperature profile along the
strip. The transfer bar is then peeled and fed into the FM, which pro-
gressively squeeze the steel to make it thinner. As the steel becomes
thinner, it also of course becomes longer, and starts moving faster.
Because the single piece of steel will be a whole range of different
thicknesses along its length as each section of it passes through a
different stand, different parts of the same piece of steel are
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travelling at different speeds. Dimensions of hot and thin strip,
especially the width, are sensitive to tension variations. The
tension variations are inevitable in tandem mills, because the roll
rotation speeds cannot be regulated with sufficient precision.
In order to add a degree of freedom that prevents abrupt tension
changes, and to serve as a sensitive indicator of tension variations,
loopers are used. A looper is a metal cylinder supported by an arm
free to move around a pivot. Keeping the strip above the pass line, it
stores the extra amount of strip that is necessary for strip tension
regulation. The strip emerging from the FM is typically much
longer than the runout table; so, the coiling starts before the tail
end leaves the FM. This requires very close control of the speeds
at which each individual stand rolls; and the entire process is con-
trolled by computer. By the time it reaches the end of the mill, the
steel is travelling at about 40 miles per hour. Afterwards it is cooled
down intensively by water sprays from coolant headers along the
runout table and then winded up in a coiler, which is essentially a
rotating mandrel. During this part of the process, piece temperatures
are important and should be, typically, 870°C after the last rolling
stand and 600°C at the coiler [2]. At the same time, a series
of quality control measures, such as automatic thickness control
(AGC), automatic width control, automatic shape control, and auto-
matic temperature control, are implemented to guarantee the super-
ior quality of the products.

The outline of a typical 1700 mm HSM is illustrated in Fig. 1,
where R1 is the No. 1 stand of RM, HSB and FSB is the high-
pressure descaling box and finishing descaling box, respectively,
E1 and FE1 are the roughing edger mill and finishing edger
mill, respectively, CB and CS are the coil box and crop shear, res-
pectively, RET and RDT represent the RM enter and delivery tem-
perature, respectively, FET and FDT represent the FM enter and
delivery temperature, respectively, and CT represents cooling
temperature.

Due to the demanding dimensional quality requirements and
multitude of operating objectives, the FM has in time become a
complex unit equipped with a high level of automation [3]. The
surface quality, internal defects, shape, thickness, width and
microstructure of the hot-rolled strip directly affect the quality of
downstream processing products. Throughout the HSM automation
system, there are 55 process variables affecting the 3 surface
quality, 40 process variables affecting the internal defects, 36
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Fig. 1 Typical hot strip mill layout
process variables affecting the three coupled variables of the
strip shape, plate thickness, plate width, and up to 108 process vari-
ables affecting the microstructure and properties of materials [4].
These process variables include temperature, roll force, displace-
ment, thickness, width, velocity, pressure, tension, torque, current
parameters and so on. These process variables are coupled to
each other, for example, the change of roll gap will affect the
strip exit thickness, and then exit thickness changes will affect
the forward slip, at the same time, the factors affecting the forward
slip also include reduction, the friction coefficient between the
roller and the rolled piece and so on. Besides the mutual coupling
characteristics, the rolling process variables also have the character-
istics of non-linearity, uncertainty, large scale, multi scale and so
on. Therefore, the rolling mill system is a very typical non-linear
system, and there is a strong non-linear relationship between the
process variables.

The complexity of rolling technology and the characteristics of
high temperature, high pressure and high speed in hot rolling
process determine the relatively high failure rate of automation
system, and even a tiny fault in production process may cause sig-
nificant economic losses. In order to guarantee the quality of the
products, and keep the rolling process in a continuous and reliable
operation, the engineers and operators need real-time monitoring of
the running conditions of the whole rolling process, especially the
abnormal conditions that may affect the quality of products and
safety of personnel and equipment.

The increasing pressure of competition and the tighter market are
forcing the plant users to seek the optimum utilisation of their facil-
ities, improved product quality and an extended product mix. All
these presuppose a high availability of the plants and the avoidance
of unforeseen failures. Moreover, the maintenance costs have to
be reduced to a minimum in order to continue to be competitive.
For a long time, due to the inability to predict the occurrence of
faults, people have to take two measures: The first is maintenance
when the equipment failure, but which will lead to a large economic
loss, high maintenance costs, and even casualties. The second is a
regular maintenance of equipment, which has a certain planning
and preventive, but a lot of blindness, may easily lead to ‘over
repair’ or ‘under repair.’ The technology of fault diagnosis is devel-
oped with the historical evolution of equipment technology and the
scientific development of maintenance activities, and makes the
equipment maintenance history into the stage of condition based
maintenance.

The prompt detection and precise diagnosis of faults become a
main requirement for any enterprise for safe, optimal and profitable
operation. For that reason, the problem of fault diagnosis and diagno-
sis for industrial processes has received considerable attention during
the last two decades. Although of the non-linear characteristics of
most of the industrial processes, the majority of the fault diagnosis
This is an open access article published by the IET under the Creative
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methods are of linear nature, e.g. principal component analysis
(PCA). PCA is the most widely used data-driven technique
for process monitoring since it can effectively deal with high-
dimensional, noisy and highly correlated data by projecting the
data onto a lower-dimensional subspace which contains most of
the variance of the original data [5]. However, PCA sometimes
shows quite a degraded performance when the process exhibits
strong nonlinear correlations between its variables [6], and most of
the existing non-linear PCA approaches are based on neural
network, which has to solve a nonlinear optimisation problem[7].
Among the non-linear PCA techniques, KPCA developed by
Schölkopf has been attracted because it does not involve non-linear
optimisation [8], it is as simple as in linear PCA, and it need not
specify the number of principal components (PCs) prior to modelling
compared to other non-linear methods [9, 10]. The core idea of kernel
PCA (KPCA) is to first map the data space into a feature space
using a non-linear mapping and then compute the PCs in the
feature space. It should also be noted that KPCA only requires the
solution of an eigenvalue problem, and, since it can incorporate dif-
ferent kernel functions, KPCA can handle a wide range of non-
linearities. The main advantage of the KPCA method over referred
non-linear PCA approaches is that no non-linear optimisation
should be involved [7]. Lee et al. [11] used this method for non-linear
process monitoring. Hiden et al. [12] suggested non-linear PCA
using genetic programming. Shao et al. [13] proposed a non-linear
PCA based upon an input-training neural network. Cheng et al.
[14] used adaptive KPCA to monitor small disturbances of non-linear
processes. Zhang [15] integrated KPCA and kernel independent
component analysis for, respectively, monitoring the Gaussian part
and non-Gaussian part of a process. Further, support vector
machine is used to classify the fault types. Zhang et al. [16] used
kernel partial least squares for non-linear process monitoring.

Although a lot of approaches have been used in the fault diagnosis
of hot rolling process [17–23], but KPCA has not been found. This
paper focuses on the development and application of KPCA techni-
ques to address these concerns specifically within the steel industry.
The motivation for the application of empirical-based methodolo-
gies lies in the fact that monitoring and fault diagnosis can be
carried out through process representations (models) which do not
require the expert development of phenomenological models.
KPCA is capable of efficiently modelling the non-linear relation-
ships that exist between sensor measurements and quality variables.
In this research, we use KPCA approach for hot rolling fault diagno-
sis, and through the analysis of the test result, it is proved that the
KPCA method is more effective than the PCA method.

This paper is organised as follows. Section 2 explains KPCA and
its properties. In Section 3, the KPCA-based fault diagnosis to a
HSM is presented and discussed. Finally, Section 4 provides con-
cluding remarks.
Commons J Eng, 2017, Vol. 2017, Iss. 9, pp. 527–535
doi: 10.1049/joe.2017.0190



2 KPCA-based process monitoring

2.1 Algorithm of KPCA

As a simple linear transformation technique, PCA compresses
high-dimensional data into low-dimensional with minimum loss
of data information. When the algorithm is carried out in the
feature space, KPCA is obtained. KPCA is a type of kernel-based
learning machine. The key idea of KPCA is both intuitive and
generic. The basic idea of KPCA is to map the input data x into a
feature space F first via a non-linear mapping Φ, and then
perform a linear PCA in F. However, it is difficult to do so directly
because the dimension h of the feature space F can be arbitrarily
large or even infinite. In implementation, the implicit feature
vector in F does not need to be computed explicitly, while it is
just done by computing the inner product of two vectors in F
with a kernel function [24].
Given an initial data matrix, X, representing n observations of m

variables as

X = (x1, x2, . . . , xn) =

x11 x12 · · · x1n
x21 x22 · · · x2n

..

. ..
. . .

. ..
.

xm1 xm2 · · · xmn

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ (1)

with

xi =
x∗i − 1/n

( )∑n
i=1 x

∗
i�����������������������������������

1/n− 1
( )

x∗i − 1/n
( )∑n

i=1 x
∗
i

( )2√ (2)

where xi(i = 1, 2, . . . , n) is the n observations (column vectors)
normalised from the n training samples x∗i (i = 1, 2, . . . , n) of
the input space. By the non-linear mapping Φ, the measured
inputs are extended into the hyper-dimensional feature space as
follows:

F:x [ Rm � F(x) [ Fh (3)

The mapping of xi is simply noted asΦ(xi) =Φi. The sample covari-
ance in the feature space can be constructed by

C = 1

n

∑n
i=1

FiF
T
i (4)

where non-zero eigenvalues of covariance matrix C are positive.
A PC v is then computed by solving the eigenvalue problem

lv = Cv (5)

where λ denotes eigenvalue and v denotes eigenvector of the covari-
ance matrix. Here Cv can be represented as

Cv = 1

n

∑n
i=1

kFi, vlFi (6)

where kx, yl denotes the dot product between x and y. This implies
that all solutions v with λ≠0 must lie in the span of
F1, F2, . . . , Fn. Hence (5) is equivalent to

lkFi, vl = kFi, Cvl, i = 1, 2, . . . , n (7)

For any λ≠ 0, there exists coefficients ai(i = 1, 2, . . . , n), such that

v =
∑n
i=1

aiFi (8)
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Then (9) can be deduced from (7) and (8)

l
∑n
i=1

aikFk ,Fil =
1

n

∑n
i=1

aikFi

∑n
j=1

FjlkFj,Fil, k = 1, 2, . . . , n

(9)

To obtain the coefficients ai(i = 1, 2, . . . , n), a kernel matrix K of
dimension n× n is defined, and its elements are determined by
virtue of kernel tricks

K ij = FT
i Fj = kFi, Fjl = k(xi, xj) (10)

where k(xi, xj) is the calculation of the inner product of two vectors
in F with a kernel function.

A number of kernel functions exist. According to Mercer’s
theorem of functional analysis, there exists a mapping into a
space where a kernel function acts as a dot product if a kernel func-
tion is a continuous kernel of a positive integral operator. The
requirement of the kernel function is to therefore satisfy Mercer’s
theorem [25]. The representative kernel functions are as follows:

Polynomial kernel

k(x, y) = kx, yld (11)

Sigmoid kernel

k(x, y) = tanh b0kx, yl+ b1

( )
(12)

Radial basis kernel

k(x, y) = exp − x− y
∥∥ ∥∥2

c

( )
(13)

where d, β0, β1 and c are specified a priori by user. The polynomial
kernel and radial basis kernel always satisfy Mercer’s theorem
while the sigmoid kernel satisfies it only for some values of β0
and β1 [26]. The specific choice of a kernel function implicitly
determines the mapping φ and the feature space F. If one has a non-
linear information of process, it could be used to select the kernel
function among kernels in KPCA. Before applying KPCA, mean
centring and variance scaling in high-dimensional space should
be performed.

Then (9) can be simplified to

nlKa = K2a (14)

where a = a1, a2, . . . , an

( )T
identifies the eigenvector v after

normalisation.
Notice that before applying KPCA, we have to perform mean-

centring procedure since the gram matrix used for the above eigen-
value problem is not mean-centred. The centred gram matrix K̄ can
be easily obtained by

K̄ = K − EK − KE+EKE (15)

with

E = 1

n

1 · · · 1

..

. . .
. ..

.

1 · · · 1

⎛
⎜⎝

⎞
⎟⎠ [ Rn×n (16)

From (14)–(16), the final eigenvalue problem in KPCA approach is
to solve

nla = K̄a (17)

The coefficient α should be normalised to satisfy a‖ ‖2= 1/nl,
which corresponds to the normality constraint v‖ ‖2= 1 of
eigenvector.
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Cumulative percent variance (CPV) is utilised to determine
number d of PC, i.e.

CPV(d) =
∑d

i=1 li∑n
i=1 li

. CL (18)

where CL is the control limit.
Then the dimension reduction can be achieved by retaining the

first d eigenvectors. After constructing the PCs in the feature
space F, the score vector of the kth observation in the training
data set can be obtained by projecting the centred value F̄(x)
onto the eigenvectors vk in F of the new sample x, where
k = 1, 2, . . . , d, such that

tk = kvk , F̄l =
∑n
i=1

ak,ikF̄i, F̄l =
∑n
i=1

ak,iK̄(xi, x) (19)

where the mapping of x is simply noted asΦ(x) =Φ. Using (18), we
finally obtain a score vector t = t1, t2, . . . , td

( )T
for x.

For the special case in which F(x) = x, KPCA is equivalent to
linear PCA. From this viewpoint, KPCA can be regarded as a gen-
eralised version of linear PCA.

2.2 Online monitoring procedure

Generally, the fault diagnosis based on PCA uses two statistics,
Hotelling’s T2 and SPE. Hotelling’s T2 represents Mahalanobis
distance of an observation on the PCA model subspace. On the
other hand, SPE represents the Euclidean distance from the
model space. Such statistics in the feature space can be obtained
using energy decomposition [27, 28]. The observations obtained
from a significantly nonlinear process are highly non-Gaussian
due to the non-linearity. Hence, the non-linear mapping to the
higher-dimensional feature space is formulated such that the train-
ing samples conform to a Gaussian distribution after the nonlinear
mapping. Then, the distribution of the mapped training data can be
estimated by a normal probability density in F. The corresponding
energy, represented by the negative logarithm of the probability, is
given by

V(x) = FTC̄
−1
F (20)

where the mapping of x is simply noted as Φ(x)=Φ, C̄
denotes the regularised covariance matrix, which is calculated
as follows:

C̄ = vLvT + l⊥ I − vvT
( )

(21)

where Λ is a diagonal matrix of eigenvalues associated with the
retained PCs, λ⊥ is a constant value which replaces all zero or near-
zero eigenvalues in C for regularisation, and I is an identity matrix.
Substituting the regularised covariance matrix into (20), we can de-
compose the energy into two parts, one is a Mahalanobis distance in
the KPCA space and the other is a Euclidean distance from the
model subspace as follows:

V(x) =
∑d
k=1

l−1
k kvk , Fl2 + l⊥ F‖ ‖2 −

∑d
k=1

kvk , Fl2
( )

= tTL−1t + l−1
⊥ k(x, x)− tTt
( )

= T2 + l−1
⊥ SPE

(22)

where the mapping of x is simply noted as Φ(x) =Φ.
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Therefore, two monitoring statistics for new observation xnew,
T2
new and SPEnew can be written as follows:

T2
new = tTnewLtnew (23)

SPEnew = k(xnew, xnew)− tTnewtnew (24)

The confidence limit for T2 can be determined by F-distribution

T2
lim = d(n− 1)

n− d
Fd,n−d,a (25)

where Fd, n−d, α denotes a F-distribution with the degree of freedom
d and n−d with the level of significance 100(1−α)%.

For SPE, we used the same rule as linear PCA to obtain
100(1−α)% control limit as follows:

SPElim =u1
ca

�������
2u2h

2
0

√
u1

+ 1+ u2h0(h0 − 1)

u21

[ ] 1

h0

ui =
∑D
j=d+1

lij, h0 = 1− 2u1u3
3u22

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(26)

where D denotes the effective dimension of feature space discussed
below.

Because the dimension of feature space is arbitrarily high,
the control limit of SPE may be unrealistically large. Hence the
effective dimension of feature space D is empirically determined
as the smallest number of the ordered eigenvalues whose cumula-
tive sum is above 99% of the sum of all eigenvalues.
3 KPCA-based fault diagnosis to a HSM

If the fault diagnosis of HSM is to be carried out, the data acquisi-
tion system of the monitoring signal should be set up at first, and
different acquisition techniques and methods should be adopted
according to different signal types.
3.1 Signal selection

There are hundreds of kinds of control and monitoring signals for
a single stand of HSM, so it is impossible for us to choose all
the signals. AGC is the most important mechanism for dynamic
thickness control in conventional rolling mills. Since the AGC
system is responsible for maintaining the dynamic performance
of the predicted quality of thickness, it is designed to suppress
the disturbances during the rolling process such as hardness and
temperature fluctuation of the strip. The extremely sophisticated
algorithms are developed to fulfil the task of dynamic thickness
control, however, the philosophy and the principles for tuning
AGC control gains become very complicated and difficult to the
operators in the case of improving the quality for specific product
and process [29]. The rolling stands of HSM are shown in Fig. 2,
from which we can find the hydraulic actuators, known as roll
force cylinders, are installed above the top backup roll chocks.
Hydraulic actuator is the main equipment to implement AGC.

Considering the main factors affecting the gauge, we select
process variables including roll gap, roll force, roll bending force
and delivery thickness. Here in order to verify the effectiveness
of the algorithm, we only select the 19 AGC-related signals or mea-
sured variables which are illustrated in Table 1. As shown in Fig. 3,
all signals connected to the control cabinets are received by pro-
grammable automation controllers.
Commons J Eng, 2017, Vol. 2017, Iss. 9, pp. 527–535
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Fig. 2 FM stands in rolling process

Table 1 Summary of AGC-related signals

No Signal name Number of signals

1 roll gap of the six FM stands 6
2 roll force of the six FM stands 6
3 roll bending force of the six FM stands 6
4 delivery thickness 1
3.2 Data acquisition

Measurements on all process variables, including those up to the
FM, were recorded for each coil rolled over a one week period of
production. For this study, the manufacture of a single grade of
steel coil on a six-stand FM was considered.
The first stage was to carry out data pre-screening to eliminate

or correct data anomalies such as missing data and outliers.
The data was then divided into two sub-sets, XM and XV XM

comprised data on the next-of-batch coils, while XV included the
first-of-the-batch coils. Previous statistical studies have shown
that the variation in the quality parameters was greater for the
first-of-batch coils than for later coils in the batch. In terms of
out-of-specification product, the variation is small; however, in eco-
nomic terms, the benefits of tighter control limits can yield signifi-
cant savings. Since data set XM consisted of 612 coils rolled with
the correct roll gap settings that corresponded to products that
met customers’ specifications, it was used to generate a nominal
process representation. Data set XV, with 224 first-of-batch coils,
formed the test data on which the proposed techniques were
evaluated.
Measured data is collected by ibaPDA (Process Data

Acquisition) system from programmable automation controllers.
The ibaPDA system is a PC-based acquisition and analysis system
for measured values. It is made up of distributed hardware com-
ponents for signal acquisition, connections via optical fibres and
other media, such as PROFIBUS-DP, boards for standard PCs
or notebooks, as well as online recording software and offline
analysis software. Besides recording, the online software also
offers a user-friendly visualisation function for an unlimited
number of channels with ongoing line diagram presentation,
similar to a recorder.
The ibaPDA system features a modular design with hetero-

geneously structured signal acquisition lines. ibaPDA is capable
of processing a very large number of channels in a uniform and
J Eng, 2017, Vol. 2017, Iss. 9, pp. 527–535
doi: 10.1049/joe.2017.0190

This is an open
synchronous manner. This makes the ibaPDA system particularly
suitable for distributed and multiple systems. The measured data
gathered is saved in files on the hard disk of the online PC or
on special file servers. Fig. 4 shows the system topology with one-
server and multiple clients. The server is a basic process in ibaPDA
which handles the data acquisition and storage, and it can run
independently from and without a client.
3.3 Fault diagnosis

The substantial growth in the use of automated in-process
sensing technologies creates great opportunities for manufacturers
to detect abnormal manufacturing processes and identify the root
causes quickly. It is critical to locate and distinguish two types
of faults: process faults and sensor faults. Sensor is a window to
understand the process state, and its effectiveness is the prerequisite
and basis for the implementation of process control, process
optimisation and other fault diagnosis. Dependable sensor data
are vital in complex systems, which rely on a suite of sensors for
control as well as condition monitoring. With any unanticipated
deviations in sensor values, the challenge is to determine if the
anomalies are the result of one or more flawed sensors or if it is
indicative of a potentially more serious system-level fault. This
paper mainly studies the sensor fault.

Sensor fault diagnosis is also known as instrument fault diag-
nosis, instrument validation, sensor calibration and so on. A
sensor (instrument) usually includes a sensing device, a transducer,
a signal processing unit, and a communication interface. Any part
of the above may be faulty, and then the deviation from the
sensor output signal and the actual value of the variable (nominal
value) exceeds the allowable range. Sensor faults are classified
into four types: bias, drift, precision degradation, and complete
failure [30].

Signal curves of HSM in normal production are illustrated in
Fig. 5, where the curves of the roll gap, roll force and roll
bending force refer to the curves of the six FM stands, and the
delivery thickness only refers to the FM delivery thickness. These
signals play important roles in hot rolling process. Sensor
faults of the roll gap, roll force, roll bending force and delivery
thickness will seriously deteriorate the final quality of hot rolled
production if not detected. Various sensor faults may occur in the
rolling process. Through analysis, different types of sensor faults
are found out from the historical data. In order to demonstrate
the fault recognition effects of KPCA, four different faults
access article published by the IET under the Creative Commons
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Fig. 3 Control cabinets of HSM automation system

Fig. 4 Server–client topology of the ibaPDA system
corresponding to the above mentioned four types, respectively, are
selected for validation.

As shown in Fig. 6, the faults during rolling process include:

(1) a step bias of roll force sensor of F2,
(2) a drift change of roll gap sensor of F4,
(3) a precision degradation of roll bending force sensor of F3,
(4) a complete failure of delivery thickness sensor,

where Fi represents the ith stand of FM. All faults are actual
faults which have a serious impact on the quality of the products
during the production process, which comes from the data collected
by the ibaPDA system. And these faults have been confirmed by the
field engineer.
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
In all cases, the sampling interval is 0.01 s, and the rolling pro-
cesses are displayed for 16 s, with the faults starting at the 8th
second. Then 1600 data points are collected to use for KPCA mod-
elling in the 16 s production period.

The SPE and T2 charts for KPCA and PCA monitoring of the
rolling process are shown in Figs. 7a–d. It is evident from these
charts that KPCA shows relatively correct fault diagnosis in
comparison to PCA, whether the T2 or SPE statistics. The above
study demonstrates that compared to PCA, KPCA can effectively
capture the non-linear relationship among process variables and
its application to hot rolling process monitoring shows better
performance than PCA. These fault identification results prove
the validity of the KPCA approach. However, this method
should not be overestimated, because sometimes fault cannot be
Commons J Eng, 2017, Vol. 2017, Iss. 9, pp. 527–535
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Fig. 5 Signal curves of HSM in normal production

Fig. 6 Different types of faults
recognised clearly or even misclassified. Further studies are still
necessary.
4 Conclusions

In this paper, a fault diagnosis method based on KPCA was formu-
lated for supervising hot rolling processes. Thanks to its capability
to process data in a nonlinear way, KPCA presents some advantages
with respect to other methods like PCA which are basically linear
procedures. The sensitivity of KPCA regarding the detection of
J Eng, 2017, Vol. 2017, Iss. 9, pp. 527–535
doi: 10.1049/joe.2017.0190

This is an open
the onset of non-linear dynamic behaviour has been illustrated
using measured data from a HSM with non-linear characteristics.
The method provides powerful tool for ensuring consistent high-
quality products at the same time helping the operators in their de-
cision making. The importance of manufacturing zero-defect coils,
in the face of increasing global competition in the steel processing
industries cannot be underestimated.

The main drawback of KPCA (with respect to PCA) is the com-
putation time. Since the number of measured signals is often much
smaller than the number of time samples, PCA may be performed
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)



Fig. 7 Fault diagnosis results for sensor faults
(a) Bias of roll force sensor of F2, (b) Drift change of roll gap sensor of F4, (c) Precision degradation of roll bending force sensor of F3, (d) Complete failure of
delivery thickness sensor
economically using singular value decomposition of the observa-
tion matrix and the size of the PC matrix does not exceed
the number of measurements. Regarding KPCA, data is at first
mapped to a high-dimensional feature space whose dimension
equals the number of time samples. For this reason, the eigen-
problem to solve in the feature space may be costly if the dimension
is too high. It requires a limitation of the length of the signals to
avoid a too demanding computation.
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