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Abstract: In this study, the authors propose a state space modelling approach for trust evaluation in wireless sensor networks. In their state
space trust model (SSTM), each sensor node is associated with a trust metric, which measures to what extent the data transmitted from this
node would better be trusted by the server node. Given the SSTM, they translate the trust evaluation problem to be a non-linear state filtering
problem. To estimate the state based on the SSTM, a component-wise iterative state inference procedure is proposed to work in tandem with
the particle filter (PF), and thus the resulting algorithm is termed as iterative PF (IPF). The computational complexity of the IPF algorithm is
theoretically linearly related with the dimension of the state. This property is desirable especially for high-dimensional trust evaluation and
state filtering problems. The performance of the proposed algorithm is evaluated by both simulations and real data analysis.
1 Introduction

Wireless sensor networks (WSNs) are networked systems that
consist of autonomous nodes collaborating to perform an applica-
tion task. The nodes of a networked system are usually spatially
distributed and equipped with limited sensing, computing and
communication capabilities. The research on WSN has gained
significant concern in the last decade. The related application
domains include but are not limited to health care [1], energy
security [2], environmental monitoring [3, 4] and military informa-
tion integration [5, 6].
The performance of WSN depends on collaboration among dis-

tributed sensor nodes, while those nodes are often unattended with
severe energy constraints and limited reliability. In such conditions,
it is important to evaluate the trustworthiness of participating nodes
since trust is the major driving force for collaboration. The focus of
this paper is to propose a state space trust model (SSTM) along with
a corresponding trust evaluation algorithm in the context of WSN.
The research on trust evaluation has been extensively performed

in the context of several diverse domains such as security [7, 8],
electronics commerce [9, 10], peer-to-peer networks [11, 12] and
ad hoc and sensor networks [4, 13–15]. The main objective of
the trust evaluation module is to expose an output metric that can
be used as a representative of the subjective expectation of the
sensor nodes’ future behaviours. This trust metric can be used in
several ways. For example, the trust value of each node can be
used as a weight for a data reading reported by this node. Then,
the data fusion can be performed on these weighted data readings,
thereby reducing the impact of untrustworthy nodes [14]. In add-
ition, the evolution of trust over time can facilitate online detection
of misbehaving nodes. Last but not least, the trust value can be used
as a decision making criteria for the end-user to take appropriate
measures such as replacing detected faulty nodes. Although
various trust models and trust evaluation approaches are available
[10, 16–22], there are still many challenges that need to be
addressed. It is not clear what are the fundamental rules the trust
models must follow; therefore, there is neither a consensus on the
definition of trust, nor a common rule for specifying an appropriate
trust metric for a given problem. As a result, the design of trust
models is still at the empirical stage.
Motivated by the lack of a unified theoretical framework to build

up trust models, in this paper, we introduce a generic theoretical
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model, namely SSTM, in the context of WSN data analysis. We
also propose a novel trust evaluation algorithm, termed iterative
particle filter (IPF), based on the framework of SSTM. We show
that the SSTM framework is extensible and generic, and can
include related existing trust evaluation approaches, e.g. the
Bayesian dynamic model-based PF (BDMPF) [4], as a special case.

The remainder of this paper is organised as follows. In Section 2,
we describe the SSTM. In Section 3, we introduce the proposed IPF
algorithm in detail. In Section 4, we report the simulation and real
data analysis results in applying IPF for trust evaluations over
WSN. Finally, in Section 5, we conclude this paper.

2 Network topology model

We focus on the network topology model as shown in Fig. 1. This
model was considered in [4]. The sensor nodes are arranged to
sense the environmental parameters and report them to the relay
node in real time. The relay node receives the sensor readings
from the sensor nodes, and then sends them to a base station that
is communicated with a server computer node. All the sensor read-
ings are gathered and analysed at the server computer node. The
server computer node is connected with Internet, such that
the result of real-time data analysis can be checked remotely by
the end-user of the WSN system. Every sensor reading consists
of the sensed environmental parameter values and the correspond-
ing sensor ID. Therefore, at the server computer node, we can easily
find out the corresponding source sensor node for each sensor
reading. The controller nodes receive feedback signal from the com-
puter node, and then control several apparatuses in order to tune the
environmental parameters.

3 State Space Trust Model

In this section, we describe the SSTM in detail. We show that,
based on the SSTM, trust evaluation over WSN can be formulated
as a non-linear state filtering problem.

In SSTM, the trustworthiness of each sensor node is modelled by
a trust index, to measure to what extent the data transmitted from
this node would better be trusted by the server computer node.
The state vector xk in the SSTM is defined as follows

xk W [xk, 1, xk, 2, . . . , xk, d] (1)
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Fig. 1 WSN network topology model under consideration
where the element xk, j denotes the trust value of the jth node at the
kth time step, and d is the dimension of xk , corresponding to the
number of sensor nodes under consideration. The value space of
the trust metric xi, j is [0,1], whereby the extreme value 1 means
‘fully trusted’, and 0 indicates the opposite, that is ‘totally
un-trusted’.

The trust propagation law over time is modelled by the ageing
mechanism as follows [14, 23]

xk+1 = axk + v, v � N (0, Q) (2)

where 0 , a , 1 denotes the ageing parameter, Q denotes a diag-
onal matrix and N (0, Q) is a zero-mean Gaussian distribution with
covariance Q. In [14], the value of a is set to be 0.95. The value of
a can also be found out by comparing the evolution of the trust in a
system with and without ageing weight, respectively [23]. Note that
if the value of xk+1 obtained with (2) falls outside of the range [0,1],
then we draw a new value of xk+1 via (2) until it falls within the
range [0,1].

A generativemodel of the sensor readings, which relates the trust
metric with the real sensor readings, is specified by the likelihood
function. Let yk denote the data collected by the server computer
node at the kth time step. We have yk = [yk, 1, yk, 2, . . . , yk, d],
where yk, j denotes the data reported by the jth node at the kth
time step. The likelihood function is designed to be

p(yk |xk ) = exp
−∑d

j=1 |xk, j − V {xk, n}n[{1:d}\j, yk , j
( )

|
b

⎛
⎝

⎞
⎠ (3)

where {1:d}\j denotes {1, . . . , j − 1, j + 1, . . . , d}, |A| denotes
the absolute value of A, 0 , b , 1 is a free parameter and

V {xk, n}n[{1:d}\j, yk , j
( )

W

∑
n[{1:d}\j xk, nU (n, j, yk )∑

n[{1:d}\j xk, n
(4)

Equation (4) describes the computation of the voting metric of the
jth node, given by the other nodes. The item U (n, j, yk ) in (4)
denotes the voting result node n gives to j, and is defined to be

U (n, j, yk ) = 1 if |yk, n − yk, j| , r
0 otherwise

{
(5)

where r denotes a preset threshold for determining whether a pair of
nodes reports sensor readings with permissible differences. The
underlying assumption adopted in defining U (n, j, yk ) is that
sensor readings reported by mutually trusted sensor nodes should
not have significant difference. This assumption is reasonable for
many WSN applications, wherein the nodes are mutual spatial
neighbours among with each other and the trusted sensor readings
should be spatially correlated with each other. This assumption is
This is an open access article published by the IET under the Creative
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also in analogy with the social trust, wherein mutually trusted
social entities report similar opinions (data) on an object or event
in an ad hoc context. In (4), U (n, j, yk ) is weighted by
(xk, n/

∑
i[{1:d}\j xk, i), for each n [ {1:d}\j. In such a way, the

impact of each node is adjusted according to its trustworthiness,
and thus the impact of untrustworthy nodes is reduced, in generat-

ing the final voting metric of node j, i.e. V {xk, n}n[{1:d}\j, yk , j
( )

Given the data collected by the server computer node until the kth
time step, denoted by y1:k W {y1, . . . , yk}, we are right now con-
cerned with the calculation of the posterior probability density
function (pdf) pk = p(xk |y1:k ) in a Bayesian inference framework.

According to Bayesian philosophy [24], given y1:k , all the infor-
mation on xk is encoded by the posterior, as long as the prior pdf
and the likelihood function are specified appropriately. Particle
filters (PFs), a.k.a. sequential Monte Carlo methods, are recognised
as a general approach to address such a Bayesian state estimation
problem [25–27]. In comparison to other state filtering algorithms
such as the Kalman filter and its variants, PFs have striking advan-
tages in coping with non-linearities and/or non-Gaussian noises in
the model [26, 28, 29]. However, as a Monte Carlo method, the PF
algorithm inevitably suffers from the well-known curse of dimen-
sionality, that is, the PF may collapse in case of high-dimensional
state vector [30–32].

Regarding our problem at hand, the dimension of the state, i.e. d,
is equal to the number of sensor nodes under consideration. If the
network of our concern consists of massive sensor nodes densely
arranged, the corresponding state will become high dimensional,
thus the conventional PF algorithms may become invalid. We
propose in Section 4 a novel PF algorithm, namely IPF, to get
around of the above computation problem caused by high
dimensionality.

4 Iterative PF

In this section, we introduce the proposed IPF algorithm in detail.
To begin with, we give a brief review on a conventional PF algo-
rithm, termed bootstrap PF, to fix the notations.

4.1 Bootstrap PF

The bootstrap PF is a general practical non-linear state filter, which
typically proceeds by Monte Carlo approximation. This algorithm
has a recursive structure in its implementation, thus it allows the
state filter to be computed online over a long time horizon. The re-
cursion is at the level of probability measures, and the target distri-
bution pk is approximated by the empirical distribution p̂k . The
distribution p̂k is then computed by the recursion

p̂0 = p0, p̂k = Fkp̂k−1 (6)

where p0 denotes a prior belief on the state and Fk denotes an op-
erator that consists of two steps

p̂k−1 −−−−�
prediction

p̂k− −−−−�correction
p̂k (7)

The empirical distribution p̂k−1 is the output of the algorithm at the
k − 1th (k > 1) time step, and is represented as

p̂k−1 =
1

N

∑N
i=1

sxi
k−1

(8)

where N ≥ 1 is the number of particles used in the algorithm,
(xik−1)i=1, ...,N are independent identically distributed (i.i.d.)
samples from p̂k−1, and sx denotes the delta function located at x.

In the prediction step, a set of new particles {xik−}i=1, ...,N is gen-
erated according to the state transition law, i.e. (2) for the problem
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Fig. 2 Resampling algorithm with input {xik−, w
i}i=1, ...,N

Fig. 3 Bootstrap PF
of our concern. Specifically, we have

xik− = axik−1 + v, v � N (0, Q), i = 1, . . . , N (9)

Note that the value of xik− needs to be bounded within [0,1].
Provided that its value jumps outside of the bounded space [0,1],
we just generate a new value for xik− using (2).
These particles {xik−}i=1, ...,N are then weighted in the correction

step. The weights are termed importance weights in the context of
PF, and are calculated as follows:

wi = �wi∑N
i=1 �w

i
, i = 1, . . . , N (10)

where

�wi = p(yk |xik−), i = 1, . . . , N (11)

Then let p̂k =
∑N

i=1 w
idxi

k−
. In bootstrap PF, a resampling proced-

ure is included to prevent the phenomenon of particle degeneracy,
that is, more and more particles get zero weights and are lost.
The basic operations of resampling are described in Fig. 2.
A summarisation of the bootstrap PF is described in Fig. 3, where

K denotes the total number of time steps under consideration.
It is shown that the empirical distribution p̂k converges to the

exact target distribution pk as N � 1 [33, 34]. We see [26] for
a detailed overview of PF algorithms and the related analysis.

4.2 Derivation of the IPF algorithm

Since conventional PF algorithms such as the bootstrap PF
presented in Section 4.1 have inevitable drawbacks in dealing
with filtering problems with high-dimensional state vectors
[30–32], here we derive a novel IPF algorithm, based on the specific
structure of our model, to get around of the obstacles resulted from
high dimensionality.
Observe that the likelihood function constructed in (3) can be

factorised as follows

p(yk |xk ) =
∏d
j=1

exp
−|xk, j − V {xk, n}n[{1:d}/j

, yk , j
( )

|
b

⎛
⎝

⎞
⎠ (12)
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Therefore, conditional on {xk, n}n[{1, ..., d}/j, we can calculate the
likelihood of xk, j as follows

p(yk |xk,j|{xk,n}n[{1,...,d}/j)= exp
−|xk,j−V {xk,n}n[{1:d}/j

, yk , j
( )

|
b

⎛
⎝

⎞
⎠

(13)

On the basis of (2), the state transition law of xk,j can be shown to be

xk+1,j=axk,j+vj, vj�N (0,Qjj) (14)

where Qj,j denotes the jth diagonal element of matrix Q.
Given the component-wise likelihood and state transition

function, specified by (13) and (14), respectively, we can according-
ly calculate the component-wise posterior, which is only a one-
dimensional (1D) distribution and thus is very easy to be sampled
from.

The basic idea of IPF is that, at each time step, instead of sam-
pling straightforwardly from the high-dimensional posterior (such
as in conventional PF), we perform component-wise inferences
by sampling from a set of component-wise posterior pdfs, and
then update the estimate of the trust iteratively. Specifically, the
component-wise inference operations are described in Fig. 4,
wherein A− B‖ ‖ denotes the Euclidean distance between the two
vectors A and B, and Tx denotes a preset threshold for determining
if values of a pair of trust vectors have significant difference with
each other.

Finally, the IPF is described in Fig. 5. Although the proposed IPF
algorithm has an iterative component, our experiments in Section 5
(see Fig. 8) show that it needs just a few iterations in order to
converge.

4.3 Connections to existing work

The proposed IPF algorithm has a close connection to the BDMPF
algorithm [4]. Both algorithms are developed within the Bayesian
state filtering framework, while their essential difference lies in
the design of the model. In BDMPF, the voting metric of the jth
node, given by the other nodes, is computed as follows

V {xk, n}n[{1:d}\j, yk , j
( )

W

∑
n[{1:d}\j U (n, j, yk )

d − 1
(15)

In comparison with (4), we see that (15) is equivalent to (4) in case
of xk, n = 1 for any n [ {1:d}\j. In another word, in calculating the
voting metric of node j, BDMPF assumes that all the other sensor
nodes are all completely trusted. Clearly, such an assumption is
easy to be violated in practise.

In addition, regarding BDMPF and IPF, the difference in their
model structures leads to a corresponding difference in the related
inference algorithms. In the inference process, the IPF algorithm
employs the fact that xk, 1, xk, 2, . . . , xk, d are correlated with each
other and thus should be estimated jointly, while the BDMPF
assumes that xk, 1, xk, 2, . . . , xk, d are independent with each
other, thus are estimated separately.
access article published by the IET under the Creative Commons
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Fig. 4 Iterative component-wise inference within the IPF at time step k

Fig. 5 The proposed IPF algorithm

Table 1 Parameter setting of the IPF algorithm in the Monte Carlo
simulation test

N a Q b r Tx

100 0.85 diag([0.01, . . . , 0.01]) 0.1 0.6 1 × 10−5
Therefore, the proposed IPF algorithm is preferable to BDMPF
for WSN applications, wherein the trustworthy sensor readings
are statistically correlated with each other and are independent
with those yielded by un-trusted nodes. The empirical results pre-
sented in Section 5 are consistent with the above analysis.

5 Performance evaluation

In this section, we present performance evaluation results of the
proposed IPF algorithm based on simulations and real data analysis.

5.1 Simulation results

We tested our algorithm based on the simulation case that was used
in [4].

5.1.1 Simulation setting: In this case, we have ten sensor nodes
involved, each of which reports its sensor reading to the server com-
puter node at 100 discrete time steps. The network topology related
with this simulation case is the same as shown in Fig. 1. The values
of trustworthy sensor readings are simulated to be normally distrib-
uted centring at 20°C at each time step. Among the sensor nodes,
seven of them are trustworthy as they transmit normal sensor read-
ings from beginning to end. The remaining nodes, indexed by
‘Sensor A’, ‘Sensor B’ and ‘Sensor C’, have different types of un-
reliability in their behaviour. Specifically, ‘Sensor A’ is simulated to
be unreliable from 31st to 70th time steps, during which the sensor
reading value it transmits rises gradually from 20 to 40°C between
the 30th and 50th time steps, and then falls back gradually to 20°C
between the 50th and 70th time steps. The sensor reading of ‘Sensor
B’ is simulated to be uniformly distributed between 0 and 100°C at
each time step. ‘Sensor C’ is simulated to work normally from 1st to
50th time step and then stop reporting any values afterwards. This
phenomenon is termed as ‘Sleeper Attack’ in [14].

5.1.2 Performance comparison with the BDMPF algorithm: We
compared our IPF algorithm with the BDMPF algorithm proposed
in [4] by Monte Carlo simulations. We ran 100 times of independ-
ent Monte Carlo runs of the IPF algorithm and the BDMPF algo-
rithm. These two algorithms were initialised by the same
parameter setting as shown in Table 1. At the beginning, the trust
metric of every sensor node was set to be 0.5.

The estimated traces of the trust metric of ‘Sensor A’, ‘Sensor B’,
‘Sensor C’ and an always-trustworthy sensor node, termed ‘Sensor
D’ here, are plotted in Figs. 6–9, respectively.
This is an open access article published by the IET under the Creative
Attribution-NonCommercial-NoDerivs License (http://creativecommons
licenses/by-nc-nd/3.0/)
First, let us analyse the estimation result on ‘Sensor A’.
According to the simulation setting described in Section 5.1.1,
the trust metric of ‘Sensor A’ takes the value of 1 in two time
periods, corresponding to the 1–30 and 71–100 time steps, and it
takes the value of 0 at the other, namely the 31–70 time steps. In
Fig. 2, we see that within the first ten time steps, the estimated
trust metric of ‘Sensor A’ given by the IPF algorithm converges
to the expected value 1 quickly, while the estimated trust metric
given by the BDMPF algorithm converges to 0.8. During the 31–
70 time steps, the estimate given by the IPF algorithm converges
again to the expected value 0 quickly, while the BDMPF algorithm
converges to a value close to 0.1. Regarding the last 30 time steps, it
is shown that the IPF algorithm can still output much accurate esti-
mate on the trust metric, while the performance of BDMPF deterio-
rates much more, since the gap between its estimate and the true
answer is broadened. The similar result of that the estimate given
by IPF is much more accurate than that given by BDMPF can
also be found in Figs. 3–5, for ‘Sensors B, C and D’, respectively.
Furthermore, we can see that the performance gap between the
BDMPF and the IPF algorithms is broadened when more sensor
nodes become untrustworthy. For example, in Fig. 5, we see that,
for this always-trustworthy node ‘Sensor D’, the estimated trust
metric given by BMDPF worsens along with the increase in the
number of existing untrustworthy nodes. Specifically, we can see
that at 51–70 time steps, during which ‘Sensors A, B and C’ are
all untrustworthy, the BDMPF algorithm gives the worst estimate
Commons
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Fig. 6 Left: traces of the estimated trust metric of ‘Sensor A’ in 100 independent Monte Carlo runs of the IPF algorithm. Right: traces of the estimated trust
metric of ‘Sensor A’ in 100 independent Monte Carlo runs of the BDMPF algorithm

Fig. 7 Left: traces of the estimated trust metric of ‘Sensor B’ in 100 independent Monte Carlo runs of the IPF algorithm. Right: traces of the estimated trust
metric of ‘Sensor B’ in 100 independent Monte Carlo runs of the BDMPF algorithm

Fig. 8 Left: traces of the estimated trust metric of ‘Sensor C’ in 100 independent Monte Carlo runs of the IPF algorithm. Right: traces of the estimated trust
metric of ‘Sensor C’ in 100 independent Monte Carlo runs of the BDMPF algorithm
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Fig. 9 Left: traces of the estimated trust metric of ‘Sensor D’ in 100 independent Monte Carlo runs of the IPF algorithm. Right: traces of the estimated trust
metric of ‘Sensor D’ in 100 independent Monte Carlo runs of the BDMPF algorithm
of the trust metric compared with the other periods. In contrast with
BDMPF, the proposed IPF algorithm always provides an accurate
estimate on the trust metric of ‘Sensor D’ in Fig. 5. In another
words, the IPF algorithm is shown to be remarkably much more
robust than BDMPF in case of untrustworthy nodes being involved.
The above result is consistent with the theoretical analysis on the
connections between the IPF and the BDMPF algorithms as
described in Section 4.3.
5.1.3 Numerical performance evaluation: For ease of quantitative
performance evaluation, we used the root mean square error
Fig. 10 RMSE calculated based on simulation results obtained from 100 independ
of sensor nodes under consideration. The top left, top right, bottom left and botto
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(RMSE) to measure the gap between the estimate provided by an
algorithm and the true answer. The RMSE regarding node j at
time step k is defined to be

RMSEk, j W

���������������������∑M
m=1 (x̂

m
k, j − xk, j)

2

M

√
(16)

where M denotes the total number of independent runs of the algo-
rithm of our concern in the Monte Carlo simulation test, x̂mk, j denotes
the estimate of xk, j yielded in the mth independent run of the algo-
rithm. In what follows we set M = 100.
ent Monte Carlo runs of the IPF algorithm. Here, d denotes the total number
m right sub-figures correspond to ‘Sensors A, B, C and D’, respectively
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Fig. 11 RMSE calculated based on simulation results obtained from 100 independent Monte Carlo runs of the IPF algorithm under cases with different a
values. The top left, top right, bottom left and bottom right sub-figures correspond to ‘Sensors A, B, C and D’, respectively
We investigated how the performance of IPF changes along with
the dimension of the state d. We considered three cases, correspond-
ing to d = 5, 10 and 20, respectively. ‘Sensors A, B and C’ with the
same setting as before are involved for all cases. For each specific d
value, we ran 100 independent Monte Carlo runs of the IPF algo-
rithm, and then calculated the corresponding RMSE. The result is
shown in Fig. 10, where we use ‘Sensor D’ to denote a representa-
tive always-trustworthy node as before. It is shown that, as d gets
bigger, the RMSE gets smaller, and, even in case of d = 5, most
of the time the RMSE does not exceed 0.12.
We also investigated the influence of the ageing parameter a in

(2) on the performance of the IPF algorithm. We considered three
cases corresponding to a = 0.75, 0.85 and 0.95. For each case,
we set d = 10, and ran 100 independent Monte Carlo runs of the
Fig. 12 Convergence of the component-wise inference procedure in the IPF
algorithm. The X and Y labels of the figure denote the iteration index m and��������������‖x̂k − Xo‖/d
√

in Fig. 4, respectively
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IPF algorithm. The results are shown in Fig. 11. We see that,
most of the time, the RMSE corresponding to a = 0.85 and 0.95
is smaller than that corresponding to a = 0.75, for all the sensor
nodes under consideration. In the bottom left sub-figure, we see
that 0.85 is more preferable to 0.75 in initialising a. Actually
0.85 is selected empirically as the default value of a in our
algorithm.
5.1.4 Investigation on the iterative component and the computation-
al burden of the IPF algorithm: The proposed IPF algorithm
includes an iterative process, namely the component-wise inference
procedure, as shown in Fig. 4, while our experiments show that it
needs just a few iterations in order to converge, see Fig. 12. The
computational time of the IPF algorithm in three cases, correspond-
ing to d = 5, 10 and 20, respectively, is presented in Table 2. So ex-
perimentally, we see that the computational burden of the IPF
algorithm is linearly related with the dimension of the state d.
Such a good scaling property of our algorithm is especially desir-
able when dealing with high-dimensional cases.

5.2 Real data analysis results

Here we describe an evaluation performed on the Intel Lab Data
[35], a public data set collected from 54 sensors deployed in the
Table 2 Elapsed time of an independent run of the IPF algorithm. Telapsed
denotes the real value of the elapsed time. Tscaled denotes the scaled
version of Telapsed, calculated on the basis of the 5D case

d 5 10 20

Telapsed, s 71.5 124.6 281.3
Tscaled 1 1.7 3.9
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Fig. 13 Fitting sensor readings with Gaussian process regression. The
shadow depicts the one standard error uncertainty associated with the
fitted curve based on the sensor readings, represented by the plus signs
Intel Berkeley Research laboratory between 28th February and 5th
April 2004. In our experiment, we chose the whole day’s data from
February 28th, remaining only the sensor reading attribute of ori-
ginal data set, i.e. humidity, temperature and light. We selected a
spatial neighbour set of sensors 9, 10, 11, 12 and 13 for analysis.
As the sampling time of the sensor readings reported by different
sensors is not synchronous, we performed Gaussian process regres-
sion [36] to fit the readings of each sensor. A snapshot of the fitting
effect is depicted in Fig. 13.
Fig. 14 Trust evaluation in the presence of faults in the Intel lab data. The top le
sensor node with ‘Sleeper Attacks’ between the 500th and 700th epoch, the secon
third sensor node with ‘variance degradation fault’ between the 200th and 250th
150th epoch

This is an open access article published by the IET under the Creative
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We adopted the fault models described in [14] to simulate faulty
sensor readings, which are then injected into the original data. The
purpose is to evaluate whether the IPF algorithm can detect such
faults in time through estimating the trust metric of each sensor
online. Specifically, for the first node under consideration, we
removed its reported data between the 500th and 700th epoch to
simulate the phenomenon termed ‘Sleeper Attacks’ [14]. For the
second node, we modified its sensor readings between the 300th
and 400th epoch to be a constant 100. This phenomenon is called
‘Stuck-at Fault’ in [14]. For the third node, we added a zero-mean
Gaussian noise with standard error 20, to each of its sensor readings
between the 200th and 250th epoch, and this is the so-called ‘vari-
ance degradation fault’ described in [14]. For the fourth node, we
added an offset value, 100, to its pre-fault measurement values
between the 100th to the 150th epoch with a probability 0.5. This
type of fault is termed ‘offset fault’ in [14]. The IPF algorithm is
initialised by the same parameter values as shown in Table 1,
except that we empirically set r = 2 here.

The estimated trust metric for the above-mentioned sensor nodes
is graphically presented in Fig. 14. As is shown, the estimated trust
metric, given by our IPF algorithm, can accurately reflect the exist-
ence of different types of faults online. Thus, the IPF algorithm can
be regarded as an efficient fault detection tool.
6 Conclusions

In this paper, we propose a theoretical data-driven modelling frame-
work to address the problem of trust evaluation over WSN. The
basic idea is to treat the problem of trust evaluation from the per-
spective of non-linear state filtering. In particular, we design a
generic trust model, termed SSTM. Then, making use of the infor-
mation on the model structure, we design a corresponding state
ft, top right, bottom left and bottom right sub-figures correspond to the first
d sensor node with ‘Stuck-at Fault’ between the 300th and 400th epoch, the
epoch and the fourth sensor node with ‘offset fault’ between the 100th and
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filtering algorithm, termed IPF. Through both extensive simulation
studies and real data analysis, we evaluated the performance of the
IPF algorithm. The results show that it can yield accurate estimate
on the trust metric of the sensor nodes online, even in complex
environments, wherein different types of non-trustworthy nodes
exist and report different types of faulty measurements to the
server node. The computational complexity of the proposed algo-
rithm is shown to be linearly related with the dimension of the
state. Such a scaling property makes our algorithm easy to meet
the practical constraints in energy, memory and computation
power, especially when we have a lot of sensor nodes waiting to
be evaluated concurrently. The future work is planned to compare
the proposed algorithm with alternatives in the aspects of consump-
tions in energy, memory and computation power. In addition, by
virtue of Bayesian decision making theory, the proposed framework
here can be generalised to deal with risk analysis and decision
making issues.
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