
Evaluation of MATPOWER and OpenDSS load flow calculations

in power systems using parallel computing

Gerardo Guerra, Juan A. Martinez-Velasco

Universitat Politècnica de Catalunya, Barcelona, Spain
E-mail: gerardo.guerra@upc.edu

Published in The Journal of Engineering; Received on 27th January 2017; Accepted on 21st March 2017

Abstract: This study presents the work carried out by the authors to apply Intel MKL PARDISO (a parallel sparse matrix solver) to the load
flow solution algorithms of MATPOWER and OpenDSS. The goal is to explore the potential execution time reduction obtained when working
with large power systems and multi-core installations. Test systems of different sizes were solved in order to observe the time reduction as
function of the system size and the number of cores used in the parallel execution. Results show that except for the full Newton–Raphson
algorithm, one should not expect a reduction in execution times when using a parallel routine. The use of a parallel sparse matrix solver is
only justified when the sparse matrix must be recalculated at every step of the solution process or the systems under study are much larger
than those analysed here. This study also presents how a parallel computing solution can be implemented in different applications by
using available high-performance parallel libraries.
1 Introduction

Parallel computing has become a cost-effective solution for
large and data-intensive problems when the objective is to reduce
total execution times and utilise larger memory/storage resources
[1–3]. Recently multi-core processors in personal computers and
workstations have become a standard feature, while easier access
to multi-core equipment has facilitated the development and
improvement of parallel-oriented software tools. The progress in
both areas (hardware and software) has pushed forward the
growth of parallel computing applications.
Parallel computing has had a significant impact on a variety

of fields ranging from computational simulations for scientific
and engineering applications to commercial applications in data
mining and transaction processing [3]. The use of multi-core com-
puting in studies related to power systems is a natural approach
given the capabilities of the software tools used in the simulation
of power systems and the nature of the analysed problems.
In recent years many important works have been conducted on
the application of parallel computing to power systems analysis;
see [4–9].
Access to powerful hardware and software applications has led to

a continuous effort to analyse and solve large and realistic systems.
In [10] a test system with 87,263 network nodes and 674,027
network devices was used to test an industrial-grade data translator
for the interfacing of power-flow programs with EMTP-type
programs. Individual executions (e.g. snapshot load flow) do not
represent a major concern, even when solving systems with so
many elements; it is the time-domain or time-driven execution of
such systems that may result in too high execution times.
Moreover, optimisation or parametric studies can require perform-
ing a large number of executions, which can lead to prohibitive
simulation times.
The introduction of parallel computing into the simulation

of power systems can be carried out assuming two different
perspectives:

† In data-parallel execution, system solution is concurrently run on
multiple cores [3], where each core works on a specific part of the
problem. This approach requires partitioning the analysed system
into several sub-problems according to the available number of
cores; each sub-problem is solved with a different core but the
required information is exchanged among working cores. One
J Eng, 2017, Vol. 2017, Iss. 6, pp. 195–204
doi: 10.1049/joe.2017.0023

This is an open
Attribution-N
example of data-parallel execution can be found in real-time
systems [11], where test systems are decoupled into two or more
groups that are simultaneously solved in parallel cores; an efficient
implementation has been proposed in [12], an algorithm similar to
that proposed in [13].
† Task-parallel execution is an adequate approach when the
same system is required to be simulated many times with only
small variations in certain input parameters (e.g. optimisation or
parametric studies) [3]. Under these circumstances the total
number of system executions is distributed among available
cores, where they are solved independently from the executions
performed in other cores. The authors of [14] presented a parallel
Monte–Carlo method for the optimum allocation of distributed
generation.
The main objective of this paper is to apply the use of parallel
sparse matrix solvers in the solution of load flow problems and to
assess its impact on the reduction of execution times for large
power systems when working with a multi-core environment. A
second objective is aimed at proposing a practical rule that could
allow users to determine the optimal number of cores (to be used
in the parallel computation) based on the size of the system under
study. A final objective is to show how parallel computing can be
applied to engineering problems by means of high-performance
parallel libraries without the need of being an expert programmer
or having a deep knowledge of parallel algorithms.

Different works on parallel load flow algorithms with central
processing units have been presented to date; see, for instance,
[15–19]. In recent years the focus has been on using graphical
processing units (GPU) [20–23]; most of these works present
custom-made applications that seek to exploit parallelism in all
stages of a load flow algorithm (i.e. admittance matrix formation,
solution of linear system, error calculation). Although this approach
may lead to more efficient algorithms, it also requires advanced pro-
gramming skills and a high level of expertise in mathematical
algorithms.

Many software tools are currently available for analysing power
systems; although commercial packages are widely used, open-
source software has become a valid option for companies and
researchers given the powerful capabilities and features present
in some of them (see [24]). In addition, there are also a great
number of available libraries for implementing high-performance
access article published by the IET under the Creative Commons
oDerivs License (http://creativecommons.org/licenses/by-nd/3.0/)

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


applications that exploit the resources of multi-core processors
(e.g. [25–28]). MATPOWER [29] and OpenDSS [30] are the
tools selected in this paper for the simulation of power systems,
while Intel MKL [25] is the library chosen for the parallel solution.
Simulation control and data gathering was carried out using
MATLAB and Visual Studio.

The paper has been organised as follows. Section 2 summarises
the main features of Intel MKL PARDISO, the parallel sparse
matrix solver used in this work, and how it can be applied to the
solution of load flow algorithms. Section 3 details the implementa-
tion of Intel MKL PARDISO in MATPOWER and OpenDSS; the
section includes a description of the test systems used with each
tool, and a summary of results. A discussion about alternatives to
the solution considered in this work is presented in Section 4,
while the main conclusions are summarised in Section 5.

2 Application of a parallel sparse matrix solver to the
load flow solution

2.1 Intel MKL and Intel MKL PARDISO

The Intel Math Kernel Library is a package of highly optimised
and extensively threaded routines for high-performance applica-
tions [25]. Optimised for Intel processors, Intel MKL provides
FORTRAN and C/C++ programming interfaces, as well as a
DLL than can be used for software redistribution. Capabilities
included in the library cover areas such as linear algebra routines,
distributed processing linear algebra routines, sparse solver
routines, fast Fourier transform functions, vector mathematics
routines, data fitting library, and eigensolvers.

Intel MKL PARDISO is a direct sparse solver routine
based on the PARDISO solver [31], a high-performance
software package for solving large sparse linear systems of
equations on shared-memory multiprocessors [32]. The solver
uses a combination of left- and right-looking Level-3 BLAS super-
node techniques, while Level-3 BLAS update and pipelining
parallelism are used with a combination of left- and right-looking
supernode techniques for improving sequential and parallel
sparse numerical factorisation performance [32]. It can cope with
a variety of sparse matrices, including real and complex, symmetric
and non-symmetric, positive definite and indefinite sparse
linear systems of equations. For sufficiently large-size problems,
numerical experiments demonstrate that the scalability of the
parallel algorithm is nearly independent of the shared-memory
multiprocessing architecture.

The execution of Intel MKL PARDISO can be divided into the
following phases: (i) fill-reduction analysis and symbolic factorisa-
tion; (ii) numerical factorisation; and (iii) forward and backward
solve. These stages can be executed in one sequence or individually
at different times.

2.2 Load flow solution using a parallel solver

Sparse matrix solvers are optimised routines that seek to exploit the
sparsity of linear systems represented by the following equation

[b] = [A][x] (1)

where A is a sparse matrix, and b and x are vectors. Furthermore,
parallel sparse matrix solvers take advantage of the resources
present in multi-core computers in order to speed up calculations.

The form in (1) can also be recognised in the iterative solution
of the full Newton–Raphson (NR) [33], fast decoupled NR [34],
and default OpenDSS [30] load flow algorithms; therefore, the
application of the Intel MKL PARDISO to the solution of the
aforementioned algorithms is straightforward.

One important aspect of the fast decoupled NR and default
OpenDSS algorithms is the use of constant matrices for the iterative
solution; in such cases constant matrices must be calculated and
This is an open access article published by the IET under the Creative
Attribution-NoDerivs License (http://creativecommons.org/licenses/by-
triangulated only once. Thanks to Intel MKL PARDISO’s capa-
bility of dividing the solution process in different stages (analysis,
numerical factorisation, and solve), the iterative scheme remains
unchanged and the solution process can be carried out using the
triangulated matrix.

Intel MKL PARDISO requires that the sparse matrix A be
defined using the compressed sparse row (CSR) format [32].
Additional operations are necessary for obtaining the three-vector
representation of the admittance matrix; however, the overhead
produced by these operations does not represent a significant loss
of performance.

3 Implementation and testing of the parallel solver

3.1 Application with MATPOWER

MATPOWER is an open-source software package that allows
users to perform load flow (AC and DC) and optimal power flow
calculations for power systems [29]. It has been implemented in
MATLAB and consists of a group of m-files, which grants a
great flexibility and allows the user to modify and improve the
existing code. For AC load flow calculations, the user can choose
among several solution algorithms (full NR, fast decoupled NR,
and Gauss-Seidel). System information is provided in form of
matrices that contain the system parameters (i.e. parameters of
branches and generators, as well as buses) [35].

The codes implemented in this work to run MATPOWER m-files
when using the Intel MKL PARDISO routine in the full NR and fast
decoupled NR solution algorithms are shown in the Appendix.

The power system selected in this work for testing the perform-
ance of MATPOWER is the system referred to as 9241Pegase,
which is included among the cases provided with this tool. The
network accurately represents the size and complexity of the
European high-voltage (HV) transmission network; it contains
9241 buses, 1445 generators, and 16,049 branches. The operating
voltages of this system are 750, 400, 380, 330, 220, 154, 150,
120, and 110 kV [36].

Although the 9241Pegase system provides a valid test case
for assessing the potential time reduction achieved with the
introduction of parallel sparse matrix solvers, additional tests
with systems of larger sizes are also required. However, finding
or developing large size test systems (i.e. with several thousand
buses) is not an easy task; therefore, it was decided to create a set
of new test systems by simply replicating the 9241Pegase case as
many times as it was desired. As a result, the sizes of the new
test systems will be 2, 10, and 20 times that of the 9241Pegase case.

Tables 1–4 show the results obtained for the different test
systems; these tables compare the execution times with different
number of cores (threads) and also present the solution times
found when using MATLAB capabilities to solve the load flow
algorithms. Note that the results focus on execution times and not
solution values; however, the number of required iterations
for problem solution have been included to show that the use of
Intel MKL PARDISO does not affect algorithm convergence.
Execution times were measured by comparing the processor’s
clock before and after evaluating a function.

MATPOWER test systems were solved for nominal load
(i.e. snapshot load flow). The results shown in Tables 1 and 2
were obtained using a laptop computer with an Intel Core
i7-3630QM processor (4 Cores, Clock frequency =2.4–3.4 GHz),
8 GM RAM, and Windows 8 OS, whereas results shown in
Tables 3 and 4 were obtained using a high-performance computing
(HPC) server with 2 Intel Xeon E5-2660 processors (8 Cores, Clock
frequency =2.2–3.0 GHz), 128 GB RAM, and Ubuntu OS (running
a Windows 7 Professional Virtual Machine).

Figs. 1 and 2 depict the time reduction with different number of
threads when comparing the performance of Intel MKL PARDISO
with respect to MATLAB capabilities. Note that a negative Time
Reduction can result and it indicates an increment in execution time.
Commons
nd/3.0/)

J Eng, 2017, Vol. 2017, Iss. 6, pp. 195–204
doi: 10.1049/joe.2017.0023



Table 2 Execution times for fast decoupled NR’s method – Laptop
computer

Intel MKL PARDISO MATLAB

Case 9241Pegase
P iterations 14 14 14 14
Q iterations 13 13 13 13
no. of threads 1 2 4 —

total time 0.1150 0.0940 0.0860 0.0890
factorisation 0.0599 0.0419 0.0330 0.0419
CSR format 0.0030 0.0030 0.0030 —

Case 9241Pegase × 2
P iterations 14 14 14 14
Q iterations 13 13 13 13
no. of threads 1 2 4 —

total time 0.2220 0.1769 0.1689 0.1759
factorisation 0.1250 0.0849 0.0629 0.0869
CSR format 0.0060 0.0060 0.0060 —

Case 9241Pegase × 10
P iterations 14 14 14 14
Q iterations 13 13 13 13
no. of threads 1 2 4 —

total time 1.1459 0.9329 0.8020 0.7849
factorisation 0.7189 0.4629 0.3330 0.4280
CSR format 0.0260 0.0260 0.0260 —

Case 9241Pegase × 20
P iterations 14 14 14 14
Q iterations 13 13 13 13
no. of threads 1 2 4 —

total time 2.5580 2.1200 1.7960 1.8699
factorisation 1.5320 0.9980 0.7179 0.8990
CSR format 0.0540 0.0540 0.0540 —

Table 1 Execution times for full NR’s method – Laptop computer

Intel MKL PARDISO MATLAB

Case 9241Pegase
iterations 6 6 6 6
no. of threads 1 2 4 —

total time 0.5109 0.4040 0.3660 0.4949
CSR format 0.0040 0.0040 0.0040 —

iteration solver 0.0689 0.0500 0.0430 0.0700
Case 9241Pegase × 2

iterations 6 6 6 6
no. of threads 1 2 4 —

total time 1.0470 0.8290 0.7210 1.0089
CSR format 0.0100 0.0100 0.0100 —

iteration solver 0.1400 0.1030 0.0840 0.1430
Case 9241Pegase × 10

iterations 6 6 6 6
no. of threads 1 2 4 —

total time 5.9640 4.7350 4.0370 5.6780
CSR format 0.0510 0.0510 0.0510 —

iteration solver 0.7930 0.5890 0.4680 0.7819
Case 9241Pegase × 20

iterations 6 6 6 6
no. of threads 1 2 4 —

total time 12.750 10.090 8.5310 11.343
CSR format 0.1010 0.1010 0.1010 —

iteration solver 1.6900 1.2439 0.9820 1.5509
From the results found with the fast decoupled NR method it
can be seen that matrix factorisation (i.e. analysis and numerical
factorisation stages) is the most computationally expensive
operation; depending on the number of threads this time may repre-
sent between 25 and 60% of the total execution time. One can
J Eng, 2017, Vol. 2017, Iss. 6, pp. 195–204
doi: 10.1049/joe.2017.0023

This is an open
Attribution-N
observe that individual execution times for other operations are
very short (note that the iterative scheme performs 14 P-iterations
and 13 Q-iterations) and that the time spent performing P and Q
iterations can increase with the number of threads used in the
parallelisation.

A better performance is achieved for the full NR method
given that Intel MKL PARDISO uses parallel routines for both
matrix factorisation and the solution of linear equation systems.
Moreover, since the sparse Jacobian matrix used in this method is
considerably larger than the constant matrices used in the fast
decoupled method, multithreaded routines have a greater effect on
larger matrices.

The curves presented in Fig. 1 show a saturation effect: they
exhibit a rapid initial growth but there is no significant increment
in time reduction when Intel MKL PARDISO uses more than 8
threads. Furthermore, it can be seen that the solution process
suffers a decrease in performance for the smallest system
(9241Pegase). The theoretical speed-up that can be achieved
through parallel computing is defined by the Amdahl’s law
[37–39], which is a function of the code’s fraction that can be
parallelised and the number of threads used in the parallelisation.
Thus for a given algorithm, there exists a number of threads that
produces a maximum speed-up. Moreover, according to Fig. 1
the real speed-up is also dependent on the size of the solved
problem. The saturation effect, which is also a consequence of
Amdahl’s law, will allow determining the optimal number of
threads that must be used in the parallelisation of the load flow
algorithms; therefore, the optimal number of threads will be equal
to the number of threads where curve saturation is produced.

The results shown in Fig. 2 present important differences
between the Laptop computer and the HPC server; however, if
the results from the HPC server are taken as a reference, it can be
concluded that the maximum time reduction will be achieved
with 8 threads.

3.2 Application with OpenDSS

OpenDSS is an open-source simulator for analysis of electric
utility distribution systems [30], implemented as both a stand-alone
executable program and a COM DLL that can be driven from some
software platforms. The executable version adds a basic user inter-
face to the solution engine to assist users in developing scripts and
viewing solutions. Modelling and calculation capabilities of this
tool allow users to represent the most important distribution com-
ponents and perform studies considering both deterministic and
probabilistic calculations. Built-in solution capabilities include snap-
shot and time-mode power flow, harmonics, fault current study,
dynamics, parametric and probabilistic studies [40]. OpenDSS can
be used for planning and analysis of multi-phase distribution
systems, analysis of distributed generation interconnection, annual
simulations, storage modelling and analysis, and other studies.

OpenDSS uses the single-core routine KLUSolve for the solution
of the resulting sparse system [41]. The built-in KLUSolve func-
tions only return the Compressed Sparse Column (CSC) format
[32]; this situation does not pose a problem if the correct parameters
are used for matrix factorisation.

The code added to generate the CSC format of the admittance
matrix and perform matrix factorisation in OpenDSS is shown in
the Appendix; additionally, it presents the changes introduced to
the source code when using the Intel MKL PARDISO routine.

Table 5 presents the main characteristics of the three test systems
developed for testing the parallelised OpenDSS. They are 50 Hz
overhead systems and consist of a simplified representation of the
HV system, a Medium-voltage (MV) network, and low-voltage
(LV) networks served from the secondary side of distribution MV/
LV transformers. The LV networks are based on the low voltage
test feeder shown in Fig. 3 and provided with OpenDSS. The con-
figuration of the three test systems is shown in Fig. 4. LV loads
access article published by the IET under the Creative Commons
oDerivs License (http://creativecommons.org/licenses/by-nd/3.0/)



Table 3 Execution times for full NR’s method – HPC server

Intel MKL PARDISO MATLAB

Case 9241Pegase
iterations 6 6 6 6 6 6
no. of threads 1 4 8 12 16 —

total time 0.9050 0.6710 0.5609 0.5780 0.6400 0.9049
CSR format 0.0150 0.0150 0.0150 0.0150 0.0150 —

iteration solver 0.1100 0.0630 0.0619 0.0620 0.0630 0.1410
Case 9241Pegase × 2

iterations 6 6 6 6 6 6
no. of threads 1 4 8 12 16 —

total time 1.7309 1.3729 1.1540 1.1700 1.1700 1.9660
CSR format 0.0310 0.0310 0.0310 0.0310 0.0310 —

iteration solver 0.2190 0.1560 0.1239 0.1250 0.1250 0.2650
Case 9241Pegase × 10

iterations 6 6 6 6 6 6
no. of threads 1 4 8 12 16 —

total time 9.7190 7.1609 6.3820 6.3800 6.2870 9.9369
CSR format 0.1410 0.1410 0.1410 0.1410 0.1410 —

iteration solver 1.1860 0.7650 0.6710 0.6699 0.6550 1.3730
Case 9241Pegase × 20

iterations 6 6 6 6 6 6
no. of threads 1 4 8 12 16 —

total time 20.945 14.741 13.978 13.820 13.587 20.732
CSR format 0.2809 0.2809 0.2809 0.2809 0.2809 —

iteration solver 2.6360 1.6379 1.4819 1.4510 1.4190 2.6209

Table 4 Execution times for fast decoupled NR’s method – HPC server

Intel MKL PARDISO MATLAB

Case 9241Pegase
P iterations 14 14 14 14 14 14
Q iterations 13 13 13 13 13 13
no. of threads 1 4 8 12 16 —

total time 0.2029 0.1409 0.1400 0.1400 0.1560 0.1560
factorisation 0.1089 0.0470 0.0459 0.0470 0.0620 0.0629
CSR format 0.0045 0.0045 0.0045 0.0045 0.0045 —

Case 9241Pegase × 2
P iterations 14 14 14 14 14 14
Q iterations 13 13 13 13 13 13
no. of threads 1 4 8 12 16 —

total time 0.3589 0.2810 0.2339 0.2650 0.2800 0.2660
factorisation 0.2029 0.1250 0.0929 0.1250 0.1250 0.1410
CSR format 0.0160 0.0160 0.0160 0.0160 0.0160 —

Case 9241Pegase × 10
P iterations 14 14 14 14 14 14
Q iterations 13 13 13 13 13 13
no. of threads 1 4 8 12 16 —

total time 1.8719 1.4510 1.3580 1.4349 1.8870 1.3099
factorisation 1.1240 0.5920 0.4839 0.5150 0.4840 0.7019
CSR format 0.0620 0.0620 0.0620 0.0620 0.0620 —

Case 9241Pegase × 20
P iterations 14 14 14 14 14 14
Q iterations 13 13 13 13 13 13
no. of threads 1 4 8 12 16 —

total time 4.0709 3.1040 2.9640 3.1820 3.4949 2.9799
factorisation 2.4340 1.2329 0.9979 1.0609 0.9360 1.5129
CSR format 0.1240 0.1240 0.1240 0.1240 0.1240 —
are represented by a ZIP model; each part of the load model has been
assigned a weighting factor equal to 1/3 for both active and reactive
powers and use curve shapes derived with a procedure presented in
[42]. It is important to mention that the test system 3 is composed by
two systems such as the one shown in Fig. 4c.

OpenDSS test systems were simulated for one year using
a 1-hour time step; only information related to the number of
This is an open access article published by the IET under the Creative
Attribution-NoDerivs License (http://creativecommons.org/licenses/by-
iterations performed at each step and solution convergence was
collected during the simulation in order to avoid unnecessary
overhead times. The yearly simulation allows for a better perform-
ance assessment of the Intel MKL PARDISO routine, since it can
average out the variations that result with individual executions.

Fig. 5 shows the time reduction in ‘total solve time’ for the three
test systems when using different number of threads and the default
Commons
nd/3.0/)

J Eng, 2017, Vol. 2017, Iss. 6, pp. 195–204
doi: 10.1049/joe.2017.0023



Fig. 2 Total time reduction – fast decoupled NR
a Laptop computer
b HPC server

Fig. 1 Total time reduction – full NR
a Laptop computer
b HPC server

Table 5 OpenDSS test systems characteristics

System 1 System 2 System 3

high-voltage rating 230 kV 230 kV 230 kV
medium-voltage rating 11 kV 11 kV 11 kV
low-voltage rating 0.48 kV 0.48 kV 0.48 kV
rated power substation transformer 1000 kVA 5000 kVA 5000 kVAa

number of distribution transformers 8 60 100
total medium-voltage overhead
feeder length

9.5 km 35 km 55 km

total low-voltage network line length 11.4 km 85.8 km 143 km
total rated load active power 440 kW 3300 kW 5500 kW
total number of LV loads 440 3300 5500
number of voltage nodes 21,777 163,296 272,139

aTest system 3 has two substation transformers of equal rated power.

Fig. 3 Schematic diagram of the LV networks
OpenDSS solution algorithm. Although the results show significant
differences between the laptop computer and the HPC server, it is
clear that the use of the Intel MKL PARDISO has caused an incre-
ment in execution times. Moreover, the general trend is that increas-
ing the number of threads leads to a greater performance loss.
It can be noted from these results that for test system 1 the

number of threads has very little impact on the performance of
the Intel MKL PARDISO routine, whereas for the other two test
J Eng, 2017, Vol. 2017, Iss. 6, pp. 195–204
doi: 10.1049/joe.2017.0023

This is an open
Attribution-N
systems it depends on the platform (i.e. laptop computer or HPC
server). The time reduction curve in Fig. 5a shows a clear negative
tendency as a function of the number of threads for test systems 2
and 3; a similar behaviour is present in Fig. 5b for a number of
threads equal or greater than 8. This behaviour is an indication
that the algorithm has passed the optimal number of cores and in-
creasing the number of threads will only further decrease the rou-
tine’s performance.

With a smaller number of threads, it can be assumed that the per-
formance of the Intel MKL PARDISO is almost constant, since the
variations in execution times are not significant. A small overhead
is caused by the generation of the CSC format of the admittance
matrix and performing matrix factorisation; this cannot be
avoided since the OpenDSS code relies on KLUSolve to generate
and factor the admittance matrix. Although negligible when com-
pared to total simulation times, that overhead is much larger than
the ‘average individual solve time’ (see Tables 6 and 7).

This behaviour indicates that the solve stage of the Intel MKL
PARDISO routine is the least expensive in computational terms.
As result, in order to obtain any performance gain at the solve
stage it will be necessary to work with much larger systems than
those presented here.

The differences between the laptop computer and the HPC server
could be caused by the behaviour of the virtual machine used in the
HPC server and to the fact that Intel’s hyper-threading could not be
switched off in the laptop computer.

One important aspect to consider is that the presented results are
only a reference; actual solution times may vary depending on the
access article published by the IET under the Creative Commons
oDerivs License (http://creativecommons.org/licenses/by-nd/3.0/)



Fig. 4 Configuration of the systems tested with OpenDSS
a Configuration of test system 1
b Configuration of test system 2
c Configuration of test system 3

Fig. 5 Time reduction in ‘total solve time’ – default OpenDSS
a Laptop computer
b HPC server

Table 6 Execution times default OpenDSS – Laptop computer

Intel MKL PARDISO KLUSolve

Test system 1
no. of threads 1 2 4 —

compilation time, s 0.578 0.563 0.582 0.546
total solve time, s 156.258 156.445 159.037 141.273
total number of iterations 20,505 20,505 20,505 20,505
CSC format and factorisation
time, s

0.032 0.017 0.036 —

average individual solve time, sa 0.00762 0.0076 0.0077 0.0068
Test system 2

no. of threads 1 2 4 —

compilation time, s 2.500 2.360 2.539 2.109
total solve time, s 1184.09 1349.28 1613.08 1106.31
total number of iterations 20,447 20,447 20,447 20,447
CSC format and factorisation
time, s

0.391 0.251 0.430 —

average individual solve time, sa 0.0579 0.0659 0.0788 0.0541
Test system 3

no. of threads 1 2 4 —

compilation time, s 4.172 4.043 4.089 3.625
total solve time, s 1990.76 2228.76 2741.68 1854.53
total number of iterations 20,524 20,524 20,524 20,524
CSC format and factorisation
time, s

0.547 0.418 0.464 —

average individual solve
time, sa

0.0969 0.1085 0.1335 0.0903

aIt includes time required to collect compensation currents [30].

This is an open access article published by the IET under the Creative Commons
Attribution-NoDerivs License (http://creativecommons.org/licenses/by-nd/3.0/)

J Eng, 2017, Vol. 2017, Iss. 6, pp. 195–204
doi: 10.1049/joe.2017.0023



Table 7 Execution times default OpenDSS – HPC server

Intel MKL PARDISO KLUSolve

Test system 1
no. of threads 1 4 8 12 16 —

compilation time, s 0.812 0.796 0.827 0.843 0.811 0.764
total solve time, s 226.855 229.039 226.528 224.858 231.332 213.159
total number of iterations 20,505 20,505 20,505 20,505 20,505 20,505
CSC format and factorisation time, s 0.048 0.032 0.063 0.079 0.047 —

average individual solve time, sa 0.0110 0.0111 0.0110 0.0109 0.0112 0.0103
Test system 2

no. of threads 1 4 8 12 16 —

compilation time, s 3.370 3.525 3.557 3.650 3.916 3.104
total solve time, s 1871.13 1831.11 1849.96 1928.33 2014.30 1794.48
total number of iterations 20,447 20,447 20,447 20,447 20,447 20,447
CSC format and factorisation time, s 0.266 0.421 0.453 0.546 0.812 —

average individual solve time, sa 0.0915 0.0895 0.0904 0.0943 0.0985 0.0877
Test system 3

no. of threads 1 4 8 12 16 —

compilation time, s 6.038 5.897 5.819 6.302 6.084 5.445
total solve time, s 3137.66 3102.56 3124.23 3288.48 3386.90 3026.98
total number of iterations 20,524 20,524 20,524 20,524 20,524 20,524
CSC format and factorisation time, s 0.593 0.452 0.374 0.857 0.639 —

average individual solve time, sa 0.1528 0.1511 0.1522 0.1602 0.1650 0.1474

aIt includes time required to collect compensation currents [30].
OS and computer hardware. In addition, they can also be affected
by other processes: resources not required for load flow computa-
tions (e.g. Web browser, text processing software, anti-virus soft-
ware, Wi-Fi Card, etc.) should be closed or turned off in order to
prevent any unnecessary actions by the OS.

4 Discussion

Multi-core processors are not the only option for implementing par-
allel computing applications; in recent years the use of GPUs has
been widely extended in high-performance engineering and scien-
tific applications. Different works have been conducted on
GPU-based parallel load flow algorithms (e.g. [20–23]); although
results are mostly positive, they should be regarded with care. As
mentioned in [21], most works solve and compare dense matrices
and such results cannot be extrapolated to those obtained with
sparse matrix solvers. The work presented in [22, 23] provide
great insight into the potential performance of GPUs when
working with large sparse matrices in load flow algorithms. The
presented results show important algorithm speed-ups although
they only evaluate individual executions; therefore, it is still neces-
sary to assess the impact that GPUs may have on the consecutive
execution of the load flow algorithms when the sparse matrix
remains constant. Future work could be aimed at linking GPU par-
allel libraries (e.g. CUDA Toolkit [43]) with MATPOWER and
OpenDSS in order to explore the potential improvement in execu-
tion times. That work should also focus on determining how
large the test systems must be in order to obtain a positive impact.

5 Conclusion

This study has presented how the parallel sparse matrix solver Intel
MKL PARDISO can be introduced into the iterative solution scheme
of MATPOWER and OpenDSS. The use of this solver did not
require extensive alterations of the respective source codes (see
Appendices 1–3). From a programming point of view, the hardest
task was identifying the code sections that needed to be modified
in order to include the parallel solver. Other tasks such as linking
the redistribution DLL, accessing the parallel routines from within
the DLL, and manipulating the input/output data can be readily com-
pleted with intermediate programming skills. In a broad sense, the
Intel MKL PARDISO could be considered as ‘plug-and-play’,
J Eng, 2017, Vol. 2017, Iss. 6, pp. 195–204
doi: 10.1049/joe.2017.0023

This is an open
Attribution-N
since the effort to link it to other software applications cannot be
compared to that required for implementing a custom-made parallel
application that includes a parallel sparse matrix solver.

The use of a parallel sparse matrix solver has proven to be a valid
choice when the sparse matrix A in (1) must be updated at every
step of the iterative solution: results found with the full NR
method show that significant reductions in total execution times
can be achieved. However, it seems clear that the use of parallel
sparse matrix solvers is not adequate for the consecutive execution
of iterative algorithms that rely on constant matrices (e.g. OpenDSS
time-driven simulations), since time increments in individual solu-
tions (caused by problem partitioning in the solve stage) can lead to
much larger differences in total execution times. According to the
obtained results, the Intel MKL PARDISO can produce time reduc-
tions of up to 40% for the full NR method; however, its use did not
lead to significant performance improvements for the fast
decoupled NR method. Results also show that the number of
threads used in the parallelisation of the Intel MKL PARDISO
routine has an important impact on the time reduction that can be
achieved. Based on the curves presented in Figs. 1 and 2, it can
be observed that, for systems with sizes similar to those used in
this study, eight threads are enough to achieve an important reduc-
tion of execution times: using more than eight threads with the full
NR method does not produce significant improvements in perform-
ance, whereas for the fast decoupled NR method it can lead to an
increment in execution times.

The results obtained with OpenDSS show that the Intel MKL
PARDISO routine can lead to time increments of up to 47%,
causing an important loss in performance when compared to
KLUSolve. Fig. 5 demonstrates that increasing the number of
threads used in the parallelisation of the Intel MKL PARDISO
routine causes an increment in solution times. This behaviour is
typical of small systems where the overhead caused by partitioning
the problem (according to the number of threads) outweighs the
time gain of the parallel solution.

On the basis of the saturation effect shown in Fig. 1b, it can be
determined that eight is the optimal number of threads for the par-
allelisation of the full NR algorithm (when solving test systems of
sizes similar to those presented here). The fast decoupled NR
method only shows very limited improvement and the default
OpenDSS algorithm presents a clear diminishment in its
access article published by the IET under the Creative Commons
oDerivs License (http://creativecommons.org/licenses/by-nd/3.0/)



performance. This behaviour is an indication that the best option is
to rely on highly-efficient single-core routines.

Matrix factorisation is the most computationally expensive oper-
ation in a parallel sparse matrix solver and for iterative algorithms
that rely on constant matrices (e.g. default OpenDSS algorithm
and fast decoupled NR) the parallel sparse routine has a negative
effect when solving equation systems with sizes similar to those pre-
sented here. The solution of the Intel MKL PARDISO can be
divided into three stages: analysis, numerical factorisation, and
solve. The analysis and numerical factorisation stages are always
performed together and in the case of constant matrices they must
be executed only once, therefore the time spent in these stages is
accounted as one. For the default OpenDSS algorithm it is clear
that the ‘average individual solve time’ is much shorter than the
time spent for the generation of the CSC format and matrix factor-
isation (i.e. analysis and numerical factorisation stages); take into
account that this time includes the time required to gather the com-
pensation currents vector. For the fast decoupled NR algorithm an
average solve time has not been calculated; however, the time
spent to perform the P and Q iterations can be calculated by subtract-
ing the ‘factorisation’ and ‘CSR format’ times from ‘total time’.
Although these times vary according to the number of threads
used in the parallel routine, it is clear that the time needed to
execute the solve stage is much shorter than the ‘factorisation’ time.

Although other parallel high-performance libraries may exhibit
similar or slightly superior performance than the Intel MKL
PARDISO (see [19]), it is not expected that this or other libraries
will produce a significant performance improvement with respect
to highly-efficient single-core routines, unless the equation
systems are much larger than those analysed here. In [44, 45] a
system with over one million buses was used to test single-core
Newton–Krylov solvers for very large power systems. The
ongoing efforts to test systems of such size using single-core rou-
tines can be seen as an indication that in order to obtain a significant
performance gain using parallel routines it is necessary to study
systems several times larger than that used in [44, 45].

It is important to emphasise that linking a high-performance
library (e.g. Intel MKL PARDISO) with pre-existing software
tools (e.g. MATPOWER and OpenDSS) can be a suitable option
for implementing parallel solutions. Although the development of
a custom-made parallel routine is a difficult task and requires
deep some knowledge of parallel algorithms and programming,
this paper has shown that some available libraries can be deployed
with interfaces that are readily used to connect them to other appli-
cations. Furthermore, most routines can be initialised with a set of
default parameters, which facilitates its use for non-expert users.
However, a clear understanding of sparse matrices and sparse
solvers will always provide a great aid to maximise the performance
of such routines.

6 References

[1] Cai X., Acklam E., Langtangen H.P., ET AL.: ‘Parallel computing’, in
Langtangen H.P., Tveito A. (Eds.): ‘Advanced topics in computation-
al partial differential equations’ (Springer, Heidelberg, Germany,
2003)

[2] Skuhersky M.: ‘Introduction to Parallel Computing’. Available at
http://web.mit.edu/vex/www/Parallel.pdf

[3] Grama A., Gupta A., Karypis G., ET AL.: ‘Introduction to parallel com-
puting’ (Addison Wesley, Essex, UK, 2003)

[4] Falcao D.M., Borges C.L.T., Taranto G.N.: ‘High performance com-
puting in electrical energy systems applications’, in Kumar Khaitan
S., Gupta A. (Eds.): ‘High performance computing in power and
energy systems’ (Springer, 2013)

[5] Zhou M.: ‘Distributed parallel power system simulation’, in Kumar
Khaitan S., Gupta A. (Eds.): ‘High performance computing in
power and energy systems’ (Springer, Heidelberg, Germany, 2013)

[6] Aristidou P., Hug G.: ‘Accelerating the computation of critical eigen-
values with parallel computing techniques’. Power Systems
Computation Conf. (PSCC), Genoa, Italy, 2016
This is an open access article published by the IET under the Creative
Attribution-NoDerivs License (http://creativecommons.org/licenses/by-
[7] Tomim M., Marti J., Passos Filho J.A.: ‘Parallel transient stability
simulation based on multi-area Thévenin equivalents’, Accepted for
publication in IEEE Trans. Smart Grid, 2017, 8, (3), pp. 1366–1377

[8] Lu N., Taylor Z.T., Chassin D.P., ET AL.: ‘Parallel computing environ-
ments and methods for power distribution system simulation’. IEEE
PES General Meeting, San Francisco, CA, USA, June 2005

[9] Mosaddegh A., Canizares C.A., Bhattacharya K., ET AL.: ‘Distributed
computing architecture for optimal control of distribution feeders
with smart loads’, Accepted for publication in IEEE Trans. Smart
Grid, 2017, 8, (3), pp. 1469–1478

[10] de León F., Czarkowski D., Spitsan V., ET AL.: ‘Development of data
translators for interfacing power-flow programs with EMTP-type pro-
grams: challenges and lessons learned’, IEEE Trans. Power Deliv.,
2013, 28, (2), pp. 1192–1201

[11] Dufour C., Jalili-Marandi V., Bélanger J., ET AL.: ‘Power system simu-
lation algorithms for parallel computer architectures’. IEEE PES
General Meeting, San Diego, CA, USA, 2012

[12] Dufour C., Mahseredjian J., Belange J.: ‘A combined state-space
nodal method for the simulation of power system transients’, IEEE
Trans. Power Deliv., 2010, 26, (2), pp. 928–935

[13] Strunz K., Carlson E.: ‘Nested fast and simultaneous solution for
time-domain simulation of integrative power-electric and electronic
systems’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 277–287

[14] Martinez J.A., Guerra G.: ‘A parallel Monte Carlo method for
optimum allocation of distributed generation’, IEEE Trans. Power
Syst., 2014, 29, (6), pp. 2926–2933

[15] Koester D.P., Ranka S., Fox G.C.: ‘A parallel Gauss-Seidel algorithm
for sparse power system matrices’. Proc. of Supercomputing ’94,
Washington, DC, USA, 1994

[16] Wu J.Q., Bose A.: ‘Parallel solution of large sparse matrix equations
and parallel power flow’, IEEE Trans. Power Syst., 1995, 10, (3),
pp. 1343–1349

[17] Tu F., Flueck A.J.: ‘A message-passing distributed-memory
Newton-GMRES parallel power flow algorithm’. IEEE PES
Summer Meeting, Chicago, IL, USA, 2002

[18] Wang X., Ziavras S.G., Nwankpa C., ET AL.: ‘Parallel solution
of Newton’s power flow equations on configurable chips’,
Int. J. Electr. Power Energy Syst., 2007, 29, (5), pp. 422–431

[19] Zadeh K., Zeynal H., Nor K.M., ET AL.: ‘Performance evaluation of
SuperLU and PARDISO in power system load flow calculations’,
Electr. Rev. (Przeglad Elektrotechniczny), 2011, 87, (11),
pp. 290–294

[20] Guo C., Jiang B., Yuan H., ET AL.: ‘Performance comparisons of
parallel power flow solvers on GPU system’. 18th Int. Conf. on
Embedded and Real-Time Computing Systems and Applications
(RTCSA), Seoul, Korea, 2012

[21] Roberge V., Tarbouchi M., Okou F.: ‘Parallel power flow on graphics
processing units for concurrent evaluation of many networks’, IEEE
Trans. Smart Grid, 2015, PP, (99), pp. 1–10, DOI: 10.1109/
TSG.2015.2496298

[22] Li X., Li F.: ‘GPU-based two-step preconditioning for conjugate gra-
dient method in power flow’. IEEE PES General Meeting, Denver,
CO, USA, 2015

[23] Li X., Li F., Yuan H., ET AL.: ‘GPU-based fast decoupled power flow
with preconditioned iterative solver and inexact newton method’,
IEEE Trans. Power Syst., 2016, PP, (99), p. 1, DOI: 10.1109/
TPWRS.2016.2618889

[24] Available at http://www.openelectrical.org/wiki/index.php?
title=Power_Systems_Analysis_Software

[25] Intel Math Kernel Library for Windows OS (Developer Guide),
Available at https://software.intel.com/en-us/intel-mkl-support/
documentation

[26] Amestoy P.R., Duff I.S., Koster J., ET AL.: ‘A fully asynchronous
multifrontal solver using distributed dynamic scheduling’, SIAM
J. Matrix Anal. Appl., 2001, 23, (1), pp. 15–41

[27] Hénon P., Ramet P., Roman J.: ‘PaStiX: A high-performance parallel
direct solver for sparse symmetric definite systems’, Parallel
Comput., 2002, 28, (2), pp. 301–321

[28] Li X.S.: ‘An overview of SuperLU: Algorithms, implementation, and
user interface’, ACM Trans. Math. Softw., 2005, 31, (3), pp. 302–325

[29] Zimmerman R.D., Murillo-Sanchez C.E., Thomas R.J.: ‘Matpower:
Steady-state operations, planning and analysis tools for power
systems research and education’, IEEE Trans. Power Syst., 2011,
26, (1), pp. 12–19

[30] Dugan R., McDermott T.E.: ‘An open source platform for collaborat-
ing on smart grid research’. IEEE PES General Meeting, Detroit, MN,
USA, 2011
Commons
nd/3.0/)

J Eng, 2017, Vol. 2017, Iss. 6, pp. 195–204
doi: 10.1049/joe.2017.0023

http://web.mit.edu/vex/www/Parallel.pdf
http://web.mit.edu/vex/www/Parallel.pdf
http://web.mit.edu/vex/www/Parallel.pdf
http://web.mit.edu/vex/www/Parallel.pdf
http://web.mit.edu/vex/www/Parallel.pdf
http://web.mit.edu/vex/www/Parallel.pdf
http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Software
http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Software
http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Software
http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Software
http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Software
http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Software
http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Software
https://software.intel.com/en-us/intel-mkl-support/documentation
https://software.intel.com/en-us/intel-mkl-support/documentation
https://software.intel.com/en-us/intel-mkl-support/documentation
https://software.intel.com/en-us/intel-mkl-support/documentation
https://software.intel.com/en-us/intel-mkl-support/documentation
https://software.intel.com/en-us/intel-mkl-support/documentation


[31] Schenk O., Gärtner K., Fichtner W.: ‘Efficient sparse LU factoriza-
tion with left–right looking strategy on shared memory multiproces-
sors’, BIT, 2000, 40, (1), pp. 158–176

[32] Intel Math Kernel Library (Developer Reference), Available at
https://software.intel.com/en-us/intel-mkl-support/documentation

[33] Tinney W.F., Hart C.E.: ‘Power flow solution by Newton’s method’,
IEEE Trans. Power Appar. Syst., 1967, 86, (11), pp. 1449–1460

[34] Stott B., Alsaç O.: ‘Fast decoupled load flow’, IEEE Trans. Power
Appar. Syst., 1974, 93, (3), pp. 859–869

[35] Zimmerman R.D., Murillo-Sánchez C.: ‘MATPOWER User’s
Manual’, Available at http://www.pserc.cornell.edu/matpower

[36] Fliscounakis S., Panciatici P., Capitanescu F., ET AL.: ‘Contingency
ranking with respect to overloads in very large power systems
taking into account uncertainty, preventive and corrective actions’,
IEEE Trans. Power Syst., 2013, 28, (4), pp. 4909–4917

[37] Amdahl G.M.: ‘Validity of the single processor approach to achieving
large scale computing capabilities’, IEEE Solid-State Circuits Soc.
Newsl., 2007, 12, (3), pp. 19–20

[38] Amdahl G.M.: ‘Validity of the single processor approach to achieving
large scale computing capabilities’. AFIPS Conf. Proc., Atlantic City,
NJ, USA, 1967, vol. 30, pp. 483–485

[39] Hill M.D., Marty M.R.: ‘Amdahl’s law in the multicore era’,
Computer, 2008, 41, (7), pp. 33–38

[40] Dugan R.C.: ‘Open DSS reference guide’ (EPRI, 2013)
[41] Available at https://sourceforge.net/projects/klusolve
Fig. 6 Solution of voltage corrections in Full Newton-Raphson’s method (Intel M

Fig. 7 Solution of voltage corrections in Fast Decoupled Newton-Raphson’s meth

J Eng, 2017, Vol. 2017, Iss. 6, pp. 195–204
doi: 10.1049/joe.2017.0023

This is an open
Attribution-N
[42] Martínez-Velasco J.A., Guerra G.: ‘Analysis of large distribution net-
works with distributed energy resources’, Ingeniare, 2015, 23, (4),
pp. 594–608

[43] Available at https://developer.nvidia.com/cuda-toolkit
[44] Idema R., Lahaye D.J.P., Vuik C., ET AL.: ‘Scalable Newton-Krylov

solver for very large power flow problems’, IEEE Trans. Power
Syst., 2012, 27, (1), pp. 390–396

[45] Idema R., Papaefthymiou G., Lahaye D., ET AL.: ‘Towards faster solu-
tion of large power flow problems’, IEEE Trans. Power Syst., 2013,
28, (4), pp. 4918–4925
7 Appendix

7.1 Appendix 1: Code for the solution of the full NR method

Fig. 6 presents the MATLAB code introduced into the m-files in
order to solve the voltage corrections in the iterative scheme. The
phase variable is set to perform all stages of the Intel MKL
PARDISO solution process and the calllib function is used to call
the routine from the MATLAB environment. The csrmatrix_full
function was developed by the authors.
KL PARDISO)

od (Intel MKL PARDISO)

access article published by the IET under the Creative Commons
oDerivs License (http://creativecommons.org/licenses/by-nd/3.0/)

https://software.intel.com/en-us/intel-mkl-support/documentation
https://software.intel.com/en-us/intel-mkl-support/documentation
https://software.intel.com/en-us/intel-mkl-support/documentation
https://software.intel.com/en-us/intel-mkl-support/documentation
https://software.intel.com/en-us/intel-mkl-support/documentation
http://www.pserc.cornell.edu/matpower
http://www.pserc.cornell.edu/matpower
http://www.pserc.cornell.edu/matpower
http://www.pserc.cornell.edu/matpower
http://www.pserc.cornell.edu/matpower
http://www.pserc.cornell.edu/matpower
https://sourceforge.net/projects/klusolve
https://sourceforge.net/projects/klusolve
https://sourceforge.net/projects/klusolve
https://sourceforge.net/projects/klusolve
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit


Fig. 8 Admittance matrix CSC format, matrix factorisation, and solution of updated node voltages (Intel MKL PARDISO)
7.2 Appendix 2: Code for the solution of the fast decoupled
NR method

In the present MATLAB code the Intel MKL PARDISO solution
process is divided in different stages, see Fig. 7. First the phase vari-
able is set to perform only the analysis and numerical factorisation
stages of the B′ and B″ admittance matrices [25]. Next the code
required to solve the voltage angle and magnitude corrections is
shown; note that the phase variable is set so only the solve stage
is performed. The csrmatrix_symm function was developed by
the authors.
This is an open access article published by the IET under the Creative
Attribution-NoDerivs License (http://creativecommons.org/licenses/by-
7.3 Appendix 3: Code for the solution of the default
OpenDSS solution

The Delphi code in Fig. 8 in this annex shows the lines used to re-
trieve the admittance matrix using the CSC format and perform the
analysis and factorisation stages of the Intel MKL PARDISO. In
addition, it presents the code inserted into the iteration process to
calculate the updated node voltages using the factorised admittance
matrix and the compensation currents vector. The phase variable is
set accordingly and it is assigned the same values as in the code
used for the fast decoupled NR.
Commons
nd/3.0/)

J Eng, 2017, Vol. 2017, Iss. 6, pp. 195–204
doi: 10.1049/joe.2017.0023


	1 Introduction
	2 Application of a parallel sparse matrix solver to the load�flow solution
	3 Implementation and testing of the parallel solver
	4 Discussion
	5 Conclusion

