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Abstract: In this study, uncertainty and disturbance compensations are addressed for non-linear systems by an integral sliding mode (ISM)
design. It is divided into two steps for implementation of the ISM control. First, an ISM switching surface in quadratic form is designed to
construct the attractiveness and reachability. Then, the control law design ensures the stability of the sliding mode on the switching surface.
The compensation design is applicable for both matched and mismatched perturbations. Preliminary results show that more relaxed design
assumptions of this design, compared with other methods. In the end, the effectiveness of the proposed method is demonstrated with
simulation results.
1 Introduction

Sliding mode control (SMC) has gained increasing attention from
researchers during the past several decades. The main theory of
SMC is established in several studies, for example [1–3]. As one
of the main approaches for robust control designs for linear and
non-linear systems, SMC has many advantages such as robustness,
fast response and invariance to system uncertainties and
compensation-ability to the external disturbance. At the same
time, these are few shortcomings associated with it, for example,
control chattering and reaching phase.

Integral sliding mode (ISM) approach was developed by
Matthews and DeCarlo [4], Utkin and Shi [5]. It is a neat solution
for the problem of reaching phase, by designing appropriate para-
meters of the ISM [6]. The sliding mode is reached from the
initial time instantly and it compensates the perturbations from
the beginning of the system running. Furthermore, it could
combine another controller for the nominal system and the sliding
mode controller [7–9]. Therefore ISM has been widely employed
to solve different problems [10–15].

Recently, mismatched uncertainties and perturbations emerge as
a challenge while the ISM approach is used for different kinds of
systems [16–20]. To minimise the mismatched terms and possibly
use less number of conservative nominal system controller are
the focuses of this problem [19]. Castaos and Fridman [8] first
presented ISM design and its corresponding controller, which con-
sists of a continuous nominal control and a discontinuous control.
The former dictates the performance of the nominal system
(without uncertainty and disturbance); and the latter is responsible
for the compensation of uncertainty and disturbance. In [8], the
design of the ‘projection’ matrix of the ISM is the most important
part with comprehensive discussion. The authors find that the
B+with B is the control input matrix and B+ its left inverse.
Rubagotti et al. [9] applied this method with predictive control to
the sample-data controlled systems. On the basis of their previous
studies, Rubagotti et al. [21] considered more general non-linear
affine systems with B and B(x) instead of B. For both matched
and mismatched perturbation, ISM is reachable and the mismatched
perturbation is minimised. However, the value of the mismatched
perturbation is minimised to its 2-norm from the results (Theorem
1 in [21]). Nevertheless, the ‘projection’ matrix of the ISM
should be selected by the Theorem and the assumption for the
perturbation is that its 2-norm is less than a constant scalar value.
These lead to the conservative controller.
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The objective of this paper is to find a more non-conservative
way of the ISM approach for reaching phase and compensation
for both matched and mismatched perturbations. First, a quadratic
ISM surface is designed for a general non-linear affine system,
which has some different structures comparing with the ISM in
[21]. On the basis of the quadratic structure ISM, the assumption
for the mismatched uncertainty could be relaxed and the mis-
matched uncertainty can be rejected, the validity of which is
demonstrated in the results. A corresponding controller design is
then proposed. The quadratic ISM is proved to be reachable in
finite time and the system stability in the sliding mode is proved
to be determined by the nominal system.

The main contribution of this paper is stated as follows. The mis-
matched uncertainty is rejected or compensated by the quadratic
ISM, while it is minimised to be its 2-norm (In [21], the assumption
for the mismatched perturbation its 2-norm is less than a constant
scalar) and further suppressed by the robust nominal controller.
By doing so, both the conservativeness of the nominal controller
and the assumption for the uncertainty are reduced.

This paper is organised as follows. Section 2 introduces the
formulation of the problem. Then Section 3 designs the quadratic
ISM, whereas its corresponding controller design is presented in
Section 4. Section 5 gives the proving of reaching condition
and Section 6 considers the system stability in the sliding mode.
A numerical example is presented in Section 7. Finally, conclusions
are made in Section 8.

2 Problem formulation

Consider a class of systems as follows

ẋ(t) = f (x)+ Df (x)+ [g(x)+ Dg(x)]u (1)

where x = x(t) = x1 x2 · · · xn
[ ]T

is the state vector, u∈R is

the single control input signal, f (x) = f1(x) f2(x) · · · fn (x)
[ ]T

is the non-linear dynamic vector with fi(x):R
n→R and g(x) =

g1(x) g2(x) · · · gn(x)
[ ]T

is the non-linear control gain vector
with gi(x):R

n→R that guarantees the controllability of the system.
Δf (x) and Δg(x) are the corresponding unknown uncertainties of
non-linear vector which can be regarded as satisfying the following
assumptions.

Assumption 1: ‖Δf (x)‖≤ ξ1‖x‖ + ξ0 with the scalars ξ0 > 0, ξ1 > 0.
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Assumption 2: ‖Δg(x)‖≤ ζ1‖x‖ + ζ0 with the scalars ζ0 > 0, ζ1 > 0.

Here |·| stands for Euclidean norm.
We first consider the SMC of the system (1) is

u = u0 + u1

where u1 is the non-linear part of the sliding mode, u0 is the equiva-
lent control of u, which is responsible for the performance of the
nominal system (without uncertainty and disturbance) and satisfies
the following inequation

u0 ≤ b0 + b1 x‖ ‖ (2)

3 Quadratic ISM

Define the sliding mode of system (1) as

s = 1

2
xT (t)x(t)− xT0 x0
[ ]

−
∫t
0

xT (t) f (x)+ g(x)u
[ ]− b(x)u1

{ }
dt (3)

where x0 is the initial value of the state vector, b(x)∈ R are matrices
to be designed as

b(x) = s+ z0 x‖ ‖ + z1 x‖ ‖2+ xT (t)g(x)
∥∥ ∥∥ (4)

with an arbitrary scalar σ > 0. We therefore have

b(x)
∥∥ ∥∥−1≤ d (5)

with the definition of scalar δ as

d = s+ z0 x‖ ‖ + z1 x‖ ‖2( )−1
(6)

If the sliding mode surface s = 0 can be reached, then the sliding
mode equation becomes

1

2
xT(t)x(t)− xT0x0
[ ]−

∫t
0

xT(t) f (x)+ g(x)u
[ ]− b(x)u1

{ }
dt = 0

(7)

By the system equation (1), it would be followed

1

2
xT(t)x(t)

∣∣∣∣
t

0

−
∫t
0

xT(t) f (x)+ g(x)u
[ ]− b(x)u1

{ }
dt = 0

∫t
0

xT(t) ẋ(t)− f (x)− g(x)u
[ ]+ b(x)u1

{ }
dt = 0

∫t
0

xT(t) Df (x)+ Dg(x)u
[ ]+ b(x)u1

{ }
dt = 0

And then the sliding mode equation is

∫t
0

xT(t)Df (x)+ xT(t)Dg(x)u+ b(x)u1
{ }

dt = 0 (8)

4 SMC control law design

Design the following SMC law

u = u0 − b−1(x) l0 + l1 x‖ ‖( )
s+ h0 + h1 x‖ ‖( )

sgn(s)
[ ]

(9)
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where λ0, λ1, η0, η1∈R are scalars defined as follows

l0 ≥
11 z1 x‖ ‖2 + z0 x‖ ‖ + s
( )

s
, l1 ≥ 0 (10)

h0 ≥
12 z1 x‖ ‖2+z0 x‖ ‖ + s
( )

s
(11)

h1 ≥ sd( )−1 j0 + z0b0 + j1 + z0b1 + z1b0

( )
x‖ ‖ + z1b1 x‖ ‖2[ ]

(12)

with the two approaching parameters ε1 and ε2 are two arbitrary
positive scalars.

If s = 0 is reached and remains there, then the SMC control input
u is equal to its equivalent control input, that is, u = ueq which can
be written as u = u0. The design of the equivalent control u0 will be
considered after the reachability of the sliding mode and the
stability of the system in the sliding mode are achieved.

5 Reachability of the sliding mode

After designing the sliding mode and its corresponding SMC input,
stability of the state variables of the system (1) is obtained as
follows.

Theorem 1: For the uncertain non-linear system (1), the system state
variable reaches to the sliding mode s(x) = 0 in finite time and
remains there, if the SMC is designed as (9)–(12).

Proof: Consider the time derivative of the sliding mode (3) along
the system state (1), wherefore

ṡ = xT(t)Df (x)+ xT(t)Dg(x)u+ b(x)u1

= xT(t)Df (x)+ xT(t)Dg(x)u0 + xT(t)Dg(x)+ b(x)
( )

u1

Substitute the control law (9) and consider Assumptions 1 and 2
and (2)

sṡ=xT(t)Df (x)s+sxT(t)Dg(x)u− l0+l1 x‖ ‖( )
s2− h0+h1 x‖ ‖( )

s| |
≤ x‖ ‖· Df (x)

∥∥ ∥∥ · s| |−sxT t( )Dg(x) b0+b1 x‖ ‖[ ]
− 1+xT(t)Dg(x)b−1(x)
( )

l0+l1 x‖ ‖( )
s2+ h0+h1 x‖ ‖( )

s| |[ ]
≤ j0+j1 x‖ ‖( )

x‖ ‖· s| |+ x‖ ‖ z0+z1 x‖ ‖( )
b0+b1 x‖ ‖( )

s| |
+ l0+l1 x‖ ‖( )

z0+z1 x‖ ‖( )
x‖ ‖b−1(x)s2

+ h0+h1 x‖ ‖( )
z0+z1 x‖ ‖( )

x‖ ‖b−1(x) s| |
− l0+l1 x‖ ‖( )

s2− h0+h1 x‖ ‖( )
s| |

≤ j0+j1 x‖ ‖( )+ z0+z1 x‖ ‖( )
b0+b1 x‖ ‖( ){ }

x‖ ‖· s| |
− l0+l1 x‖ ‖( )

1− z0+z1 x‖ ‖( )
x‖ ‖b−1 x( )[ ]

s2

− h0+h1 x‖ ‖( )
1− z0+z1 x‖ ‖( )

x‖ ‖b−1 x( )[ ]
s| |

Then the following would be trued by (3)

sṡ≤ j0+ z0b0+ j1+ z0b1+ z1b0

( )
x‖ ‖+ z1b1 x‖ ‖2{ }

x‖ ‖ · s| |

− s+ xTg
∥∥ ∥∥
b(x)

l0+l1 x‖ ‖( )
s2− s+ xTg

∥∥ ∥∥
b(x)

h0+h1 x‖ ‖( )
s| |

According to the inequalities (10)–(12), one can obtain

sṡ ≤ −11s
2 − 12 s| |
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Therefore the sliding mode s = 0 can be reached in finite time and
the system state remains there. □
Fig. 1 Quadratic ISM curve when d(x, t) = 0

Fig. 2 System state curves when d(x, t) = 0
6 System stability of the sliding mode

When the sliding mode s = 0 was reached and s = 0 stay at stable
state, its derivative for time ṡ = 0 by (7), which implies that

xT (t)Df (x)+ xT (t)Dg(x)u+ b(x)u1 = 0 (13)

Then the stability of the system in the sliding mode is elaborated as
the following theorem.

Theorem 2: For the uncertain non-linear system (1) in the sliding
mode s = 0, the stability of the system state is determined by

ẋ(t) = f (x)+ g(x)u0 (14)

Proof: Select a Lyapunov function

V (x) = 1

2
xT(t)x(t) (15)

its total time derivative along the state (1) is

V̇ (x) = xT(t)ẋ(t)

= xT(t) f (x)+ g(x)u+ Df (x)+ Dg(x)u
[ ]

Using (13), one can obtain

V̇ (x) = xT(t) f (x)+ g(x)u− b(x)u1
[ ]

In the sliding mode of the system, u1 = 0. Therefore the following
can be obtained

V̇ (x) = xT(t)f (x)+ xT(t)g(x)u0 (16)

It can be seen that a positive definite Lyapunov function (15) gives
negative definite derivative with respect to time along the state (14),
if the nominal system (14) is stabilised by u0. Therefore the stability
of the system state is determined by (14).

By Theorem 2, u0 can be designed according to any suitable
design method, such as dynamic feedback linearisation method
[9], robust H1 control method [21] etc., which determines the per-
formance of the nominal system (14). □

7 Application example

Consider a system formulated as

ẋ1 = x2 + 0.6x31 + 1.1 sin 6pt

ẋ2 = 1.3x22 + u+ 0.7 sin 4pt
(17)

where in (1) f (x) = [x2 0]
T, Df (x) = 0.6x31 1.3x22

[ ]T
, g(x) = [0 1]T,

Δg(x) = 0. The external disturbance d(x, t) = [1.1 sin 6πt 0.7 sin
4πt]T. According to Assumptions 1 and 2, choose ζ0 = ζ1 = 0, ξ0
= 0 and ξ1 = 1.69.

First we designed the controller as (9), and u0 =−20x1−5x2 with
β0 = 0 and β1 = 20. On the basis of the inequation (12), β0 and β1
mainly affect the selection of η1. Fortunately, because ζ0 = ζ1 = 0,
they do not affect η1 any longer. Furthermore, we selected σ = 1,
δ = 1 by (6) and λ0 = 20, λ1 = 0 and η0 = 2 by (10)–(12).
This is an open access article published by the IET under the Creative
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Here, we specially point out that ‖Δf (x)‖≤ 0.36‖x‖3 + 1.69‖x‖2 and
‖d(x, t)‖≤ 2, which should be considered in η1. By (12)

h1 = 2+ x‖ ‖ + 2 x‖ ‖2+0.4 x‖ ‖3

is defined. Accordingly b(x) = 1 + xTg(x) = 1 + x2, and the quadratic
ISM can be represented as follows

s = 0.5 xT(t)x(t)− xT(0)x(0)
[ ]−

∫t
0

x1x2 + x2u− 1+ x2
( )

u1
{ }

dt

Set the initial value of the state x = [−0.6 1.2]T and d(x, t) = 0 (i.e.
the external disturbance is not considered). Another important
thing was to improve the sign function in discontinuous controller.
In (9), we replaced the sign function with saturation function with

sat
s

w

( )
= sgn(s), if s| | ≥ w

s/w, if 0 ≤ s| | , w

{

where w is the boundary layer, which is selected as 0.001 in first.
The configuration of the system is now complete. The simulation

results are shown in Figs. 1–3. The quadratic ISM value is shown in
Commons
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Fig. 4 Quadratic ISM curve when d(x, t)=0

Fig. 5 System state curves when d(x, t)=0

Fig. 3 Control signals when d(x, t) = 0

Fig. 6 System control input u when d(x, t)=0

Fig. 7 System control input u0 when d(x, t)=0

Fig. 8 System control input u1 when d(x, t)=0
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doi: 10.1049/joe.2015.0028

This is an open access article published by the IET under the Creative Commons
Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/

3.0/)



Fig. 9 Quadratic ISM curve when φ = 0.01 and d(x, t)=0

Fig. 10 System state curves when φ= 0.01 and d(x, t)=0

Fig. 11 System control signals when φ= 0.01 and d(x, t)=0
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Fig. 1, which is always of small value 0.001, and finally asymptot-
ically equals to zero. The system state variables are shown in Fig. 2,
and the system control input signals are shown in Fig. 3. All these
three figures show that the system was robustly stabilised better by
the quadratic ISM and the controller, although there was the strong
uncertainty Δf (x).

d(x, t) = [1.1 sin 6πt 0.7 sin 4πt]T was then considered. The
minor change of η1 in (17) was considered as η1 = 2 + ‖x‖ + 2‖x‖2

+ 0.4‖x‖3. In Fig. 4, the quadratic ISM value is within 0.001, but
it has chattering. The system state variables are shown in Fig. 5,
which have weak fluctuations in steady state. This is because the
sliding mode has the chattering and boundary layer. The control
input signals are shown in Figs. 6–8. These figures illustrate that
the system state is robustly stabilised by the quadratic ISM and
the controller, although the external disturbance exists.

Figs. 6–8 show the control signals have heavy chattering. We can
impair chattering simply by increasing the boundary layer w = 0.01.
Fig. 9 shows the sliding mode value is also within 0.001, but its
chattering is weakening. Fig. 10 clearly shows that the system
state is still robustly stabilised better. Additionally, the chattering
of control input signals is dispelled well, as indicated by Fig. 11.

8 Conclusions

The design of ISM control is comprised of a quadratic-type sliding
surface and its corresponding controller. The quadratic ISM can
reject mismatched uncertainty well, and reduce the conservative-
ness of the nominal controller. Furthermore, the constraints for
the uncertainty and disturbance could be relaxed. In the proposed
approach, the ‘projection’ matrix is not required to minimise the
mismatched perturbation as the quadratic ISM has good rejection
and compensation performance. A numerical example with lots of
uncertainty is presented to demonstrate the approach in this paper.
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