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Abstract: The authors consider non-linear state filtering problem in continuous–discrete systems, where the system dynamics is modelled by a
stochastic differential equation, and noisy measurements of the system are obtained at discrete time instances. A novel particle method is pro-
posed based on sequential importance sampling. This approach uses a bank of the continuous–discrete unscented Kalman filters (CDUKFs) to
obtain the importance proposal distribution, retaining the advantage of the CDUKF in continuous–discrete systems as well as the accuracy of
particle filter in highly non-linear systems. Simulation results show that the algorithm outperforms some other benchmarks substantially in
estimation accuracy.
1 Introduction

Continuous–discrete dynamical models are used to model
continuous-time systems, where a continuous-time signal is
observed at discrete time instances. Such models appear common-
ly in engineering and physics applications, especially in the fields
of control, communication and navigation [1–5]. Several methods
have been proposed for dealing with continuous–discrete optimal
filtering problems. For example, the Kalman–Bucy filter is dis-
cussed in [6–8] and the continuous-time unscented Kalman
filter (CTUKF) is presented in [9]. Such Kalman-type filtering
methods work optimally for linear Gaussian models, but lead to
seriously biased estimate if the models are non-Gaussian and/or
non-linear.

In this paper, an ensemble continuous–discrete unscented
Kalman filtering (EnCDUKF) method is developed in the frame-
work of sequential importance sampling (SIS), which in theory
works optimally for any non-Gaussian and/or non-linear
models, provided that the likelihood function is computable.
Simulation results show a significant performance improvement
over other benchmarks, such as the continuous–discrete
variant of the bootstrap particle filter [10] and the CDUKF
method [9].

2 Continuous–discrete filtering problem

A general form of continuous–discrete systems can be modelled as
follows

dx(t) = f (x(t), t)dt + L(t) db(t)

yk = hd(x(tk ), tk )+ rk
(1)

where x(t) [ Rn denotes the state at time t, f(·, ·) is the drift
function, L(t) represents a dispersion matrix, β(t) refers to a
Brownian motion with diffusion matrix Qc(t), k represents discrete
time instance of measurements, yk [ Rm is the kth discrete-time
measurement, tk is the arrival time of yk, hd is the measurement
function, rk is a zero-mean Gaussian measurement noise with co-
variance matrix Rk. The purpose of (Bayesian) continuous–discrete
filtering is to recursively compute the posterior distribution p[x(tk)|
y1,…, yk]. Theoretically, the solution to the continuous–discrete fil-
tering problem can be computed by the following two steps, namely
prediction and update [6]:

† Prediction step: calculates the predicted probability density at
time step tk from the ‘Kolmogorov forward partial differential
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equation’ using the old posterior probability density at time step
tk−1 as the boundary condition.
† Update step: uses the Bayes’ rule for computing the posterior
probability density of state at time step tk from the predicted prob-
ability density of the prediction step and the likelihood of the meas-
urement yk.
3 Proposed method

The proposed EnCDUKF method uses a bank of CDUKFs for
generating proposal distribution within an SIS framework. As
shown in [9], the CDUKF is able to accurately propagate the
mean and covariance of the Gaussian approximation to the state
distribution in continuous–discrete systems, thus distributions gen-
erated by the CDUKF generally have a good support overlap with
the true posterior distribution. It is desired for SIS that the pro-
posal distribution mimic the true posterior, so it predicts that
EnCDUKF method should have a good performance in accuracy
of filtering. A brief algorithmic flow of the EnCDUKF is as
shown in Fig. 1.
3.1 CDUKF update

Now we present the details necessary for implementation of the
CDUKF in the SIS framework described above; the full derivation
of CDUKF refers to [9].

The key idea of unscented Kalman filter (UKF) is to use a set of
elaborately selected sigma points for unscented transform (UT) to
obtain the state inference for non-linear systems [11–14].
Supposing that the dimension of the unknown state x is n,
the UT usually needs 2n + 1 sigma points and each sigma point is
associated with a specific weight. The weights are calculated as
below

W0 = l/(n+ l); W (c)
0 = l/(n+ l)+ (1− a2 + b) (3)

Wi = 1/{2(n+ l)}, W (c)
i = 1/{2(n+ l)}, i = 1, . . . , 2n

(4)

where λ = α2(n + κ) − n and the positive constants α, β and κ are
used as parameters of UT [11, 15].

For each particle m̂i
k−1, the CDUKF process includes the follow-

ings two steps: prediction and update.
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Fig. 1 Brief algorithmic flow of the EnCDUKF
Prediction: Integrate the following differential equations

dm(t)

dt
= f (X (t), t)v (5)
dP(t)

dt
= X (t)W f T(X (t), t)+ f (X (t), t)WXT(t) (6)
+ L(t)Qc(t)L
T(t) (7)

from the initial conditions m(tk−1) = m̂i
k−1, P(tk−1) = P̂

i
k−1 to time

instance tk, resulting in the predicted mean and covariance, denoted

by m̂i−
k and P̂

i−
k , respectively. Here X (t) W [m(t) · · · m(t)]+��

c
√

0
�����
P(t)

√ − �����
P(t)

√[ ]
and

W = I − [v · · · v ]
( )× diag W (c)

0 · · · W (c)
2n

( )
(8)
× I − [v · · · v ]
( )T

(9)

where v = [W0 · · · W2n ]
T is the matrix of the sigma points’

weights, c = α2(n + κ),
��
A

√
is the square root of matrix A satisfying��

A
√ ��

A
√ T = A, I is an identity matrix with appropriate dimension

and diag means diagonalisation.
Update: First compute the predicted mean and the covariance of the
measurement, denoted by mi

k and Si
k respectively, and the cross-
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covariance of the state and measurement C i
k , as follows

X i−
k = mi−

k · · · mi−
k

[ ]+ ��
c

√
0

������
P(tk )

√ − ������
P(tk )

√[ ]

Y i−
k = hd(X

i−
k , k)

mi
k = Y i−

k v

Si
k = Y i−

k W [Y i−
k ]T + Rk

Ci
k = X i−

k W[Yi−
k ]T

(10)

where the expression Y = hd(X, k) means that the jth column of the
matrix Y, denoted as Yj, is calculated by Yj = hd(Xj). Then calculate
the filter gain K i

k , the state mean �mi
k and the covariance P̂

i
k as

follows

K i
k = C i

k{S
i
k}

−1

�mi
k = m̂i−

k + K i
k [yk − mi

k ]

P̂
i
k = P̂

i−
k − K i

kS
i
k K

i
k
T

(11)

The final output of the CDUKF is just a Gaussian distribution
N ( �mi

k , P̂
i
k ), which characterises the uncertainty on the estimate

of the state at the kth time step.

3.2 Importance sampling

The EnCDUKF runs a bank of CDUKFs, yielding a batch of
Gaussian distributions: N ( �mi

k , P̂
i
k ), i = 1, …, N. Such distribu-

tions are then used as proposal to generate new importance
samples. Specifically, it draws one sample from each Gaussian pro-
posal: m̂i

k � N ( �mi
k , P̂

i
k ), i = 1,…, N. Then, for i = 1,…, N, evalu-

ate the importance weights up to a normalising constant

w̃i
k /

p(yk | m̂i
k )p( m̂

i
k | m̂i

k−1 )

N ( m̂i
k | �mi

k , P̂
i
k )

(12)

The prior density p( m̂i
k | m̂i

k−1 ) and the likelihood p(yk | m̂i
k ) are

determined by the state dynamic function and the measurement
function in (1), respectively. Then normalise the importance
weights as below

wi
k = w̃i

k /
∑N
i=1

w̃i
k (13)

Finally, the resampling step is applied to multiply/suppress particles
with high/low importance weights wi

k to obtain N random particles

m̃i
0:k , P̃

i
0:k . More detail about the resampling strategy can refer to

[16].

4 Performance evaluation

We evaluate the performance of the proposed method via simula-
tions. First, a continuous–discrete model used in [7, 9] is adopted
here

dx(t)/dt = −sin x(t)+ v(t)

yk = 0.5 sin(xk )+ nk
(14)

for which the state noise v(t) and the measurement noise nk are asso-
ciated with spectral density qc = 0.01 and rc = 0.1, respectively.
The proposed EnCDUKF method is compared with the continu-
ous–discrete bootstrap particle filter [10] and the CDUKF [9] in es-
timation accuracy. The number of particles used for both the
particle filter and the EnCDUKF is 50. The state dynamics is simu-
lated to last over a time period of T = 3 s using the Euler–Maruyama
access article published by the IET under the Creative Commons
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Table 1 RTAMSE comparison

Algorithms RTAMSE

the proposed algorithm 0.1135
particle filter [10] 0.1726
CDUKF [9] 0.5047

Fig. 3 True and the estimated state trajectory of each algorithm

Fig. 4 RMSE comparison
scheme [17] with identical time steps δ = 0.001 s. The measurement
sampling interval is fixed with Ts = 0.1 s. A set of 100 times Monte
Carlo (MC) simulations are applied to each method for performance
comparison. The performance is evaluated via comparing the root
time averaged mean square errors (RTAMSE)

RTAMSE =
����������������������������
1

SM

∑S
j=1

∑M
k=1

x j, k − x̂ j, k

∥∥∥
∥∥∥2

√√√√ (15)

where xj,k denotes the true state at the arrival time of the kth meas-
urement in the jth simulation, x̂ j, k is the estimate of xj,k, M is the
total number of discrete measurements in a simulation and S is
the number of independent simulations. Each algorithm is initia-
lised with identical settings. The result is listed in Table 1, which
demonstrates that the proposed method is much preferable to the
benchmark algorithms in dealing with state filtering problems for
continuous–discrete systems.

We randomly select an example run to check the estimate biases
of these methods. The result is shown in Fig. 2, which indicates that
the proposed method converges much faster than the others.

To further demonstrate the superiority of the proposed algorithm,
we test a more challenging simulation case, in which a stochastic
jump component is added to the system dynamic function as
follows

dx(t)/dt = −sin x(t)+ @(t)J (t)+ w(t) (16)

where @(t) � N (my, s
2
y ), J(t)∼ Bi(1, λ) is an independent Bernoulli

random variable with fixed intensity λ. Set λ = 0.001, μy =−0.2 and
s2
y = 0.1 in this case. The other settings are the same as in the

former simulation case.
Fig. 2 State estimation error of each algorithm in an example run Fig. 5 Average computing time of each algorithm
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Here the root mean square error (RMSE)

RMSEk =
����������������������
1

S

∑S
j=1

x j, k − x̂ j, k

∥∥∥
∥∥∥2

√√√√ (17)

is used as the performance criterion for comparison. Hundred times
MC simulations are applied for each algorithm. An illustration of
the tracking trajectories for an example run is plotted in Fig. 3
and the RMSE comparison result is shown in Fig. 4.
The results again demonstrate that the proposed method is super-

ior to benchmark filtering algorithms, that is, the bootstrap particle
filter [10] and the CDUKF [9], for continuous–discrete systems,
whereas the cost is the computing resource, as indicated by the
average relative computing time shown in Fig. 5.

5 Conclusion

For continuous–discrete dynamic systems, the non-linear state fil-
tering problem is challenging, since the existing algorithms all
have their own limitations. This paper proposes a powerful candi-
date method capable of tackling any non-linear and/or
non-Gaussian state filtering problems in continuous–discrete
dynamic systems and the key idea is to use a bank of the
CDUKFs to design proposal importance distributions of SIS, thus
achieve the effect of combining both advantages of the CDUKF
and SIS. Simulation results demonstrate the high efficiency and
accuracy of our method.

6 Acknowledgments

This work was supported by the National Natural Science
Foundation (NSF) of China (grant nos. 61302158, 61172166), the
Provincial Science and Technology Plan (NSF) of Jiangsu province
(grant no. BK20130869), the Natural Science research project for
colleges and universities in Jiangsu province (grant no.
13KJB520019) and the Scientific Research Foundation of Nanjing
University of Posts and Telecommunications (grant no. NY213030).
J Eng, 2014, Vol. 2014, Iss. 5, pp. 234–237
doi: 10.1049/joe.2014.0076

This is an open
Attribution-
7 References

[1] Bar-Shalom Y., Li X.R., Kirubarajan T.: ‘Estimation with applica-
tions to tracking and navigation’ (Wiley Inter science, New York,
2001)

[2] Grewal M.S., Weill L.R., Andrews A.P.: ‘Global positioning systems,
inertial navigation and integration’ (Wiley Inter science, New York,
2001)

[3] Stengel R.F.: ‘Optimal control and estimation’ (Dover Publications,
Inc., New York, 1994)

[4] VanTrees H.L.: ‘Detection, estimation, and modulation theory part I’
(John Wiley Sons, New York, 1968)

[5] VanTrees H.L.: ‘Detection, estimation, and modulation theory part II’
(John Wiley Sons, New York, 1971)

[6] Jazwinski A.H.: ‘Stochastic processes and filtering theory’
(Academic Press, New York, 1970)

[7] Gelb A. (Ed.): ‘Applied optimal estimation’ (The MIT Press,
Cambridge, 1974)

[8] Grewal M.S., Andrews A.P.: ‘Kalman filtering, theory and practice
using MATLAB’ (Wiley Inter science, New York, 2001)

[9] Simo S.: ‘On unscented Kalman filtering for state estimation of
continuous-time nonlinear systems’, IEEE Trans. Autom. Control,
2007, 52, (9), pp. 1631–1641

[10] Tommi S., Simo S.: ‘Application of Girsanov theorem to particle fil-
tering of discretely observed continuous-time non-linear systems’,
Bayesian Anal., 2008, 3, (3), pp. 555–584

[11] Julier S.J., Uhlmann J.K.: ‘Unscented filtering and nonlinear estima-
tion’, Proc. IEEE, 2004, 92, (3), pp. 401–422

[12] Julier S.J., Uhlmann J.K.: ‘New extension of the Kalman filter to non-
linear systems’. AeroSense’97, 1997, pp. 182–193

[13] Wan E.A., Van Der Merwe R.: ‘The unscented Kalman filter for non-
linear estimation’. IEEE Adaptive Systems for Signal Processing,
Communications, and Control Symp. , 2000, pp. 153–158

[14] Wan E.A., Van Der Merwe R.: ‘The unscented Kalman filter’, in
Haykin S. (Ed.): ‘Kalman filtering and neural networks’ (Wiley,
New York, 2001), pp. 221–280

[15] Van der Merwe R., Doucet A., de Freitas N., Wan E.: ‘The unscented
particle filter’. Technical Report, CUED/F-INFENG/TR 380, 2000

[16] Arnaud D., Simon G., Chistophe A.: ‘On sequential Monte Carlo
sampling methods for Bayesian filtering’, Stat. Comput., 2000, 10,
pp. 197–208

[17] Kloeden P.E., Platen E.: ‘Numerical solution to stochastic differential
equations’ (Springer, 1999)
access article published by the IET under the Creative Commons
NonCommercial-NoDerivs License (http://creativecommons.org/

licenses/by-nc-nd/3.0/)


	1 Introduction
	2 Continuous--discrete filtering problem
	3 Proposed method
	4 Performance evaluation
	5 Conclusion
	6 Acknowledgments

