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SUMMARY

The recent increase in demand for performance-driven and outcome-based transportation planning makes
accurate and reliable performance measures essential. Vehicle miles traveled (VMT), the total miles traveled
by all vehicles on roadways, has been utilized widely as a proxy for traffic impact assessment, vehicle emis-
sions, gasoline consumption, and crashes. Accordingly, a number of studies estimate VMT using diverse
data sources. This study estimates VMT in the urban area of Bucheon, South Korea, by predicting the an-
nual average daily traffic for unmeasured locations using spatial interpolation techniques (i.e., regression
kriging and linear regression). The predictive performance of this method is compared with that of the
existing Highway Performance Monitoring System (HPMS) method. The results show that regression
kriging could provide more accurate VMT estimates than the HPMS method and linear regression, espe-
cially with a small sample size. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The recent increase in the deployment of Intelligent Transportation Systems (ITS) technologies in ur-
ban areas has reinforced the necessity of adopting performance-based transportation decision-making.
The USA’s newly enacted transportation law (MAP-21) establishes the requirements for both
performance-based transportation decision-making and performance measures for congestion reduc-
tion and system reliability [1]. Vehicle miles traveled (VMT), the total miles traveled by all vehicles
on roadways, is one of the most important performance measures as it can be utilized as a strong proxy
for traffic impact assessment, vehicle emissions, gasoline consumption, and crashes [2, 3]. It has been
widely used in transport planning [4], travel demand analysis [5-7], traffic crash analysis [8—10], and
energy consumption analysis [11-13].

Given the demand for accurate and stable VMT estimates, a number of methods and data sources
have been proposed. These can be broadly classified into traffic-count-based methods and non-traf-
fic-count-based methods [14]. Non-traffic-count-based methods utilize non-traffic data such as, but
not limited to, household activity surveys, odometer recordings, and fuel sales. Kweon and Kockelman
[15] employ a nonparametric regression (NPR) to identify variations in household VMT using the
1995 Nationwide Personal Transportation Survey, which includes data on vehicle ownership, housing
type, household income, public transit availability, and residential area (i.e. residential or urban). The
results show that the goodness-of-fit of the NPR is substantially improved relative to that of ordinary
least squares, although it requires time-consuming tasks and significantly larger sample sizes for
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additional control variables. Pathomsiri ef al. [16] develop an econometric model for estimating VMT
in multivehicle households and apply it to the 2001 National Household Transportation Survey.
Erlbaum [17] applied the fuel-sales-based method to estimate VMT. White [18] and Greene [19] used
odometer reading data to estimate annual VMT by driver. However, the previously mentioned
methods, based on household activity surveys, fuel sales, and odometer reading data, are too
resource-intensive and costly to perform regularly. Also, these methods reflect personal travel and
do not reflect the total number of vehicles on the road.

Traffic-count-based VMT estimation methods are currently the most commonly performed and pre-
ferred method because they are based on actual data for vehicle movement [20]. The predictive accu-
racy of traffic-count-based methods depends on the quality and coverage of traffic count data, given
that the length of all road network sections is known. Thus, it can be said that if traffic counts were
available for all roads in a network, the VMT estimate would be the most accurate measure of vehicle
movement. Traffic counts are, however, only available at segments of road networks where there is a
count station because of the relatively high cost of the stations. For urban areas, traffic count data are
collected less frequently than in other areas because of the complexity of measurement [21]. For this
reason, the Highway Performance Monitoring System (HPMS) method of VMT estimation, a repre-
sentative traffic-count-based method performed in the USA, simply extrapolates the VMT of a sample
section into other sections, so long as the other sections are in the same strata of traffic volume group
and road functional system [20]. Despite the advantages of being a relatively simple and quick proce-
dure, the HPMS method has been criticized by its accuracy and sample size demand needed to achieve
the required precision level. Moreover, stratification of sampling by traffic volume group requires
knowledge of the traffic count information on all roads [14]. A number of recent studies attempt to
overcome these limitations by using various data sources. Teng and Wang [3] examine the applicability
of ITS, such as cameras and loop detectors, in estimating VMT instead of using the HPMS short-term
counts. Their study tests the conditions under which ITS daily traffic count data can be used to replace
HPMS short-term counts in terms of a threshold number of missing ITS data. Zhang and He [22] use
the global positioning system (GPS) and other supplemental data sources to estimate VMT. Their re-
sults suggest that GPS-based surveys are feasible for VMT estimation on the different functional clas-
ses, including local roads where the ground-truth data are scarce. Blei et al. [23] also explore the VMT
estimation methods using GPS data. In the context of the deficiencies in the existing HPMS method-
ology, this study investigates the improvement of predictive accuracy by using a state-of-the-art inter-
polation technique instead of simply extrapolating the sample section VMT into area-wide VMT. In
addition, the stratification for the sampling process could be replaced by using non-volume data
(e.g., functional class).

Interpolation techniques can be classified into three categories: statistical analysis (e.g., multiple lin-
ear regression), geostatistical interpolation (e.g., ordinary kriging (OK) and universal kriging (UK)),
and hybrid techniques (e.g., regression kriging (RK) and kriging with external drift) [24, 25]. A num-
ber of studies employ interpolation techniques to improve predictions of traffic volume at unmeasured
locations based on limited data. Many researchers introduce a regression model to predict current-year
annual average daily traffic (AADT), assuming that one or more auxiliary variables are correlated with
traffic volume. They develop a multiple-regression model including socioeconomic variables such as
population, automobile ownership, household income, and employment as predictors [26-28]. Lam
and Xu [29] examine the estimation accuracy of AADT between a regression model and a neural net-
work approach from short-period traffic count data; their results suggest that the latter performed bet-
ter. Lam et al. [30] compare four models—auto-regressive integrated moving-average, neural network,
NPR and Gaussian maximum likelihood—to predict hourly traffic flows in Hong Kong, suggesting
that the NPR model is likely to account for unexpected changes more effectively. However, these re-
gression models have been criticized because of their unreasonable assumption that all observations
are independently drawn from a certain probability distribution, even for places for which spatial cor-
relation exists [31]. Improved geostatistical interpolation techniques, based on the assumption that dis-
tributed objects are spatially correlated, have been applied in order to provide more reliable predictions
for the missing data. Eom et al. [31] apply UK to estimate AADT and suggest that the spatial regres-
sion model outperformed the ordinary regression. Wang and Kockelman [32] use OK to spatially in-
terpolate the AADT values for unmeasured sites using the AADT estimates at urban saturation
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traffic count stations in Texas. Selby and Kockelman [33] use UK to predict the traffic count for Texas
and compare the results with those from a geographically weighted regression and spatial regression
techniques. In addition, they suggest that the simple Euclidean distance-based method predicted as
well as the network-based method, implying that the latter’s complexity is not necessary in real-world
applications. RK involves various combinations of linear regressions and kriging, and it is a suitable
technique for predicting a primary variable when the explanatory variables are available at all locations
and correlated with the target variable [34]. The RK method is defined as follows. Linear regression
models are constructed prior to OK on the regression residuals. OK is performed on the residuals of
the selected linear regression models. RK gives more reliable results when the auxiliary information
explains a significant amount of the variation in the target variable [25, 35]. Because the latter applies
to the present study, the RK method is used as the interpolation method.

In light of the deficiencies of current VMT estimation methods, this study proposes a traffic-count-
based VMT estimation method for urban areas by adopting interpolation techniques (i.e., RK) and by
comparing the prediction accuracy with that of the HPMS method. Moreover, given that the sampling
strategy is a critical factor affecting the predictive accuracy of both the interpolation and HPMS
methods, the comparison analysis considers both sample size and strata classification. This comparison
analysis can provide a better understanding of measuring VMT in more robust and consistent ways.

The remainder of this study is organized as follows. In the next section, the theoretical foundations
of the VMT estimation methods are presented. Section 3 describes the data and experimental design.
Section 4 compares the results of the spatial interpolation using RK with those obtained from the
existing HPMS method. The final section summarizes the main conclusions, implications, and exten-
sions of this study.

2. METHODOLOGY

This section provides the VMT estimation methods that implement RK and the existing HPMS proce-
dure. Although both of these methods are traffic-count-based, a methodological difference exists be-
tween them. In order to acquire the value of VMT where traffic count data do not exist, the HPMS
method extrapolates the sample section’s VMT into area-wide VMT using an expansion factor,
whereas the RK spatially interpolates the traffic volume (e.g. AADT) at unmeasured locations.

2.1. Dividing roadway into unit links

In general, geostatistical methods are applied to point-referenced spatial data, where the target variable
is measured at specific locations [31]. Given that the VMT value, which uses linear referenced road-
way segment data (e.g. length), is an indicator of roadway system performance, it is necessary to split
the roadway into individual links. Each individual link should contain a non-overlapping roadway seg-
ment and homogeneous traffic flow characteristics. Each link therefore experiences the same level of
traffic volume. This individual link is referred to as a “unit link” in this study. Each unit link has its
own representative, auxiliary variables and spatial coordinates. Similarly, in the HPMS method, a sam-
pling unit is generated for roadways based on the geospatial intersection of five key data items (AADT,
functional systems, urban code, through lanes, and facility type), where their respective values are ho-
mogenous along a given roadway [20]. This sampling unit is called a Table of Potential Samples
(TOPS). In this study, in order to divide roadways into unit links, arterial roads are split into unit links
at each signalized intersection. The expressways and urban expressways are divided into unit links at
each junction or interchange.

2.2. HPMS method

This study provides a simple overview of the HPMS VMT calculation process for urban areas. The de-
tailed calculation process is contained in the HPMS field manual, which includes the calculation of
statewide and universal expansion factors [20]. In order to estimate VMT in urban areas, HPMS sam-
ples are chosen from the TOPS and stratified into a set of functional classes and AADT volume groups.
Stratification is performed to improve the precision of the estimates without significantly increasing
the sample size [20]. The required sample size for each stratum is estimated using Equation (1):
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T d((E) ) v

where 7 is the required sample size, Z is the value of the standard normal critical value for an alpha
confidence level, ¢ is the AADT coefficient of variation from a state’s AADT data, d is the desired pre-
cision rate, and N is the TOPS or population stratum size (the number of TOPS sections available for
sampling in each stratum).

Sample section VMT estimates are obtained by multiplying the sample section AADT to the section
length. Expansion factors are then applied to these estimates in order to extrapolate the sample section
data to area-wide (or city-wide) VMT estimates. The expansion factors are obtained with Equation (2):

Total length of all road segments)..
Er ( g g )i

(@)

i (Total length of the sample sections) i

where EF;; is the expansion factor for AADT volume group i in functional class j. The combined
length of all road segments for each AADT volume group in each functional class is divided by the
total length of the sample sections in each AADT volume group of each functional class.

The area-wide VMT is calculated by applying an expansion factor, as shown in Equation (3):

DVMT = Y Y YDVMT,;x EF; 3)
i j ok

where DVMT is the area-wide daily VMT estimate in urban areas, DVMTj; is the daily VMT estimate
for sample section & in group i for class j, and EF; is the expansion factor for group i in class /.

2.3. Regression kriging

Let Z(s) represent the realization of a random process in two-dimensional Euclidean space with spatial
location (x, y) € s. In order to accurately model spatially correlated data, the random process Z(s)
should be considered a stationary random process. A spatial random field is a real valued stochastic
process {Z(s) : s € D c Rz}, where D, the area of interest, is a fixed subset of R%. The feasibility of
statistical inference on single realization of a random field as well as construction of optimal predictors
is based on a notion of some form of stationarity [36]. Assumptions of stationarity allow values at dif-
ferent places to be different realizations of the property [37]. There are two types of stationarity as-
sumptions for random fields. One is the second-order stationarity satisfying E[Z(s)] = u and
Cov[Z(s)— Z(s + h)] = C(h), while the other is the intrinsic stationarity satisfying E[Z(s)] = x and
Var[Z(s) — Z(s + h)]/2 = y(h), where C and y, called the covariance function and semivariogram, re-
spectively, depend only on distance 4. A set of measurements {Z(s), ..., Z(s,)} at known locations
can be obtained. A spatial structure model for the random field Z(s) may be modeled as in Equation (4):

Z(s) = X(s)'p + ¢(s), forseD (4)

where X(s)Tﬁ is the large-scale variation or mean function and &(s) is the small-scale stochastic
variation.

Semivariogram analysis is used for descriptive analysis in this study. The spatial structure of the data
is investigated using the semivariogram. This structure is also used for predictive applications, in
which the semivariogram is fitted to a theoretical model, parameterized, and used to predict the region-
alized variable at other unmeasured points. Estimating the mean function X(s)’/ and the covariance
structure of &(s) for each s in the area of interest is the first step in both analyzing the spatial variation
and prediction. One commonly used measure of spatial dependence is the semivariogram. The esti-
mated semivariogram provides a description of how the data are correlated with distance. The factor
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1/2 in y(h) indicates it is a semivariogram, and 2y(%) is the variogram. Thus, the semivariogram func-
tion measures half the average squared difference between pairs of data values separated by a given
distance, /2, which is known as the lag [38]. Assuming that the process is stationary, the semivariogram
is defined in Equation (5):

y(h) = ~— X [als) — 2(s)] )

where N(h) is the set of all pairwise Euclidean distances i —j = &, N, is the number of distinct pairs in
N(h), and z(s;) and z(s;) are the value at spatial location i and j, respectively, and y(%) is the estimated
semivariogram value at distance 4.

The main purpose of semivariogram analysis is to construct a semivariogram that accurately esti-
mates the autocorrelation structure of the underlying stochastic process. The semivariogram has three
important parameters: the nugget, sill, and range. The nugget is the sub-grid-scale variation or mea-
surement error and is indicated graphically by the intercept of the semivariogram. The sill is the value
of the semivariance as the lag () goes to infinity, and it is equal to the total variance of the data set. The
range is a scalar that controls the degree of correlation between data points (i.e., the distance at which
the semivariogram reaches its sill). As shown in Figure 1, the shape of semivariogram is typically char-
acterized in terms of the nugget, sill, and range.

When a valid empirical estimate of the semivariance is obtained, it is then necessary to select a type
of theoretical semivariogram model based on that estimate. Commonly used theoretical semivariogram
shapes increase monotonically as a function of distance. The most appropriate semivariogram model is
chosen by plotting the empirical semivariogram and comparing it with various theoretical models. In
this study, the following three parametric semivariogram models are tested: exponential, Gaussian, and
spherical. These models are given by the following equations:

3h
Exponential model: y(h) = 6y + 91{1 — exp ( —)}, (6)

2
Gaussian model: y(h) = 6y + 91{1 — exp (3 (g) >}, and @)
2

sill, 8,

Semivariance, y
Range, 6,

Nugget, 8,

Lag distance, &

Figure 1. Illustration of semivariogram parameters.
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o0l 31k’
Spherical model: y(h) = { %0 T @1y 1 = exp{ 5 —5 |5 , 0<h<0, ®)
Oy + 01, h> 0,

where 4 is a spatial lag, 0, is the nugget, 6 is the spatial variance (also referred to as the sill), and 6, is
the spatial range. The nugget, sill, and range parameters of the theoretical semivariogram model can be
fit to the empirical semivariogram yp(4) by minimizing the nonlinear function. When fitting a
semivariogram model, if we consider the empirical semivariogram values as our “observations” and
try to fit a model to them as a function of the lag distance /4, the ordinary least squares function is

as given by Y. [)(h) — y(h : )]*, where y(h : 0) denotes the theoretical semivariogram model and
i

0=(0,, 01, 6,) is a vector of parameters.

Regression kriging computes the parameters 6 and f separately. The parameters £ in the mean func-
tion are estimated by the least squares method. The residuals are then computed, and their parameters
in the semivariogram are estimated by various estimation methods, such as least squares or a likelihood
function. Prediction of RK at a new location s, can be performed separately using a regression model
to predict the mean function and a kriging model of prediction residuals and then adding them back
together as in Equation (9):

n

Z(s) = ¥ pelso) + L) ols) ©

i=0

where s; = (x;, ;) is the known location of the ith sample, x; and y; are the coordinates, f; is the esti-
mated regression model coefficient, 4; represents the weight applied to the ith sample (determined by
the variogram analysis), &(s;) represents the regression residuals, and X(sg) ... X,(so) are the values of
the explanatory variables at a new location s,. The weight /; is chosen such that the prediction error
variance is minimized, yielding weights that depend on the semivariogram [34]. More details about
the kriging weight /; follow immediately [39].

The main objective is to predict Z (s) at a known location s, given the observations
{Z (s1), Z(52), ..., Z (s3)}'. For simplicity we assume E{Z (s)} = 0 for all s. We briefly outline the der-
ivation of the widely used kriging predictor. Let the predictor be of the form Z (s0) = A Z(s), where
A={4, 4o, ..., 4,}'. The objective is to find weights 4, such that

O(so) = E[\' Z(s) — Z(so))? (10)

. -1
is a minimum. By minimizing Q(so) with respect to 4, it can be shown that Z (so) = o'(so, s) XZ(s),
where o’ (so, ) = E(Z(so) Z(s)), and Y, = E[Z(s) Z' (s)] is the covariance matrix. The minimum of Q(so)

-1
is min Q(so) = o> — a’(s0, 5)Y.0(s0, s). Note that O(s) can be rewritten in terms of the variogram
by applying

o(s0, ) = o*1 —%F(so, s) (11)

where I'(so, s) is the corresponding matrix of variograms. We can thus rewrite O(so) given in Equation
(10) as

Q(S()) = —%ﬂ./ i+ XV F(S()7 S). (12)

0O(s¢) is now minimized with respect to 4, subject to the constraint 1’ 1 = 1 (accounting for the unbi-

asedness of the predictor Z (s0)), by noting that
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0O'(so) = O(so) —m (X1 — 1). (13)

Differentiating Q' (so) with respect to A yields

TR e
ya— <y + 1&)1“—1. (14)

2.4. Vehicle miles traveled calculation

When the traffic volumes of unknown unit links are available for all roadways using RK, daily VMT
(DVMT) can be calculated by multiplying the unit link AADT by the centerline mileage of a unit link
as shown in Equation (15):

DVMT = Y (AADT;x L;), (15)

i=1

where DVMT is the daily VMT estimate, AADT; is the annual average daily traffic for unit link 7, Z; is
the centerline mileage of a unit link i, and # is the total number of unit links in the study area.

3. DATA AND EXPERIMENTAL DESIGN

3.1. Data description

The data used for the study were collected in 2011 in Bucheon (near Seoul), South Korea. The popu-
lation of Bucheon is around 889 500, and it covers an area of 53.4 km?>. The data utilized in this study
are taken from only the top three functional classes (expressways and urban expressways, principal ar-
terials, and minor arterials) of the roadway. They run along the centerline of the roadway for approx-
imately 80km, as shown in Table I.

This study uses two types of data: traffic count data and road information. In the RK, traffic count is
the dependent variable, and road information is used as explanatory variables. The traffic count data for
principal arterials and minor arterials are obtained from short-period traffic counts during the four
months from June 2011 to September 2011. In order to estimate AADT at arterials, short-period traffic
counts data are factored up using a set of factors. The hourly, monthly, and weekly factors are devel-
oped based on the permanent traffic counts [40]. The AADT data for expressways and urban express-
ways are provided annually by the Korea Institute of Construction Technology. The AADT data were
obtained at 127 points on unit links among the 150 total unit links as described in Figure 2 and were
considered as actually observed value for spatial interpolation approach in this study. Because the
AADT data have large values and their distributions are right-skewed, log-transformed AADT values
are used in the regression analysis. This removes the skewness, and the log-transformed data are sym-
metrically distributed, as shown in Figure 3.

Table II shows the subsets of road information obtained from the GIS database, the Korea Transport
Database, provided by the Korea Transport Institute. Road information is available for 150 total unit

Table I. Road network in study area.

Road functional class Total length (km) Number of unit links Average unit link length (km)
Expressways and urban expressways 8.85 5 1.77
Principal arterials 19.20 31 0.62
Minor arterials 51.26 114 0.45
Total 79.31 150 0.53
Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:769-785
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e Traffic counting location
== Expressways and urban expressways /
== Principal arterial ‘
— Minor arterial
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Figure 2. Traffic counting locations and roadways for VMT estimation in Bucheon.

links and includes spatial coordinates, number of lanes, speed limit, density of signalized intersection,
road functional class, land use type, and contact with the major arterials. The density of signalized
intersection is measured as the number of signalized intersections within 1 km of an arterial corridor.
Contact with the major arterials is a binary variable indicating whether the major arterial crosses the
unit link or not. The categorical variables road functional class and land use type are divided into
sub-classes and converted to indicator variables characterizing each unit link. Road functional class
1 and land use type 4 are used for the benchmark case in the regression analysis.

3.2. Experimental design

A set of scenarios for the estimation method and sampling strategy (e.g., strata classification and sam-
ple size) were set for the comparison analysis, as shown in Figure 4. First, this study applies three
VMT estimation methods: HPMS, linear regression, and RK. Second, in order to improve the represen-
tativeness of the sample by reducing the sampling error, stratified sampling is used when applying the
Monte Carlo method to estimate population statistics with 10 different random seeds. For the strata
classification, road functional class is compared with the results stratified by AADT group. In HPMS,
stratification by a defined set of AADT groups for each road functional class is performed to improve

g 2
o
~ —
(=]
> > N
123 Q L~
g 34 £ N
3 3 -
s 4
£ K- q I
N (
- T 1 T [—! - T 1 T
0 50000 100000 150000 200000 250000 350 4.00 4.50 5.00 5.50
Observed AADT 10 Log of Observed AADT

Figure 3. Histogram of original and log-transformed AADT.
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VMT Estimation Strata e
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AADT Group 20 |
Linear Regression 30 |
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R ion Krigi
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Figure 4. Various scenarios for comparison analysis.

the precision of the estimates without significantly increasing the sample size. However, if there is not
information for AADT in all samples, stratification might not possible. Therefore, this study uses the
road functional class for stratification and compares the results with the results of AADT group strat-
ification. Regarding the strata classification, this study examined two, namely, AADT group and road
functional class:

* AADT group (vehicle/day): 0-20000 under, 20 000-35 000 under, 35000-55 000 under, 55 000—
85000 under, and 85 000-250 000 under
* Road functional class: expressways and urban expressways and major arterials and minor arterials

Third, the relative performance of each scenario is examined according to the five sample sizes:
10%, 20%, 30%, 50%, and 70%. Accordingly, this study evaluates 30 scenarios ((3 VMT estimation
methods) x (2 strata classifications) x (5 sample sizes)) for VMT estimation.

In order to assess the performance of each scenario, the mean absolute percentage error (MAPE;
Equation (16)) is estimated for 10 iterations with different random seed.

A — A

i

l n
MAPE = - Y
n i

%100 (16)

In Equation (16), # is the total number of iterations, A; is the actual VMT value, and ;\i is the esti-
mated VMT value

It is assumed that the actual value, A;, is derived from the maximum available sample (127 observed
traffic counts of 150 total unit links) for each scenario because traffic count data does not exist for all
unit links—in other words, there is no actual VMT value. The estimated VMT value and the MAPE
are the result of the average of ten iterations, using different random seeds in the sampling process.
The coefficient of variation of the VMT estimate is a measure of relative variability within each sce-
nario. The log-transformed AADT values from RK are reverse transformed for the comparison analy-
sis, and the VMT was calculated by multiplying the centerline mileage of the corresponding unit link.

4. RESULTS AND DISCUSSION

The results of RK, linear regression, geostatistical analysis, and the VMT estimation using the
maximum sample size are presented. The procedure to implement RK first uses the linear regression
model to predict the mean function and then uses a kriging model for prediction. The performances
of the HPMS method and RK for the various sample sizes and strata classifications are examined.
Many researchers show that regression kriging outperforms the linear regression method for prediction
[41-43].
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4.1. Regression kriging

4.1.1. Linear regression result

The stepwise process with a p <0.05 was used for the first step of RK. Table III shows the selected
explanatory variables and their associated coefficients for the maximum sample size (i.e. 127 points
over the all 150 points). In this data set, the intercept, number of lanes, speed limit, density of signal-
ized intersection, two road functional classes, and one land use type are included. The model yields an
adjusted R? of 0.718 and R? of 0.731, respectively. The estimated coefficients offer interesting insights
into the effects of auxiliary variables to the transformed AADT. The coefficient for functional class 3
(expressways and urban expressways relative to major arterials) is 0.344, the largest of all functional
classes, indicating that the (log transformed) AADT at expressways and urban expressways is
34.4% higher than at minor arterials. The coefficient for land use type 1 (commercial area relative to
miscellaneous area) is 0.142 and has the most significant effect among land use types. As expected,
the number of lanes and speed limit are positively related to AADT. The coefficients for geometric de-
sign of the road and the characteristics of traffic flow are statistically significant. According to the in-
crease of number of signals within 1 km, the interrupted flow under signal control on the road has the
negative effect on AADT.

4.1.2. Geostatistical analysis
The residual semivariogram is estimated with the spatial trend removed. The residuals from the linear
regression are used to construct the empirical semivariogram, which is fitted with three different
models (exponential, Gaussian, and spherical). Table IV lists the estimate of the semivariogram param-
eters. In all models the nugget is a relatively large fraction of the total sill. The nugget-to-sill ratio
(NSR) is generally used to quantify the importance of the random component and provides a quanti-
tative estimation of the spatial dependence [44]. The results suggest that unexplained variation domi-
nates after the feature-space effects are removed. The range can be interpreted as the distance between
two points where spatial autocorrelation exists. For distances greater than or equal to the range, spatial
correlation is effectively zero [39]. The variograms yield spatial autocorrelations within the ranges of
about 1.3 and 2.8 km for the residuals from the exponential model and spherical model, respectively.
In order to determine the model with the best fit, the weighted sum of squares of error (WSSE) and
the Akaike Information Criterion (AIC) are used as the evaluation criteria, with lower values indicating

Table III. Selected explanatory variables and coefficient of linear regression model.

Selected variable Estimate Standard Error t-Stat p-value
Intercept 4.233 0.106 40.041 <0.0001
Number of lanes 0.077 0.011 6.767 <0.0001
Speed limit 0.092 0.025 3.732 <0.0001
Density of signalized intersection —0.041 0.014 —2.998 0.003
Road functional class 2 0.079 0.037 2.154 0.033
Road functional class 3 0.344 0.107 3.201 0.002
Land use type 1 0.142 0.030 4.753 <0.0001
R 0.731

Adjusted R* 0.718

Table IV. Parameter estimates of residual semivariogram.

Parameters estimate Criteria
Model Nugget, 6, Sill, 6, Range (m), 65 NSR (64/ 6,) WSSE AIC
Exponential 0.0962 0.1176 1282.21 0.8183 13.8351 6.8093
Gaussian 0.1013 0.1144 1515.24 0.8853 14.2035 7.1510
Spherical* 0.0875 0.1121 2813.91 0.7812 11.0647 3.9045
*Selected semivariogram model.
Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:769-785
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a better fit with the data. Test results for the three models supported the spherical semivariogram, as
indicated by its smaller WSSE and AIC. The spherical variogram was used in kriging to predict
AADT. Figure 5 shows the empirical variogram and the log-transformed residual semivariogram fitted
with the spherical model. Inference from the estimated range parameter shows that the spatial autocor-
relation effect of traffic volume tapers off at approximately 2800 m in the study area.

4.1.3. Estimating vehicle miles traveled

After estimating the AADT for unknown unit links using RK, the VMT in the study area was calcu-
lated by multiplying the estimated AADT by the centerline mileage of the unit links. Table V shows
the centerline mileage and daily VMT estimations by road functional class. Figure 6 illustrates the pre-
dicted daily VMT in the study area. The VMT estimation result in the study area is 4226 192 vehicle-
kilometer per day on a total of 79.4 km of roadway centerline miles. The results of the VMT estimation
on expressways and urban expressways had the highest proportion of VMT because of their numbers
of lanes and high traffic volumes.

4.1.4. Model validation

In order to assess the performance of RK, this study uses observations to spatially interpolate AADT
values and then compares these estimates to the observed AADT values for remaining observations. In
this method, some measurement points are removed and the traffic volume at that point is predicted by
using the remaining points. The predicted and measured values are compared at the removed points.
The test sets were sampled at identical proportions for each sample stratum. The averages of the MAPE
are 20.01% and 24.34% for the 20% and 40% sample size test data, respectively. Figure 7 presents
scatter plots of the observations at non-sampled unit links and the corresponding estimated values.
The results show strong correlation between the predicted and observed values. However, some
overpredictions occur at AADT 50000 vehicles per day and underprediction occurs at AADT
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Figure 5. Log-transformed residual semivariogram fitted with the spherical model.

Table V. Centerline mileage and DVMT estimates by road functional class.

Expressways and

urban expressways Major arterials Minor arterials Total

Centerline mileage (km) 8.9 19.2 51.3 79.4
(11.2%) (24.2%) (64.6%) (100.0%)
Daily VMT (vehicle-km/day) 1563188 1016598 1646406 4226192
(37.0%) (24.1%) (39.0%) (100.0%)
Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:769-785
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Figure 6. Daily VMT estimates in the study area.

250000 vehicles per day for the 20% sample size test data. In general, RK provides more accurate pre-
dictions at unit links with an AADT below 100000 vehicles per day.

4.2. Result comparison

The MAPE of RK is smaller than those of HPMS and the linear regression model for most cases. These
results validate that RK outperformed the other two methods, which is consistent with previous studies
[41-43].

Table VI and Figure 8 show the results from the different VMT estimation methods, strata classifi-
cation, and sample size. The MAPE of the VMT estimate decreases as the sample size increases, with a
change from 10% to 30% in the smaller sample sizes.
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Figure 7. Scatter plot of observed AADT and estimated AADT (20% and 40% test data).
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Table VI. Errors in estimation and coefficient of variation by scenario: VMT estimation method, strata
classification, and sample size.

Actual VMT Average of

VMT estimation ~ Strata Sample value* VMT estimate MAPE Coefficient
method classification size (%) (vehicle-km/day) (vehicle-km/day) (%)  of variation

HPMS AADT group 10 4216635 3,694,261 18.7 0.162

20 3800152 9.9 0.050

30 4014278 6.3 0.059

50 4293109 54 0.066

70 4184096 1.5 0.014

Road functional class 10 4238723 4475873 12.7 0.120

20 4385453 8.1 0.079

30 4066827 4.1 0.017

50 4211102 34 0.042

70 4277789 2.7 0.033

Linear regression AADT group 10 4231819 3729381 14.4 0.109

20 3714899 12.2 0.061

30 4410537 54 0.057

50 4391354 54 0.058

70 4291834 22 0.031

Road functional class 10 4231819 4140022 9.7 0.109

20 4513079 44 0.024

30 4422502 5.0 0.049

50 4412866 44 0.045

70 4392427 3.1 0.032

Regression AADT group 10 4226192 3744817 12.4 0.084

kriging 20 3860664 9.0 0.053

30 4374283 4.5 0.048

50 4342836 4.8 0.048

70 4310395 25 0.030

Road functional class 10 4226192 4144376 9.6 0.110

20 4414317 4.6 0.028

30 4397072 4.0 0.019

50 4336879 4.0 0.036

70 4265373 2.7 0.030

*The actual VMT value was estimated at the maximum available sample size for each scenario.

The functional class-based strata classification performed relatively well, perhaps as a result of a
larger number of samples in a single stratum because of the smaller number of classifications (i.e.,
three for the road functional class compared with five for the AADT group). The VMT estimation per-
formance for all scenarios improves as the sample size increases. In addition, the stabilized coefficient
of variation of the VMT estimate indicates that the VMT estimation result could be more reliable be-
cause of the increase in sample size (with some exceptions in the road functional class scenario). It is

MAPE(%) MAPE(%)
20 20
=4==HPMS-AADT Group —#=HPMS-Road Functional Class
«~ &+ LR-AADT Group += @+ LR-Road Functional Class
15 - B, 15
Toees =i RK-AADT Group =i~ RK-Road Functional Class

10

10 20 30 50 70 10 20 30 50 70

Sample Size(%) Sample Size(%)
(a) MAPE by AADT group (b) MAPE by road functional class

Figure 8. MAPE by various scenarios: (a) MAPE by AADT group, (b) MAPE by road functional class.
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expected that these exceptions come from a small number of sample unit links in the stratum of ex-
pressways and urban expressways, which accounts for one third of the total VMT estimates.

The comparison analysis yields the following results. Regarding the VMT estimation method, RK
could provide more accurate VMT estimates than the existing HPMS method and linear regression, es-
pecially at low sample sizes. In terms of the strata classification, when the unit link samples were strat-
ified by three road functional classes, the MAPE of the VMT estimation was decreased, meaning that it
could provide more accurate results. In summary, the following methods regarding VMT estimation
method are recommended:

e VMT estimation method: Regression kriging
¢ Strata classification: Road functional class

5. CONCLUSIONS

To meet the present demand for performance-based transportation planning and budget distribution,
VMT, a strong performance measure, is estimated with different methods based on various data
sources. This study aims to develop a practical procedure to provide spatial distribution of traffic vol-
ume and calculate the VMT. This study suggests a novel VMT estimation method for urban areas using
RK to obtain more stable and reliable results. The performance of RK assessed by cross validation was
satisfactory and outperformed the traditional regression method and HPMS results. This yields the
conclusion that RK is a practical procedure that can be applied to the prediction of the spatial distribu-
tion of traffic volume.

The findings in this study can be summarized as follows. First, it is shown that RK can provide more
accurate VMT estimates than the HPMS method, especially at lower sample sizes. Second, in terms of
strata classification, the road functional class performs relatively better than the AADT group, perhaps
as a result of having a larger number of samples in a single stratum. Third, the MAPE of the VMT es-
timate decreases according to the increase in the sample size regardless of the VMT estimation method.
This study is significant because it examines settings for RK (i.e., unit link separation, strata classifi-
cation, and sample size) to estimate VMT in urban areas and applies these methods to estimate VMT in
Bucheon, South Korea, as a case study. The proposed method has important advantages in estimating
VMT where traffic count data are scarce. This VMT estimation method, based on a small number of
observations, holds promise for transportation agencies that require reliable VMT estimate for
performance-based transportation decision-making where the available data are sparse and budgets
are limited.

A number of issues remain to be addressed in future research. First, it is necessary to collect suffi-
cient traffic count data on collector and local roads. Because of the limitations of traffic-count-data, this
study estimates the VMT for only the top three road functional classes. Second, to represent the city-
wide VMT value, it is necessary to collect additional auxiliary data (e.g., socio-economic data and
socio-demographic data) for reliable spatial regression modeling.
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