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SUMMARY

This paper investigates the optimal transit fare in a simple bimodal transportation system that comprises
public transport and private car. We consider two new factors: demand uncertainty and bounded rationality.
With demand uncertainty, travelers are assumed to consider both the mean travel cost and travel cost
variability in their mode choice decision. Under bounded rationality, travelers do not necessarily choose
the travel mode of which perceived travel cost is absolutely lower than the one of the other mode. To
determine the optimal transit fare, a bi-level programming is proposed. The upper-level objective function
is to minimize the mean of total travel cost, whereas the lower-level programming adopts the logit-based
model to describe users' mode choice behaviors. Then a heuristic algorithm based on a sensitivity analysis
approach is designed to solve the bi-level programming. Numerical examples are presented to illustrate the
effect of demand uncertainty and bounded rationality on the modal share, optimal transit fare and system
performance. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In most cities, people have a choice between using a private car and using a public transportation, and
in making a choice, people would consider not only direct monetary costs but also travel times,
comfort, and so on. Therefore, demands for car and buses have cross-elasticities not only with respect
to price but also with respect to time and quality of service. As is clear from many theoretical and
empirical researches, congestion tolls for private car, transit prices, subsidies, and service variables—
such as frequency—for public transportation are closely interrelated [1–4]. Moreover, their optimal
values and the modal split should strongly depend on the way mode choice occurs.
This paper focuses on the optimal transit fare and its effect on the optimal modal split and trans-

port equilibrium. In the previous work on this topic, a bimodal transportation system has been
considered, such as public transport (including the bus and subway) and private transport. Huang
[5] dealt with transit pricing and modal split in a competitive mass transit/highway system with het-
erogeneous commuters. They compared three pricing schemes: the marginal cost-based transit fare
with no toll, the average cost-based fare with no toll, and the marginal cost-based fare with time-
invariant toll for subsidizing transit, and they derived a socially optimal combination of transit fare
and road toll that minimizes the total social cost of the competitive system mean while ensuring no
deficit to the transit side. Huang [6] studied the transport pricing mechanism and the corresponding
mode choice behavior in a simple bimodal transportation system with elastic demand. They derived
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and compared three pricing schemes: the arbitrarily fixed pricing, the first best pricing for a social
optimum of the system, and the second best pricing in the case of incapability of road toll. It was
shown that the first best pricing requires to implement a road toll and a transit fare simultaneously,
and the optimal transit fare for the second best solution should be set to a weighted sum of the
marginal external costs between auto and transit commuters. Proost and Dender [7] calculated the
optimal transport price and its effects on the transport equilibrium and on welfare by using a numer-
ical model of the urban transportation sector. They found that optimal prices are higher than current
prices in most transport markets so that optimal transport demand is below current demand.
Calculations of optimal public transport prices for unchanged reference car taxes indicated that only
limited welfare gains can be obtained by charging near-zero transit fares in peak hours. Basso and
Jara-Diaz [8] modeled and analyzed optimal (welfare maximizing) prices and design of transport ser-
vices in a bimodal context. They obtained some main results: the optimal car transit split is generally
different from the total cost-minimizing one; optimal congestion and transit price are interdependent
and have an optimal frequency attached, and the optimal money price difference together with the
optimal frequency yield the optimal modal split.
The literatures earlier typically assumed that the origin–destination (O–D) travel demand is fixed

or elastic. However, the travel demand is often subject to stochastic variations in reality. Because of
demand uncertainty, the transport system may become unreliable, which can also change traveler's
behavior, for example, change of mode, route diversion, or trip rescheduling. Watling [9] assumed
a Poisson distribution of travel demand and derived the equilibrium route choice condition consid-
ering the mean travel time. Shao et al. [10] used normal distribution to represent the travel demand
in which the drivers trade-off between the mean travel time and safety margin. Zhou and Chen [11]
assumed the travel demand to follow log-normal distribution and proposed different risk-based as-
signment frameworks. Sumalee et al. [12] proposed a stochastic network model for multimodal
transport network that considers auto, bus, underground, and walking modes. The stochastic demand
was assumed to follow the Poisson distribution. The risk-averse travelers were assumed to consider
both the mean and variance of the random perceived travel time on each multimodal path in their
path choice decisions.
Another assumption in the literatures earlier is that users are “perfectly or unboundedly rational”,

that is, they always choose the travel mode of which perceived travel cost is absolutely lower than
the one of other modes. However, doing so only leads to a small or negligible improvement in their
travel cost comparing with traveling by other modes, some users may not be sufficiently encouraged
to change mode in practice. Under the circumstance, users are said to be “boundedly rational”. The
literature in psychology and economics has provided a wide range of evidence that bounded rationality
is important in many contexts, particularly in the context of day-to-day choices [13]. In the context of
transportation (in particular, route choice behavior research), Nakayama et al. [14] concluded that their
experimental study indicates a need to evaluate the validity of the “perfectly rational” assumption in
the traffic equilibrium analysis. Although referred to as “tolerance-based,” Szeto and Lo [15] were
“forced” to consider bounded rationality in their dynamic traffic assignment because the problem
may be infeasible when travelers are perfectly rational. Lou et al. [16] investigated congestion pricing
strategies in static networks with “boundedly rational” route choice behavior and presented
“boundedly rational” user equilibrium.
The aforementioned researches addressed bounded rationality in route choice behaviors in

static networks where user equilibrium with bounded rationality arises. In this paper, we try to
incorporate bounded rationality into travelers' mode choice behavior that is similar to route
choice behavior in some ways. Generally, travelers have no perfect information on traffic condi-
tions when choosing the travel mode so that they are not “perfectly rational” in minimizing their
own travel costs. If the travel cost for one mode is acceptable to users, the travel mode will be
considered. Instead of the traditional equilibrium with perfect rationality for modal split, the equi-
librium state with bounded rationality arises whenever users' perceived travel cost of the chosen
mode is not sufficiently larger than the one of other mode, and no user has an incentive to switch
his or her travel mode. Such a mode choice behavior with bounded rationality may affect the
effectiveness of traditional transport pricing mechanism. For example, the transit fare scheme
commonly advocated in the aforementioned literatures may not necessarily reduce the total
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system travel cost to its minimum level because users may not switch to modes with the least
generalized cost.
This paper attempts to investigate the optimal transit fare in a simple bimodal transportation

system that comprises public transport and private car. We relax the two aforementioned assump-
tions and consider two new factors: demand uncertainty and bounded rationality. The impact of
demand uncertainty on the traveler occurs through the induced uncertainty of travel cost. Travelers
are assumed to consider both the mean travel cost and travel cost variability in their mode choice
decision. Then at equilibrium, the modal split is governed by a logit-based model. We thus define
travelers with bounded rationality as those who may choose the mode when the difference between
its perceived travel cost and that of the other mode is no greater than a prespecified threshold
value. The system manager can set the transit fare that affects the distribution of travel demand
between two modes. He or she aims to obtain a transport pricing pattern that minimizes the total
social cost among all the possible equilibrium flow patterns for each travel mode. A bi-level
model of optimizing the transit fare is constructed. The upper-level objective seeks to minimize
the mean total system travel cost, whereas the lower-level programming adopts a logit-based
mode choice model.
The outline of this paper is as follows: Section 2 introduces the formulation of perceived travel cost

of each mode and presents the mode choice model with stochastic demand and bounded rationality. In
Section 3, the bi-level model for optimizing transit fare is developed. In Section 4, numerical
experiments are conducted to demonstrate the model and solution algorithm. Finally, Section 5
contains conclusion and future research.

2. MODE CHOICE MODEL

2.1. Formulation of travel costs

Consider a simplified network that comprises two types of modes to provide transportation service
between O (a residential area or home) and D (a workplace). Mode 1 represents the public transport
(e.g., transit mode, railway, or bus with bus-only lane), and mode 2 represents the private transport
(e.g., auto mode, one person per car). It is assumed that the O–D demand X is a random variable
and follows a normal distribution:

X∼N x; cv�xð Þ2
� �

(1)

where x and cv are the mean and the coefficient of variance (CV) of the O–D demand, respectively. Let
XT (with mean xT) and XA (with mean xA) denote the stochastic numbers of transit and auto travelers,
and xT+ xA = x holds. It is assumed that (i) the numbers of travelers using transit mode and auto mode
follow the same type of probability distribution as the O–D demand; and (ii) the CV of the numbers of
travelers using each mode is equal to that of O–D demand.
The travel cost experienced by a transit passenger depends on the travel time, the transit fare, and the

discomfort generated by body congestion at stations and in carriages. The transit mode represents
railway or bus with bus-only lane, so the in-vehicle travel time tT is constant. The waiting time for a
train or bus that relates to the transit service frequency is assumed to be a constant and incorporated
into tT. The time for walking to a station and from the station to final destination is omitted for
simplicity.
Introducing crowding congestion to a certain extent may relax infinite capacity assumption on

transit in other literatures [5]. We assume that public transport has enough capacity to absorb the
increase in passengers. However, it still generates congestion discomfort due to the increasing number
of transit users. It is obvious that the factor of body congestion affects users' travel behavior greatly. A
remarkable fact is that when the body congestion at railway or bus stations and in carriages reaches a
certain level of discomfort, some people will abandon mass transit model for auto mode or give up
their travels [17]. The body congestion discomfort experienced by a transit user can be described
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through an increasing function of the number of users selecting this mode [5,6] The function takes the
form as follows,

g XTð Þ ¼ u XTð Þ2 þ vXT (2)

where u and v are parameters in the function describing body congestion discomfort. The introduction
of body congestion function in Equation (2) makes the travel costs incurred on transit users become
mode-usage dependent, although users' travel times by transit are constants.
Then the generalized travel cost of a transit passenger is

eCT XTð Þ ¼ αtT þ πg XTð Þ þ τT (3)

where α is the unit cost of travel time, π is the unit cost of discomfort, and τT is the transit fare.
Similarly, the generalized travel cost of an auto user is

eCA XAð Þ ¼ αTA XAð Þ þ ocA (4)

where TA(XA) is the stochastic travel time by private car and ocA is the operating cost of an auto user.
We do not consider the interaction between the models of public transit and private car in this paper.
The road network in this paper is reduced to two links; one representing the transit network and the
other the auto network, which connect a single origin to a single destination. The travel time experi-
enced by an auto user can be described through an increasing function of the number of users selecting
this mode. And the commonly adopted auto users' travel time function is used.

TA XAð Þ ¼ t0A 1þ β
XA

b

� �n� �
(5)

where t0A and b are auto free-flow travel time and notional road capacity, respectively; β and n are
deterministic parameters of the travel time function. When the value of parameter n is equal to 1,
the travel time function becomes a linear function.

2.2. Stochastic travel cost distribution

The distribution of two mode travel cost can be characterized by their mean and variance that can be
defined as

E eCT XTð Þ
� �

¼ αtT þ πE g XTð Þð Þ þ τT (6)

Var eCT XTð Þ
� �

¼ π2Var g XTð Þð Þ (7)

E eCA XAð Þ
� �

¼ αE TA XAð Þð Þ þ ocA (8)

Var eCA XAð Þ
� �

¼ α2Var TA XAð Þð Þ (9)

It is further assumed that the numbers of transit passengers and auto travelers also follow normal
distribution and have the same CV with the O–D demand. Thus, the mean and variance of body
congestion cost for transit mode can be expressed as (see Appendix A):

E g XTð Þð Þ ¼ E u XTð Þ2 þ vXT

� �
¼ uE X2

T

� 	þ vE XTð Þ ¼ u x2T þ cv�xTð Þ2
� �

þ vxT (10)
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Var g XTð Þð Þ ¼ cv�xTð Þ2 4u2 xTð Þ2 þ 2u2 cv�xTð Þ2 þ 4uvxT þ v2
� �

(11)

By using the method proposed by Shao et al. [10], we have the mean and variance of travel time for
auto mode.

E TA XAð Þð Þ ¼ t0A þ t0A
β
bn

∑
n

i¼0;i¼even

n

i

� �
cv�xAð Þi xAð Þn�i i� 1ð Þ!! (12)

Var TA XAð Þð Þ ¼ t0A
β
bn

� �2
∑
2n

i¼0;i¼even

2n

i

 !
cv�xAð Þi xAð Þ2n�i i� 1ð Þ!!�

∑
n

i¼0;i¼even

n

i

 !
cv�xAð Þi xAð Þn�i i� 1ð Þ!!

 !2

0BBBBB@

1CCCCCA (13)

Substituting Equations (10)–(13) into Equations (6)–(9), we can obtain the mean and variance of
travel cost for each mode.

2.3. Perceived travel cost of each mode

Travelers are assumed to consider both average travel cost and travel cost variability in their mode
choice decision [18]. Hence, they choose their travel mode by trade-off between the mean and standard
deviation of travel cost on each mode. The effective generalized travel cost for each mode can be
defined as

Ci ¼ E eCi Xið Þ
h i

þ λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var eCi Xið Þ
h ir

(14)

where i= T or A, T represents public transit mode and A represents private car mode; λ is the risk-
aversion parameter [19–21].
The traveler's attitude towards risk is modeled in the form of effective generalized travel cost for

each mode. The travelers' perception errors due to the imperfect knowledge of network characteristics
are modeled separately as the perceived effective generalized travel cost on each mode

Ci ¼ Ci þ ϵi (15)

where ϵi is the additive random term that represents the uncertainty in specifying the cost of selecting
mode i. Suppose the random terms be identically and independently distributed Gumbel variables with
mean zero.

2.4. Mode split under bounded rationality

Generally, travelers always choose the travel mode with a minimum total travel cost. The perceived
costs of different modes are random variables, so the traveler's mode choice problem can be modeled
by a probability with which traffic modes will be chosen. Then, for example, the choice probability that
public transit are chosen is the probability that the travel cost of transit mode CT is lower than that of
private car mode CA, which can be written as

pT ¼ pr CT≤CAf g (16)

where pT is the probability that the public transit are chosen. Let pA denote the probability that the
private cars are chosen, and pT + pA= 1 holds.
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Equation (16) is the conventional and “perfectly rational” general mode choice model. As
mentioned earlier, a mode choice behavior with bounded rationality is likely to occur. The general
mode choice model with bounded rationality can be written as

pT ¼ pr CT≤CA þ δf g (17)

pA ¼ pr CA≤CT þ δf g (18)

The probability that a mode is chosen is the probability that its perceived effective travel cost is
perceived no greater than a threshold value of the other, which represents the choice behavior under
bounded rationality. Travelers with bounded rationality still follow the behavior that exhibits a
tendency toward cost minimization but not necessarily to the absolute minimum level. Travelers do
not necessarily switch to the mode of which travel cost is absolutely lower than the ones of other
modes. They may choose one mode even if the cost of this mode is larger, as long as the excess is
smaller than a threshold value. Assuming that users of the same O–D pair have the same threshold
value denoted as δ, the threshold value can be obtained from empirical research that is one of our topics
for further investigation.
However, the Equations (17)–(18) make pT + pA≠ 1. To avoid the problem, we look at the difference

of the generalized costs of the two modes, CT�CA.
When CT�CA≤� δ, travelers choose transit mode for sure; when CT�CA≥ δ, travelers choose

auto mode for sure; when � δ≤CT�CA≤ δ, travelers may choose either of them, as is defined by
the choice behavior with bounded rationality. That is to say, there are three classes of travelers (see
Figure 1). The Class 1 travelers believe that CT�CA≤� δ, whereas the Class 2 travelers consider that
CT�CA≥ δ, and the Class 3 travelers think that � δ≤CT�CA≤ δ.
Nevertheless, how the travelers make choice, transit mode or auto mode, when the cost difference

falls into the interval � δ≤CT�CA≤ δ, is not defined. To resolve this problem, we assume that users
are indifferent within this entire interval and take random chance to either modal choice. If we make
this assumption,

p′T ¼ pr CT � CA≤� δf g þ ωpr �δ≤CT � CA≤δf g (19)

p′A ¼ pr CT � CA≥δf g þ 1� ωð Þpr �δ≤CT � CA≤δf g (20)

where ω (0≤ω≤ 1) is a parameter that reflects free mode choice for travelers when there is no signif-
icant cost difference between the two modes. In this way, the summation of two probabilities would be

Figure 1. The three classes of travelers.
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equal to 1. Then we can determine the flow xT and xA. If δ = 0, Equations (19)–(20) reduce to the
classical and “perfectly rational” general modal split models.
Depending on the classical binary logit model (see Appendix B), we have

p′T ¼ 1� ωð Þ e�CT�δ

e�CT�δ þ e�CA
þ ω 1� e�CA�δ

e�CA�δ þ e�CT

 !
(21)

p′A ¼ ω
e�CA�δ

e�CA�δ þ e�CT
þ 1� ωð Þ 1� e�CT�δ

e�CT�δ þ e�CA

 !
(22)

In practice, the modal split model based on perfect rationality typically provide a unique equilibrium
solution. In other words, such model typically provide a point estimate of traffic flow distribution. On
the other hand, from Equations (21)–(22), the modal split model based on bounded rationality provide
an interval estimate instead and equilibrium solution may not be unique.

3. THE BI-LEVEL MODEL FOR OPTIMIZING TRANSIT FARE

As transit fare is the unique tool to adjust traffic flow distribution between two modes, the transit fare
optimization problem can be represented as a leader–follower game where the system manager
corresponds to the leader and the travelers to the followers. It is assumed that the system manager
can influence but cannot control the travelers' mode choice through fare policy. With each transit fare
structure, travelers choose their travel mode in a stochastic user equilibrium manner.

3.1. The bi-level model

From the view of system manager, the upper-level objective function is to minimize the mean of the
total travel cost.

min
τT

Z ¼ E XT αtT þ πg XTð Þð Þ þ αXATA XAð Þ½ �

¼ αxT tT þ πu x3T þ 3xT cv�xTð Þ2
� �

þ πv x2T þ cv�xTð Þ2
� �

þ αxAt0A

þ t0Aαβ
bn

∑
nþ1

i¼0;i¼even

nþ 1

i

 !
cv�xAð Þi xAð Þnþ1�i i� 1ð Þ!!

(23)

s.t.

¯
τT≤τT≤τT (24)

where
¯
τT and τT are the minimum and maximal transit fare constrains, respectively. The derivation of

the objective functions of Equation (23) is provided in Appendix C.
The lower-level problem can be described as the logit-based mode choice model.

Xi ¼ X�p′i i ¼ T ;A (25)

By taking the expectation of both sides of Equation (25), we obtain

xi ¼ x�p′i i ¼ T ;A (26)

where p′T and p′A are obtained by Equations (21) and (22), respectively.
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3.2. Solution algorithm

The key to solve the bi-level model is to find the form of response function, that is, the changes in
equilibrium share of traffic mode caused by the price of public transport. It is difficult to evaluate
the changes in the equilibrium modal split volume directly because of the implicit, nonlinear function
form of equilibrium share of traffic mode. A good idea is to use the linear function to approximate the
nonlinear function of equilibrium travel volume by mode 1.

xT τTð Þ≈xT τkT
� 	þ ∂xT τTð Þ

∂τT

����
τT¼τkT

τT � τkT
� 	

(27)

Although some common methods, such as sensitivity analysis based method, can be used to obtain
the response function under certain strong assumptions approximately, its computational expense
usually becomes unendurable or even impossible as the problem's scale increases. Here, we use the

difference ΔxT τTð Þ
ΔτT

approximate the differential ∂xT τTð Þ
∂τT in each iteration.

When Equation (27) is put into the objective function, the models (23) and (24) are changed into
nonlinear optimization problems, which can be solved by the known methods. Then according to the
optimal price τT, we can obtain new equilibrium xT again. Then a new optimal price discount can be
obtained by repeating the aforementioned basic idea. After computing with some times, the optimal
solutions for programming model can be obtained. The solution algorithm can be stated as follows:

Step 1. Initialization. Determine an initial value τ0T and x0T , and set k = 0.
Step 2. Solve the models (23) and (24) based on the given τkT and obtain the corresponding optimal xkT.
Step 3. Derivative calculation. Calculating Δ x k

T

Δτ kT
.

Step 4. Solve the programming model. Put (27) into the objective function and then obtain a new xkþ1
T .

Step 5. Convergence check. If xkþ1
T � xkT
�� ��≤θ (where θ is a convergence tolerance), stop and let

x�T ¼ xkþ1
T ; otherwise, let k = k + 1 and go to Step 2.

4. NUMERICAL EXAMPLES

In this section, we present four numerical examples to calculate the transit modal share, optimal
transport price and total (mean) travel cost that are affected by the users' characteristics of bounded
rationality and risk preference. The parameters δ and ω reflect the level of rationality in travelers' mode
choice decision making, which can be estimated by conducting a stated preference survey. However,
given the fact that the estimate of δ and ω can be biased or inaccurate, it makes sense to examine how
the mode share, optimal transit fare and total travel cost change with different levels of rationality. The
other parameters of our numerical examples are tT=20(minute), t0A ¼ 15 minuteð Þ, b=60(person/minute),
u=0.05, v=0.25, β =0.15, n=4, x=2000(person), cv=0.10,α=1.00(¥/minute), π =0.01 (¥/discomfort),
ocA=30(¥), ¯

τT ¼ 10 ¥ð Þ, τT ¼ 20 ¥ð Þ.

4.1. Example 1: effect of bounded rationality on the modal split

It is assumed that the transit fare is arbitrarily fixed (i.e., τT= 15(¥)), and travelers are risk neutral (λ= 0)
in this example. Figure 2 shows the number of transit users with ω varying from 0 to 1 and δ varying
from 1 to 5. As we can see, the larger ω is the one where more travelers choose transit mode. The
number of transit users depends on the ω value intuitively from Equation (19). Interestingly, as the
value of δ increases, the number of transit users will decrease when ω value is small but increase when
ω value is relatively large (ω≥ 0.7). According to Equation (19), we obtain that the number of transit
users depend on the number of Class 1, the number of Class 3, and the value of ω. According to
Equations (33)–(35), we know that the number of Class 1 and 2 decrease but the number of Class 3
raises with increase of δ value. When the ω value is small and the δ value is increasing, the magnitude
of decrease of the first term in Equation (19) is larger than the magnitude of increase of the second term
in Equation (19). Although the ω value is relatively large, the situation is the opposite.
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Figure 3 shows the total travel cost with ω varying from 0 to 1 and δ varying from 1 to 5. From
Figures 2 and 3, we can see that the total travel cost does not fall with the increase of the number of
transit users. Considering the discomfort generated by body congestion in the bus or subway, the
increasing share of transit mode may not reduce the total travel cost. The government should make
the optimal design of scheduled public transport services, such as frequencies, vehicle sizes, spacing
of bus stops, and so on.

4.2. Example 2: effect of risk preference on the modal split

Figure 4 shows the number of transit users with different risk preference. It can be seen that the number
of transit users decreases with an increasing risk averse preference. The result is universal under all
levels of bounded rationality. The number of users of transit mode diminishes smoothly as its gener-
alized cost grows farther away from that of the auto mode. Travelers with high risk averse preference
choose private car over transit. They prefer the risk of congestion on road over the risk of discomfort in
the bus or subway. It is obvious that travelers' risk attitude has sizeable impacts on the modal split.

4.3. Example 3: effect of bounded rationality on the optimal transit fare

In the following, we assumed that all travelers are risk-averse (λ= 0.1). Figure 5 depicts the optimal
transit fare versus the level of bounded rationality. We can see that the optimal transit fare decreases
with the increasing parameter δ when the ω value is small, while it increases when the ω value is large.

Figure 2. Number of transit users under different levels of bounded rationality.

Figure 3. The total travel cost under different levels of bounded rationality.
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The lower transit fare attracts more transit users but causes more discomfort generated by body conges-
tion at stations and in carriages. On the other hand, the larger transit price attracts less transit users but
leads to more private car users. Therefore, the lower or larger transit pricing generates the higher total
system travel cost. It is necessary to optimize modal split and minimize the total system travel cost by
optimal transit fare.

4.4. Example 4: effect of transit fare on the system performance

Figure 6 shows the comparison of the mean of total travel cost with fixed and optimal transit fare.
It is clear that the optimal transit fare can reduce the total travel cost under all levels of bounded
rationality. There is less variability in total travel cost under optimal transit fares. The optimal
transit fare is more effective at reducing the total travel cost, especially when the ω value is
relatively large (ω≥ 0.6).

4.5. Example 5: effect of different bounded rationality on the modal split and optimal transit fare

We study travelers' mode choice behavior with the same tolerance parameters in Equations (17) and
(18). Users of the same O–D are assumed to have the same threshold value for different travel modes

Figure 4. Number of transit users with different risk preference.

Figure 5. The optimal transit fare under different levels of bounded rationality.
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in the preceding examples. In this example, we relax this assumption and indicate that travelers of
different modes perceive travel cost with different bounded rationality.
The general mode choice model with different bounded rationality could be written as follows,

pT ¼ pr CT≤CA þ δTf g
pA ¼ pr CA≤CT þ δAf g

Transit users and auto users of the same O–D pair have different threshold values, denoted as δT and
δA (δT≠ δA), respectively. Without loss of generality, we assume that δT> δA. When CT�CA≤� δA,

Figure 6. Comparison of total travel cost with fixed and optimal transit fare.
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travelers choose transit mode for sure; when CT�CA≥ δT, travelers choose auto mode for sure; when
� δA≤CT�CA≤ δT, travelers may choose either of them, as is defined by the choice behavior with
bounded rationality. We can obtain

p′T ¼ pr CT � CA≤� δAf g þ ωpr �δA≤CT � CA≤δTf g
p′A ¼ pr CT � CA≥δTf g þ 1� ωð Þpr �δA≤CT � CA≤δTf g

Then we have

p′T ¼ 1� ωð Þ e�CT�δA

e�CT�δA þ e�CA
þ ω 1� e�CA�δT

e�CA�δT þ e�CT

 !

p′A ¼ ω
e�CA�δT

e�CA�δT þ e�CT
þ 1� ωð Þ 1� e�CT�δA

e�CT�δA þ e�CA

 !

The transit fare is arbitrarily fixed (i.e., τT = 15(¥)), and travelers are risk neutral (λ= 0) in this
example. Figure 7 shows the number of transit users with ω varying from 0 to 1 and δT varying from
1 to 5 when δA is fixed (δA= 1). It can be seen that, as the value of δT largens, the number of transit
users will increase. The reason for the change is that the number of Class 2 decreases but the number
of Class 3 raises with increase of δT value, whereas the number of Class 1 is constant. Thus, the
number of transit users goes up with increasing number of Class 3.
Figure 8 shows the number of transit users with ω varying from 0 to 1 and δA varying from 1 to 5

when δT is fixed (δT = 5). It can be shown that, as the value of δA increases, the number of transit users
will fall. The reasonable explanation is that the number of Class 1 decreases but the number of Class 3
rises with increase in δA value, whereas the number of Class 2 is constant. Then the number of auto
users becomes higher with increasing number of Class 3, which leads to the decrease in transit users.
Figures 9 and 10 show changes in optimal transit fare with respect to the different levels of bounded

rationality. Compared with the Example 3, the similar results can be obtained under the condition that
travelers choose the mode with different tolerance parameters reflecting bounded rationality. From
Examples 3 and 5, we can determine the effect of bounded rationality in mode choice behavior on
the evaluation of optimal transit fare.

Figure 7. Number of transit users under different levels of bounded rationality (δA = 1).
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5. CONCLUSIONS

This paper developed a bi-level model in a simple bimodal transportation system under demand
uncertainty and bounded rationality to investigate the optimal transit pricing. The transportation

Figure 8. Number of transit users under different levels of bounded rationality (δT= 5).

Figure 9. The optimal transit fare under different levels of bounded rationality (δA = 1).

Figure 10. The optimal transit fare under different levels of bounded rationality (δT= 5).
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system comprised two modes of mass transit and private car. With travel demand uncertainty, the
travel costs of public and private mode were also uncertain. Travelers were assumed to consider
both the mean and the variance of travel cost in their mode choice decision. Under bounded
rationality, users did not necessarily choose the travel mode of which perceived travel cost is
absolutely lower than the one of the other mode. The reason was that doing so did not reduce
their travel cost by a significant amount. Some numerical examples were presented to illustrate
the effect of demand uncertainty and bounded rationality on the modal share, optimal transit fare,
and system performance.
We found that the equilibrium solution of the modal split model based on bounded rationality was

not unique. This was different from the conventional modal-split model. The number of travelers
selecting mass transit or private car mode depended not only on the travel cost (including fare, time,
and comfort) but also on travel psychology and behavior characteristics based on bounded rationality.
Considering the discomfort generated by body congestion for public transportation, the total travel cost
is not decreasing with the number of transit users. Travelers with risk-averse attitude would make a
trade-off between the risk of congestion in bus or subway and congestion on road. And they tend to
choose the private car over mass transit. The optimal transit fare could reduce the total travel cost
significantly, especially when the level of bounded rationality in the travelers' mode choice decision
making is high.
It should be pointed out that the transportation system and the models studied in this paper are

simple from the viewpoint of practice. Therefore, further studies may focus on the more general
traffic network. We plan to carry out further work on a combined model based on bounded
rationality for modal split and flow assignment in multimode network. And it is interesting but
challenging to extend the proposed model to the situation considering congestion pricing for
private car.

6. LIST OF NOTATION

X stochastic O-D demand
x mean O-D demand
cv coefficient of variance of the O-D demand
XT stochastic numbers of transit travelers
XA stochastic numbers of auto travelers
xT mean numbers of transit travelers
xA mean numbers of auto travelers
tT in-vehicle travel time by transit
α unit cost of travel time
π unit cost of discomfort
τT transit fare
TA stochastic travel time by private car
ocA operating cost of an auto usereCT generalized travel cost of a transit passengereCA generalized travel cost of an auto user
Ci effective generalized travel cost for mode i(i= T,A)
Ci perceived effective generalized travel cost for mode i(i= T,A)
ϵi additive random term which represents the uncertainty in specifying the cost of selecting

mode i(i = T,A)
pi, p′i probability that mode i(i= T,A) are chosen

¯
τ
T

the minimum transit fare constraint
τT the maximal transit fare constraint
Z mean total travel cost
u, v parameters in the body congestion function
t0A auto free-flow travel time
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b notional road capacity
β, n parameters of the travel time function
λ risk-aversion parameter
δ pre-specified threshold value
δi pre-specified threshold value for mode i(i= T,A) user
ω parameter which reflects free mode choice
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APPENDIX A
DERIVATION OF THE VARIANCE OF BODY CONGESTION COST FOR TRANSIT MODE

The variance of body congestion cost can be calculated by the following formulae:

Var g XTð Þð Þ ¼ Var uXT
2 þ vXTð Þ

¼ E uXT
2 þ vXTð Þ2

h i
� E uXT

2 þ vXTð Þ½ �2

¼ E u2XT
4 þ 2uvXT

3 þ v2XT
2½ � � E uXT

2ð Þ þ E vXTð Þ½ �2

¼ u2E XT
4ð Þ þ 2uvE XT

3ð Þ þ v2E XT
2ð Þ � uE XT

2ð Þ þ vE XTð Þ½ �2

(28)

By using the moment-generating function of normal distribution, we obtain

E X2
T

� 	 ¼ x2T þ cv�xTð Þ2 (29)

E X3
T

� 	 ¼ x3T þ 3xT cv�xTð Þ2 (30)

E X4
T

� 	 ¼ x4T þ 6x2T cv�xTð Þ2 þ 3 cv�xTð Þ4 (31)

Substituting Equations (29)–(31) into (28), we can derive Equation (11).

APPENDIX B
THE PROBABILITY THAT EACH MODE IS CHOSEN BY USERS WITH BOUNDED

RATIONALITY

From Equation (19), we have

pr CT � CA≤� δf g ¼ pr CT þ ϵT≤CA þ ϵA � δ
� 
 ¼ pr ϵT � ϵA≤CA � CT � δ

� 

(32)

By using the cumulative distribution function and probability density function of Gumbel variates,
we found that Equation (32) implies that

pr CT � CA≤� δf g ¼ e�CT�δ

e�CT�δ þ e�CA
(33)

Similarly, the first term in Equation (20) can be defined as

pr CT � CA≥δf g ¼ e�CA�δ

e�CA�δ þ e�CT
(34)

Obviously, the following equation of probability holds

pr �δ≤CT � CA≤δf g ¼ 1� pr CT � CA≥δf g � pr CT � CA≤� δf g (35)
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Then it follows that

pr �δ≤CT � CA≤δf g ¼ 1� e�CT�δ

e�CT�δ þ e�CA
� e�CA�δ

e�CA�δ þ e�CT
(36)

Substituting Equations (33)–(36) into Equations (19) and (20), Equations (21) and (22) can be derived.

APPENDIX C
DERIVATION OF THE MEAN AND VARIANCE OF TOTAL TRAVEL COST

The mean of total travel cost can be calculated by the following formulae:

Z ¼ E XT tT þ πg XTð Þð Þ þ XATA XAð Þ½ � (37)

By substituting Eqsuations (2) and (5) into Equation (37), we obtain

Z ¼ xT tT þ πuE X3
T

� 	þ πvE X2
T

� 	þ t0AxA þ
βt0A
bn

E Xnþ1
A

� 	
(38)

By using the moment-generating function of normal distribution, we also obtain

E Xnþ1
A

� 	 ¼ ∑
nþ1

i¼0;i¼even

nþ 1

i

� �
cv�xAð Þi xAð Þnþ1�i i� 1ð Þ!! (39)

Substituting Eqsuations (29)–(30) and (39) into Equation (37), we can derive Equation (23).
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