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SUMMARY

Because transportation systems involve massive complex human activities, there exist substantial unpredict-
able uncertainties of the traffic demands. This paper aims at presenting an H∞ control method for transportation
network that can enhance the tolerance of the system due to these uncertainties. In particular, the store-and-
forward approach is applied to model the system into a linear form. Then, a detailed controllability analysis
shows that the system is not completely controllable by taking the constraints on the green times into account.
This makes difficult to apply directly the H∞ method. To overcome this difficulty, this paper isolates the fully
controllable part of the transportation system, and the problem of disturbance attenuation is then solved by
means of a convex optimization with linear matrix inequality. Finally, the simulation of a large-scale hypothet-
ical network is carried out to illustrate the results. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Urban transportation is an essential part of the modern cities. Because of the rapid increase of traffic
demands in recent decades, the congestion problem emerges more frequently, which leads to serious
economic and environment issues. This situation has encouraged the researchers to develop advanced
traffic signal control strategies.
The conventional strategies optimized the signal timing schedules off-line by using historical data,

which are also called fixed-time strategies. For example, TRANSYT is a well-known off-line computer
program for modeling transportation systems and designing traffic signal schedules, which was first
presented by the Transport Research Laboratory [1]. However, fixed-time strategies do not concern
the real-time data of traffic demands, which makes them not capable to fit current serious deterioration
of urban transportation. To improve this situation, traffic-responsive strategies have been developed to
take the dynamic of traffic demands into account. One of the most known works is the split, cycle, and
offset optimization technique (SCOOT) [2], which applies the TRANSYT model fed by the real-time
data and searches the beneficial incremental regulations of signal schedules. The major drawback of
SCOOT is the bad performances in case of saturated traffic conditions [3]. Another notable approach
is the application of the kinetic wave theory and its first-order approximation: cell transmission model
(CTM) [4]. Because CTM shows very high accuracy [5], it has been widely applied in traffic engineer-
ing (e.g., [6]). However, the accuracy is based on the complexity of the model, which makes it difficult
to design efficient real-time controllers. Recently, an interesting work, called the traffic-responsive
urban control strategy, has been presented, which was developed for the European Telematics Applica-
tions in Transport project TABASCO [7]. This strategy applies the store-and-forward model, which was
initially developed in [8]. Such model has a linear form; hence, it opens the way to apply highly efficient
control methods with polynomial complexity, which, on its turn, allows real-time signal control for the
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transportation networks, even with a large scale. This is a huge advantage, and consequently, such
model has been also applied in many other control strategies in the recent decade (e.g., [9–11]).
Note that most of the aforementioned strategies were developed with demand analysis in some nomi-

nally “typical” conditions. However, because the urban transportation involves massive random human
activities, the uncertainties in traffic demands substantially exist and have considerable consequences
for the behaviors of the system [12]. Hence, the robustness due to these uncertainties should be concerned
by traffic signals. There have been many researches that take this problem into account. First, certain
optimizations on fixed-time signal plans have been addressed (e.g., [13–16]). For the traffic-responsive
control, a notable work was presented in [17], which captures the uncertainties in origin–destination de-
mands and develops a robust control method on the basis of CTM. However, because of the complexity
of CTM, such method works only for single intersections. Most recently, the rolling-horizon control par-
adigm has also been applied in this field. For example, Tettamanti et al. [18, 19] proposed a robust model
predictive control strategy by using the store-and-forward model. Another interesting work presented in
[20] formulated the problem into a mixed-integer linear programming problem based on the S model.
In our opinion, such paradigm suffers from the large computational demand in real time, which increases
the cost of the strategy and hence may limit its application.
In this context, this paper endeavors to elaborate an efficient traffic-responsive signal split control

strategy that can enhance the robustness due to the uncertainties in traffic demands. For this purpose,
we choose the store-and-forward linear model and apply H∞ control method in the transportation
context. A major difference with the existing works is the controllability analysis of the system, which
indicates that the transportation network is not completely controllable by the green time split. As a
result, the decomposition is imposed to isolate the controllable part of the system. By focusing on this
subsystem, a constrained H∞ control problem is formulated to maximize the tolerance of system due to
the uncertainties in traffic demands. The solution is then presented by combining traditional H∞ control
method with some additional linear conditions.
This paper is organized as follows. Section 2 presents the urban transportation network model. The

controllability of this model is analyzed in Section 3, and the decomposition is performed to isolate the
completely controllable subsystem. Then, Section 4 is devoted in the H∞ control method to present an
optimal traffic signal control strategy. Finally, Section 5 considers a large-scale hypothetical network
as an example to illustrate and compare our results with the work of Diakaki et al. [7].

2. TRANSPORTATION NETWORK MODELING

The store-and-forward based approach is a widely applied macroscopic transportation modeling con-
cept [3, 8]. Indeed, considering the lane i in a transportation network including n traffic lanes (Figure 1),
the dynamics of its number of vehicles xi is given by

xi k þ 1ð Þ ¼ xi kð Þ þ T ri kð Þ � di kð Þ þ
Xn

j¼1; j≠i
σi; j kð Þ �

Xn
j¼1; j≠i

σj;i kð Þ
" #

(1)

Figure 1. The flows related with the lane i.
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It is important to note that only the terms corresponding to actual links between lanes of the network are
made explicit in Equation (1). Otherwise, all the σi,j for non-existing links do not appear in the equations.
The basic idea of the store-and-forward model is to consider the total outflow rate of any lane during

a step as its average value (Figure 2), which leads to ∀ i ∈ {1,⋯, n} [8]

Xn
j¼1; j≠i

σj;i ¼ gisi
c

(2)

Hence, by using the turning rates λi, j ∈ [0, 1], the inflow rates are given by

σi; j ¼ λi; j
gjsj
c

(3)

It is obvious that the exit flow is a part of the total inflow; hence, we have

di ¼ λi;i
Xn

j¼1; j≠i
σi; j ¼ λi;i

Xn
j¼1; j≠i

λi; j
gjsj
c

(4)

Note that this approach models the system into a linear form and hence significantly simplifies the
problem. It is inevitable that such simplification also leads to a few consequences as follows:

(1) The step T cannot be shorter than the cycle time c; hence, the oscillations of vehicle numbers due
to the green/red commutations cannot be described by the model [3].

(2) Equation (2) implies that the outflows of all lanes are considered saturated; the under-saturated and
over-saturated (spill-back) situations are not concerned by the model.

(3) Equations (3) and (4) imply that the turning rates and the exit rates are predetermined; hence, the
model cannot consider the uncertainties of these parameters.

Now, by replacing Equations (2), (3) and (4) in Equation (1) and by combining all lanes, the trans-
portation network with any arbitrary size, topology and characteristics can be modeled into the follow-
ing linear state-space difference equation

x k þ 1ð Þ ¼ x kð Þ þ Lg kð Þ þ Tr kð Þ (5)

where x = [x1,⋯, xn]
T, g = [g1,⋯, gn]

T, r= [r1,⋯, rn]
T, and the matrix L is determined by the saturation

flow rates, turning rates and exit rates according to Equations (2), (3) and (4). More details of this store-
and-forward modeling are seen in [7, 21].
However, this model does not consider the relationships between the green times. In the following,

we will show that the green times g1,⋯, gn are not independent variables. To do this, consider first an
intersection with two phases (Figure 3). Let ge1 and ge2 denote effective green times of two phases, and
let g1, g2, g3 and g4 be the green times corresponding to four entry lanes. It is clear that

g1 ¼ g2 ¼ ge1; g3 ¼ g4 ¼ ge2 (6)

Figure 2. Simplification of store-and-forward approach.
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Note that ge1 and ge2 always satisfy the following relationship:

ge1 þ ge2 ¼ c� χ (7)

where χ is the total lost time of this intersection in one cycle. Generally, the lost times and the cycle are
considered fixed and known [7]. Consequently, there is only one independent variable in this intersec-
tion. If ge1 is chosen as the control variable, the green times of all lanes can be represented by the fol-
lowing linear relationship:

g1
g2
g3
g4

0
BBB@

1
CCCA ¼

ge1
ge1
ge2
ge2

0
BBB@

1
CCCA ¼

1

1

�1

�1

0
BBB@

1
CCCAge1 þ

0

0

c� χ

c� χ

0
BBB@

1
CCCA (8)

Consider another example illustrated in Figure 4. This intersection involves six movements, and its cy-
cle is divided into three phases. Let ge1, ge2 and ge3 be the effective green times of three phases, and let gi
be the green time of the lane i = 1,⋯, 6. In this case, certain lanes correspond to more than one phase
(e.g., lane 2 is approved in both phases 1 and 2). More precisely, we have the following relationship:

g1
g2
g3
g4
g5
g6

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

ge1
ge1 þ ge3

ge3
ge2 þ ge3

ge2
ge1 þ ge2

0
BBBBBBBBB@

1
CCCCCCCCCA

(9)

Figure 3. Two-phase intersection.

Figure 4. Three phases of T-intersection.
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Furthermore, similar with the two-phase case, we have in this intersection

ge1 þ ge2 þ ge3 ¼ c� χ (10)

which indicates that there are two independent control variables. Thus, if ge1 and ge2 are chosen as
control variables, it follows

g1
g2
g3
g4
g5
g6

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

1 0

0 �1

�1 �1

�1 0

0 1

1 1

0
BBBBBBBBB@

1
CCCCCCCCCA

ge1
ge2

� �
þ

0

c� χ

c� χ

c� χ

0

0

0
BBBBBBBBB@

1
CCCCCCCCCA

(11)

It is not difficult to infer that all signalized intersections have similar formulas like Equations (8) and
(11), which means that for each lane, its corresponding green time has a linear relationship with the
independent control variables. Let u ∈Rm be the vector of all chosen independent control variables
in the network. By combining the formulas of all intersections, the following relationship is obtained:

g ¼ Guþ ξ (12)

where G ∈Rn×m and ξ ∈Rn.
Hence, the original store-and-forward model (5) can be restated as

x k þ 1ð Þ ¼ x kð Þ þ T r kð Þ þ L Gu kð Þ þ ξð Þ
¼ x kð Þ þ T r kð Þ þ LGu kð Þ þ Lξ
¼ x kð Þ þ T r kð Þ þ Bu kð Þ þ h

(13)

where B=LG ∈Rn×m and h=Lξ ∈Rn. Now, we assume that availability of the nominal situation
where a fixed signal control plan gN (or equivalent uN) has been calculated by means of any fixed-time
control method based on fixed (historical) demands rN [7, 9]. Mathematically, it means T rN+BuN+h=0,
which infers

h ¼ �T rN � BuN (14)

Note that, in [10], for general transportation systems, some available procedures have been presented to
estimate nominal parameters.
Hence, it follows from Equation (13) that

x k þ 1ð Þ ¼ x kð Þ þ T r kð Þ þ Bu kð Þ � T rN � BuN

¼ x kð Þ þ T r kð Þ � rNð Þ þ B u kð Þ � uNð Þ (15)

Finally, defining v(k) = u(k)� uN as the new control variable and defining ω= T(r(k)� rN) as the
disturbances, Equation (15) yields the state-space model of our system

x k þ 1ð Þ ¼ x kð Þ þ Bv kð Þ þ ω kð Þ (16)

Apparently, by introducing the nominal situation, the term ω has been defined as the differences be-
tween the real unknown traffic demands and the nominal ones. In other words, ω reflects the unknown
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uncertainties in traffic demands that the fixed signal control plan gN fails to consider. Hence, it is the
disturbance that the H∞ control method aims to attenuate.
Note that the state x and control u of such model should both verify their physical limitations. First,

the effective green time of each phase must satisfy certain boundary conditions, that is,

gi;min ≤ gi ≤ gi;max; ∀i∈ 1;⋯; nf g (17)

or the equivalent vector form

gmin ≤ g≤ gmax (18)

where gmin= [g1,min,⋯, gn,min]
T and gmax = [g1,max,⋯, gn,max]

T are, respectively, the well-selected min-
imal and maximal boundaries of g. In view of Equation (12) and v(k) = u(k)� uN, these conditions on
the green times infer the constraint set on the control variable v as follows:

U ¼ v∈ℝm= � v2 ≤Gv≤ v1f g (19)

where v1 = gmax� gN> 0, v2 = g
N� gmin> 0 and gN =GuN + ξ.

Furthermore, it makes no sense to speak of negative number of vehicles. Hence, we have x(k)≥ 0, ∀ k∈
. On the other hand, each lane cannot contain infinite vehicles. We define the lane capacity as the max-
imal number of vehicles that a lane can contain. The transportation network model (16) is valid only when
the number of vehicles in each lane does not exceed its capacity. Let x�i , i∈ {1,⋯, n}, be the capacity of
lane i. The system (16) has physical meaning only if x belongs to the region of admissible states

X ¼ x∈ℝn= 0≤ x≤ x�f g (20)

where x� ¼ x�1;⋯; x�n
� �T

.
Now, to measure the performances of transportation network, the outputs of system need to be spec-

ified as the objective variable of robust control. The direct candidate is the number of vehicles x: the
fewer vehicles correspond to better performances. But, because the lane capacities are not all the same,
the occupancies, which are the proportions between the number of vehicles and their capacities, are
more suitable to show the system performances. Therefore, let zi ¼ xi=x�i ; then, the vector z = [z1,⋯,
zn]

T is the appropriate output variable of the system. Moreover, because the outputs of the cycle k
should correspond to the states at instant k+ 1, zi(k) should equal to xi k þ 1ð Þ=x�i instead of xi kð Þ=x�i ,
i ∈ {1,⋯, n}. Hence, the outputs of transportation system (16) are defined as

z kð Þ ¼ Px k þ 1ð Þ ¼ Px kð Þ þ PBv kð Þ þ Pω kð Þ (21)

where P is the diagonal matrix with the diagonal elements 1=x�i . Apparently, its constraint is given by

ℤ ¼ z∈ℝn= 0≤ z≤ 1f g (22)

where 1≜ [1,⋯, 1]T. The subsequent robust study will focus on the influence of the disturbance ω on
this output z.

3. CONTROLLABILITY STUDY

Before studying the control issue, the controllability of the previous model needs to be first considered.
Indeed, according to Equation (16), the rank of controllability matrix is

μ ¼ rank B IB⋯ In�1B
� � ¼ rank Bð Þ (23)
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Because the number of lanes is obviously bigger than the number of independent control variables
(e.g., Equations (8) and (11)) and B ∈Rn×m, we have

μ ¼ rank Bð Þ≤min m; nð Þ ¼ m < n (24)

So, the transportation system described by Equation (16) is not completely controllable, and the
controllability dimension is μ.
This analysis indicates that the traffic signals cannot completely control the transportation network,

which matches the general experiences. Indeed, if the vehicles that enter the system are too many, the
traffic signal control cannot prevent congestions no matter which control strategy is implemented. On
the other hand, if there are very few vehicles, even the conventional fixed-time signal schedules can
effectively evacuate the traffic.
To better understand this controllability problem, we consider now a simple intersection as shown in

Figure 5. There are two conflict traffic movements and two phases corresponding to them. Suppose that
the saturated flow rates in these two directions are the same (s1 = s2 = s), and the discrete-time step
equals to the cycle, that is, T = c. It is easy to infer the dynamics of the number of vehicles as follows:

x1 k þ 1ð Þ ¼ x1 kð Þ þ r1 kð Þc� g1 kð Þs (25)

x2 k þ 1ð Þ ¼ x2 kð Þ þ r2 kð Þc� g2 kð Þs (26)

Because the sum of two green times g1(k) + g2(k) = c� χ is fixed, we have

x1 k þ 1ð Þ þ x2 k þ 1ð Þ ¼ x1 kð Þ þ x2 kð Þ þ r1 kð Þcþ r2 kð Þc� c� χð Þs (27)

Obviously, the sum of vehicles in two lanes is irrelevant to the green time split; it depends only on
the traffic demands. In other words, we cannot change the sum x1 + x2 by means of the green time
split. Hence, the sum of two lanes is not controllable by the green time split. On the other hand, con-
sider the difference between the two lanes

x1 k þ 1ð Þ � x2 k þ 1ð Þ
¼ x1 kð Þ � x2 kð Þ þ r1 kð Þc� r2 kð Þc� g1 kð Þsþ g2 kð Þs
¼ x1 kð Þ � x2 kð Þ þ r1 kð Þc� r2 kð Þc� g1 kð Þsþ c� χ � g1 kð Þð Þs
¼ x1 kð Þ � x2 kð Þ þ r1 kð Þc� r2 kð Þcþ c� χð Þs� 2g1 kð Þs

(28)

It is clear that the dynamic of x1� x2 can be influenced by the green time split. Indeed, if the lane
with more input vehicles obtains more green time, the number of vehicles in two lanes can approx-
imate, and it will be less possible to generate congestions. The objective of the green time split con-
trol in this example should be to reduce the difference x1� x2 to prevent congestions. In summary, in
this simple intersection, x1 + x2 and x1� x2 correspond respectively to the uncontrollable and control-
lable parts.

Figure 5. An intersection with two conflict flows.
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Furthermore, by comparing with the original store-and-forward model (5), the controllability problem
of our model (16) is caused by the relationship (12). This relationship is imposed from the physical char-
acteristics of the traffic signals (see Equations (8) and (11)); it must be satisfied to calculate admissible
green times. Indeed, from g to u, the dimension of control variables is reduced because of an important
fact: for any intersection, the green time split can only regulate the unbalance between the lane groups cor-
responding to different phases. In other words, the power of the green time split is only to deal with the
unbalance part of the system and to make the distribution of vehicles more uniformly such that the conges-
tions can be prevented. This fact determines the lack of full controllability of the transportation network.
It is necessary to note that, in the existing works that have applied the store-and-forward approach (e.g.,

[7, 10, 19]), the relationship (12) is ignored in the modeling, and the system is considered controllable by
using the control variable g. However, such relationship is imposed by the physical signification; hence, it
must be verified in the implementation of their proposed control strategies. For example, although the
feedback control law of [7] is calculated without considering this relationship, its controller in real systems
must solve a quadratic-programming (QP) problem in every cycle to obtain the most approximate green
times that satisfy such condition. The effect of this QP problem has not been properly discussed, and the
simulation study in Section 5 will show that this strategy has no effect on the uncontrollable part of the
system either. Furthermore, Tettamanti et al. [19] applied a rolling-horizon control paradigm and consid-
ered such condition as a constraint of the optimization. In our opinion, this is actually equivalent to our
approach that applies Equation (12) into the model, although it is not necessary for its rolling-horizon con-
trol paradigm to consider the controllability. Another notable work presented in [22] has also noticed the
controllability problem. However, it avoided this problem by proposing an assumption that the number of
phases is so big to fit the controllability demand, which, in our opinion, is unpractical.
In this paper, we choose to decompose the transportation network to isolate the completely control-

lable part, which determines the boundaries of the power of the green time split. In other words, the
system (denoted by Σ) should be decomposed into two subsystems:

(1) the controllable subsystem with the dimension μ, which is completely controllable by v, denoted
by Σc; and

(2) the free subsystem with the dimension (n�μ), which is irrelevant with the control variable v,
denoted by Σu.

This is the emphasis of the following part.

3.1. Decomposition

Generally, the controllability decomposition relies on the controllability matrix. More precisely, the
controllable space is the image of column space of controllability matrix. For the transportation system
(16), this implies that Σc corresponds to the range of the matrix BT, denoted by

range BT
� � ¼ BTθ∈ℝm= ∀θ∈ℝn

� 	
(29)

whose dimension equals rank(BT) =μ. Hence, there exist μ linearly independent vectors, θ1,⋯, θμ ∈
ℝn, such that {BTθ1,⋯,BTθμ} is a basis of range(BT).
On the other hand, the free subsystem Σu corresponds to the null space of matrix BT, denoted by

null BT
� � ¼ θ∈ℝn= BTθ ¼ 0

� 	
(30)

whose dimension is n�μ. Let {θμ +1,⋯, θn} be a basis of null(BT), and define two matrices as follows:

R1 ¼ θ1;⋯; ; θμ
� �

∈Rn�μ (31)

R2 ¼ θμþ1;⋯; ; θn
� �

∈ℝn� n�μð Þ (32)

According to [23], these two matrices correspond to the two subsystems Σc and Σu. Note that there are
infinite possible choices of the vectors, θ1, ⋯, θμ, θμ +1, ⋯, θn. To conveniently perform the
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decomposition, we propose some additive conditions to choose them. Indeed, observe that the formula of
output (21) includes the matrix P. Hence, it is better that the vectors θi, i∈ {1,⋯, n}, have some features
related with this matrix. To do this, because P� 1 is the diagonal matrix with diagonal elements x�i , it is
easy to prove that the operator

< v; u>P ¼ vTP�1u; ∀v; u∈ℝn (33)

defines an inner product and ℝn along with <�, �> P is an inner product space. The orthogonality notion
can be then redefined as

Definition 1.
[24] The vectors, v,u∈ℝn, are said to be orthogonal if < v,u> P= v

TP� 1u=0.
With this new orthogonality, according to the Gram–Schmidt lemma ([24], page 108), there must be

a choice of orthonormal vectors, θ1, ⋯; θμ, θμ + 1, ⋯; θn, which means

< θi; θj>P ¼ θTi P
�1θj ¼

0 : i≠j
1 : i¼j



(34)

∀ i, j ∈ {1,⋯, n}. From now on, we assume that the vectors θi, i ∈ {1,⋯, n}, are orthonormal.
Now, we are prepared to prove the following facts for the subsequent development.

Fact 1
The matrices R1, R2 defined in Equations (31) and (32) verify

(1) rank RT
1B

� � ¼ μ;
(2) RT

2B ¼ 0; and
(3) P ¼ R1RT

1 þ R2RT
2 .

Proof.
First, from Equation (31), we have

RT
1B ¼ θ1;⋯; θμ

� �T
B

¼ BTθ1;⋯;BTθμ
� �T∈ℝμ�m

(35)

Because {BTθ1,⋯,BTθμ} is a basis of range(BT), these μ vectors are linearly independent. Hence, we
have rank RT

1B
� � ¼ μ . Then, because {θμ + 1,⋯, θn} is a basis of null(BT), we have BTθi= 0, for

i ∈ {μ+ 1,⋯, n}, which leads to RT
2B ¼ 0. Finally, Equation (34) implies (R1,R2)

TP� 1(R1,R2) = I,
which implies P� 1 = ((R1,R2)

T)� 1(R1,R2)
� 1. Hence, it follows

P ¼ R1;R2ð Þ R1;R2ð ÞT
¼ R1RT

1 þ R2;RT
2

(36)

The proof is completed.□
Now, define xc ¼ RT

1x∈ℝ
μ (resp., xu ¼ RT

2x∈ℝ
n�μ) as the state variable of the controllable subsystem

Σc (resp., free subsystem Σu). By multiplying the matrices R1 and R2, respectively, in the two sides of
Equation (16), two subsystems are stated by the following expressions:

Σc : xc k þ 1ð Þ ¼ xc kð Þ þ Bcv kð Þ þ ωc kð Þ (37)

Σu : xu k þ 1ð Þ ¼ xu kð Þ þ ωu kð Þ (38)

whereBc ¼ RT
1B,ωc ¼ RT

1ω∈ℝμ andωu ¼ RT
2ω∈ℝn�μ. The control constraint (19) remains unchanged.

Furthermore, for the controlled outputs z, we have in view of Equation (36)
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z kð Þ ¼ Px k þ 1ð Þ
¼ R1RT

1x k þ 1ð Þ þ R2RT
2x k þ 1ð Þ

¼ R1xc k þ 1ð Þ þ R2xu k þ 1ð Þ
(39)

Hence, the outputs of two subsystems are defined as

Σc : zc kð Þ ¼ R1xc k þ 1ð Þ
¼ R1xc kð Þ þ R1Bcv kð Þ þ R1ωc kð Þ (40)

Σu : zu kð Þ ¼ R2xu k þ 1ð Þ
¼ R2xu kð Þ þ R2ωu kð Þ (41)

with z= zc+ zu.

4. H∞ CONTROL OF TRANSPORTATION SYSTEM

The objective of robust control is to reduce or limit the influences of the disturbances on the outputs in
order to increase the system tolerance to the uncertainties. There are two popular approaches in robust-
ness investigations that correspond to H2 and H∞ norms, respectively, of the transfer function from dis-
turbances (ω) to outputs (z). H2 norm measures the responds of system because of impulsive input,
while H∞ norm measures the least upper bound of ∥ z∥ 2/∥ω∥ 2 [25]. Clearly, the H∞ norm is more
strict and can guarantee better results, which is the major topic of most existing robustness studies [26].
Now, consider the controllable subsystem Σc with the difference Equation (37) and the output (40)

as shown in Figure 6. If the state feedback control law

v kð Þ ¼ Kcxc kð Þ (42)

is chosen, where Kc is the feedback gain, we have the closed-loop expressions

xc k þ 1ð Þ ¼ Aclxc kð Þ þ ωc kð Þ
zc kð Þ ¼ Cclxc kð Þ þ Dclωc kð Þ (43)

where Acl = I +BcKc, Ccl=R1 +R1BcKc and Dcl =R1.
Hence, the transfer function from ωc to zc is given by

G zð Þ ¼ Ccl zI � Aclð Þ�1 þ Dcl (44)

The objective of H∞ control is to find an appropriate feedback gain Kc such that H∞ norm of G(z),
which is denoted by ∥G(z)∥∞, is less than a given scalar γ> 0; this is equivalent to make

∥zc kð Þ∥2 ≤ γ∥ωc kð Þ∥2; ∀k∈ (45)

In the sequel, we will discuss its physical signification in transportation context.

Figure 6. H∞ problem of the controllable subsystem Σc.
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Generally speaking, the objective of traffic signal control is to prevent congestions. Here, this objec-
tive is represented by the constraints on the outputs:

0≤ z≤ 1 (46)

According to the controllability analysis, z is not fully controlled by the traffic lights, which includes
two parts: the controllable outputs zc and the uncontrollable ones zu. The traffic signal control only
has effects on zc, while zu is completely determined by ωu. Hence, the control strategy should limit
zc as much as possible to verify the constraints on z. To do this, observe that, for each instant k ∈,
we have zc(k) = z(k)� zu(k), which implies that if the controller makes

�zu kð Þ≤ zc kð Þ≤ 1� zu kð Þ (47)

the constraints 0≤ z(k)≤ 1 are respected. Hence, in order to prevent congestions, the controller
should make zc inside the following region of admissible states

ℤ�
c ¼ zc∈ℝn=� zu kð Þ≤ zc kð Þ≤ 1� zu kð Þ; ∀k∈f g (48)

However, the H∞ norm of G(z) reflects the relationship between ∥ωc∥ 2 and ∥ zc∥ 2. So, to show the
signification of H∞ control, we should find the boundary of ∥ zc∥ 2 that renders zc∈ℤ�

c . The following
lemma gives an answer to this problem.

Lemma 1.
Define the positive vector

z�c ¼ z�c;1;⋯; z�c;n
� �T

(49)

where

z�c;i ¼ min zu;i kð Þ; 1� zu;i kð Þ� �
= ∀k∈

� 	
(50)

and let

α ¼ min z�c;i= i∈ 1;⋯; nf g
n o

(51)

Then, the set

ℤc ¼ zc∈ℝn=∥zc kð Þ∥2 ≤ α; ∀k∈f g (52)

is a subset of ℤ�
c .

Proof.
For each instant k ∈, if ∥ zc(k)∥ 2≤ α, it follows � α≤ zc,i≤ α, ∀ i ∈ {1,⋯, n}, which implies

�z�c≤� α;⋯; α½ �T≤ zc kð Þ≤ α;⋯; α½ �T≤ z�c (53)

Because z�c ≤ 1� zu kð Þ and z�c ≤ zu kð Þ, it follows

�zu kð Þ≤ zc kð Þ≤ 1� zu kð Þ (54)

and consequently, zc kð Þ∈ℤ�
c . The proof is completed.□

Hence, in order to prevent congestions, it suffices that the traffic signal control makes zc(k)∈ℤc, ∀ k ∈.
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Now, observe that the H∞ control strategy is to make

∥zc kð Þ∥2 ≤ γ∥ωc kð Þ∥2 (55)

for any k ∈. So, if the disturbances ωc are inside the region

Ωc ¼ ωc∈ℝμ=∥ωc kð Þ∥2 ≤
α
γ
; ∀k∈


 

(56)

then zc ∈ℤc is verified.
In summary, if the controller renders ∥G(z)∥∞≤ γ and the disturbances satisfy ωc ∈Ωc, the con-

straint z ∈ℤ and the equivalent one x∈X are both verified, which leads to the prevention of congestions.
This implies that α/γ measures the tolerance of system to the disturbances ωc. The robust traffic signal
control should maximize α/γ. However, because α is determined by zu, which is not controllable by the
traffic lights, it is nature that the traffic signal control should minimize γ in order to maximize α/γ.
So, by combining the constraint (19) on v, we have the objective of the H∞ control for the transporta-

tion system: find, if possible, a state feedback control law v=Kcxc, which minimizes γ under the
conditions:

(1) ∥G(z)∥ ∞≤ γ;
(2) v kð Þ∈U, ∀ k ∈.
This is a constrained H∞ control problem for the transportation network.

4.1. Problem solution

First, to address ∥G(z)∥ ∞≤ γ, the discrete-time version of strict bounded real lemma is needed.

Lemma 2.
[27] Let M(z) =C(zI�A)� 1B +D; then, the following statements are equivalent:

(1) ∥M(z)∥∞≤ 1.
(2) There exists a X=XT≻ 0 such that

A B

C D

� �T X 0

0 I

� �
A B

C D

� �
� X 0

0 I

� �
≼ 0 (57)

where ≻ 0 (resp., ≼ 0) means that the matrix is positive definite (resp., negative semi-definite).
Now, observe that ∥G(z)∥∞≤ γ is equivalent to

1
γ
Ccl zI � Aclð Þ�1 þ 1

γ
Dcl

����
����
∞
≤ 1 (58)

Hence, in view of Lemma 2, a necessary and sufficient condition of the solution of H∞ control problem
for transportation network is the existence of a matrix X=XT≻ 0 such that

Acl I

Ccl Dcl

� �T X 0

0 γ�2I

� �
Acl I

Ccl Dcl

� �
� X 0

0 I

� �
≼ 0 (59)

According to the Schur complement lemma [28], this inequality is equivalent to
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X � � �
0 I � �
Acl I X�1 �
Ccl Dcl 0 γ2I

0
BBB@

1
CCCA≽ 0 (60)

where * represents the transpose of the elements across the diagonal. Now, define

M ¼

ffiffi
γ

p
I 0 0 0

0
ffiffi
γ

p
I 0 0

0 0
1ffiffi
γ

p I 0

0 0 0
1ffiffi
γ

p I

0
BBBBBBBB@

1
CCCCCCCCA

(61)

Obviously, M is an invertible matrix. Hence, Equation (60) is equivalent to

MT

X � � �
0 I � �
Acl I X�1 �
Ccl Dcl 0 γ2I

0
BBB@

1
CCCAM ≽ 0 (62)

which infers

Q � � �
0 γI � �
Acl I Q�1 �
Ccl Dcl 0 γI

0
BBB@

1
CCCA≽ 0 (63)

where Q= γX. This inequality is the necessary and sufficient condition for ∥G(z)∥∞≤ γ. Summarizing,
we have the following theorem.

Theorem 1.
For the system (37) with the output (40), the existence of a matrix Kc solution of the inequality

Q � � �
0 γI � �

I þ BcKc I Q�1 �
R1 þ R1BcKc R1 0 γI

0
BBB@

1
CCCA≽ 0 (64)

is a necessary and sufficient condition for the existence of the control law v=Kcxc that renders ∥ zc∥ 2/
∥ωc∥ 2≤ γ.
Now, once the gain matrix Kc is found, the feedback control should not violate the constraint (19). In

view of v ¼ Kcxc ¼ KcRT
1 x, the constraint set U is equivalent to

Ux ¼ x= � v2 ≤GKcRT
1 x≤ v1

� 	
(65)

Hence, v∈U requires that every trajectory x(k; x(0)) inside the regionX does not leaveUx for any instant
k ∈. Consequently, the problem now consists in finding additional conditions on Kc such that
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X⊆Ux (66)

To make the idea clear, the sets X and Ux are restated as the following general polyhedron forms,
respectively,

X ¼ x=
I

�I

� �
x≤

x�

0

� �
 

(67)

Ux ¼ x=
GKcRT

1

�GKcRT
1

" #
x≤

v1
v2

� �( )
(68)

According to the extension of Farkas’ lemma in [29], the necessary and sufficient condition for ver-
ifying (66) is the existence of the non-negative matrix T with appropriate dimension such that

T
I

�I

� �
¼ GKcRT

1

�GKcRT
1

" #
(69)

T
x�

0

� �
≤

v1
v2

� �
(70)

Let

T ¼ T11 T12

T21 T22

� �

where Tij∈ℝm�n. It follows that the linear conditions (69) and (70) are equivalent to

T11 � T12 ¼ T22 � T21 ¼ GKcRT
1 (71)

T11x�≤ v1 (72)

T21x�≤ v2 (73)

In order to simplify these linear conditions and to reduce the number of variables, the following
lemma is needed.

Lemma 3.
For any matrix M, define

Mþ ¼ mþ
ij

� �
; where mþ

ij ¼ sup mij; 0
� �

M� ¼ m�
ij

� �
; where m�

ij ¼ �inf mij; 0
� � ¼ sup �mij; 0

� �
If two non-negative matrices A and B with the same dimension of M verify that A�B =M, then

A≥Mþ and B≥M� (74)
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Proof.
Observe that A�B=M implies aij� bij=mij. By definition, if mij≥ 0, we have mþ

ij ¼ mij and m�
ij ¼ 0.

Because bij≥ 0 and aij� bij =mij, it follows bij≥m�
ij and aij ¼ bij þ mij≥mij ¼ mþ

ij ; this implies that

A≥M+ and B≥M�. On the other hand, if mij< 0, we have mþ
ij ¼ 0 and m�

ij ¼ �mij. Because aij≥ 0

and aij� bij =mij, then aij≥mþ
ij and bij ¼ aij � mij≥� mij ¼ m�

ij ; this also leads to A≥M+ and B≥
M�. The proof is completed. □
Now, we are prepared to prove the following theorem.

Theorem 2.
The necessary and sufficient condition to verify the inclusion (66) is the existence of two non-
negative matrices N1 and N2 such that

N1 � N2 ¼ GKcR
T
1 (75)

N1x
�≤ v1 (76)

N2x�≤ v2 (77)

Proof.
Sufficiency: It can be obtained by simply letting

T ¼ N1 N2

N2 N1

� �
(78)

Necessity: In view of Lemma 3, Equation (71) implies

T11 ≥ GKcRT
1

� �þ T22 ≥ GKcRT
1

� �þ
T12 ≥ GKcRT

1

� �� T21 ≥ GKcRT
1

� �� (79)

This and Equations (72) and (73) infer

GKcR
T
1

� �þ
x�≤ T11x

�≤v1 (80)

GKcRT
1

� ��
x�≤ T21x�≤v2 (81)

Hence, the necessity can be proven by letting

N1 ¼ GKcR
T
1

� �þ
(82)

N2 ¼ GKcRT
1

� ��
(83)

The proof is completed. □
Summarizing, Theorems 1 and 2 present, respectively, the necessary and sufficient conditions on

Kc to verify ∥G(z) ∥ ∞≤ γ and the constraints on v(k). Hence, by combining them, we are now in the
position to present the final result of the H∞ optimal traffic signal control strategy for the transporta-
tion system.
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Theorem 3.
For the controllable subsystem (37) with the output (40), if the feedback gain Kc, the positive definite
matrix Q, the non-negative matrices N1 and N2, and the positive scalar γ are solutions of the follow-
ing optimization problem

min γ

subject to 64ð Þ and 75ð Þ � 77ð Þ (84)

then the feedback control v =Kcxc guarantees the following statements:

(1) ∥ zc∥ 2/∥ωc∥ 2≤ γ;
(2) v kð Þ∈U, for any k ∈.
It is important to note that the solvability of the optimization problem (84) is a hard problem because

of the nonlinear element Q� 1 in Equation (64). Indeed, Equations (64) and 75–77 are equivalent to

Q̂ � � �
0 γI � �

Q̂ þ BcY I Q̂ �
R1Q̂ þ R1BcY R1 0 γI

0
BBBB@

1
CCCCA≽ 0 (85)

�N2 � GYQRT
1≤ 0

GYQRT
1 x

� þ N2x� � v1 ≤ 0

N2x� � v2 ≤ 0

8><
>: (86)

Q̂Q ¼ I (87)

where Q=Q� 1 and Y=KcQ
� 1. Now, if we define the function f1(Q) that returns the diagonal matrix

where the diagonal elements are all components of the matrix �N2 � GYQRT
1

� �
and the vectors

GYQRT
1 x

� þ N2x� � v1
� �

, (N2x
*� v2), then Equation (86) is equivalent to f1(Q)≼ 0. Furthermore, de-

fine the matrix function as

f 2 Q̂
� � ¼ �

Q̂ � � �
0 γI � �

Q̂ þ BcY I Q̂ �
R1Q̂ þ R1BcY R1 0 γI

0
BBBB@

1
CCCCA (88)

Then, the conditions 85–87 can be equivalently rewritten as

f 1 Qð Þ≼0; f 2 Q̂
� �

≼0; Q̂Q ¼ I (89)

This problem has been proven to be an Non-deterministic Polynomial (NP)-hard problem in [30];
hence, the computational efficiency of (84) cannot be guaranteed.
To overcome this difficulty, for our optimization problem, we can choose Q= I. In this case,

Equation (64) becomes
I � � �
0 γI � �

I þ BcKc I I �
R1 þ R1BcKc R1 0 γI

0
BBB@

1
CCCA≽0 (90)

which is a linear matrix inequality (LMI), and it is only a sufficient (but not necessary) condition for
∥G(z)∥∞≤ γ. This leads to the following corollary.
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Corollary 1.
For the controllable subsystem (37) with the output (40), if the feedback gain Kc, the non-negative ma-
trices N1 and N2, and the positive scalar γ are solutions of the following optimization problem

min γ

subject to

LMI :

I � � �
0 γI � �

I þ BcKc I I �
R1 þ R1BcKc R1 0 γI

0
BBBBB@

1
CCCCCA≽0

(91)

N1 � N2 ¼ KcRT
1

N1x�≤v1
N2x�≤v2

(92)

then the feedback control v=Kcxc guarantees the following statements:

(1) ∥ zc∥ 2/∥ωc∥ 2≤ γ;
(2) v kð Þ∈U, for any k ∈.
This corollary transforms the problem into a convex programming problem with LMI and linear con-

ditions, which can be efficiently solved by using standard numerical tools like MATLAB [31, 32]. How-
ever, by using Q= I, the optimal solution γ* of Corollary 1 is only sub-optimal with respect to the true
optimal solution of Theorem 3. This is a trade-off between the efficiency and the performance.

5. SIMULATION STUDY

The simulation study on a large-scale hypothetical network taken from [33] (Figure 7) is conducted in
this section to demonstrate the comparative power of the proposed method. More precisely, we

Figure 7. Hypothetical test network [33].
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compare the closed-loop behaviors of the constrained H∞ controller and the linear-quadratic (LQ)
method proposed in [7]. To ensure fair and comparable results, both methodologies are evaluated by
the use of the same simulation models. More precisely, two simulation models are applied: the original
store-and-forward model (5) and the CTM introduced in [4].

5.1. Characteristics

The core area of the test network consists of 12 intersections numbered 12, 21, 22, 23, 24, 31, 32,
33, 34, 42, 43 and 54, respectively. Among them, intersections 21, 33 and 53 function with a
two-phase signal system as shown in Figure 3, while the others are with a four-phase signal system
as in Figure 8. We assume that all intersections share the same cycle time c = 100 s, and T = c
is taken as the discrete-time step. For each phase of the two-phase signal system, the lost time is
assumed as 5 s; the minimal and maximal values of the effective green time are 0.3(c� χ) and 0.7(c� χ),
where χ is the total lost time of the corresponding intersection in one cycle. For the intersections with
the four-phase signal system, the lost times are set to be 5, 3, 5 and 3 s, respectively, and the effective
green times are bounded between 0.25(c� χ), 0.07(c� χ), 0.25(c� χ), 0.07(c� χ) and 0.55(c� χ),
0.15(c� χ), 0.55(c� χ), 0.15(c� χ), respectively. The details of the parameters of the links in the test
area are listed in Table I. The capacities x�i are derived by considering the average vehicle length as
5m. The turning rates are given based on the assumption that, for each horizontal link, the percent-
ages of the vehicles turning left and right are both set to be 0.1; on the other hand, for each vertical
link, the turning rates to left and right are equal to 0.2 and 0.3, respectively. Thus, the values of the
matrices L, B and the vector h can be derived from these parameters.
The nominal values of the green times gN as well as uN are given in the following manners:

• For each two-phase intersection, the two phases both occupy half of the cycle time;
• For each four-phase intersection, the four green times are set to be 0.41(c� χ), 0.09(c� χ), 0.4(c� χ)
and 0.1(c� χ), respectively.

Thus, the nominal demands rN can be inferred from TrN+BuN + h= 0.

5.2. Scenarios

Two scenarios are considered in the following simulations. The first one is the nominal situation, which
has no disturbance during the simulation, that is, ω≡ 0. On the other hand, in order to illustrate the
behaviors of the control methods in the presence of the disturbances, the second scenario adds sinusoidal

Figure 8. Four-phase signal system with left-turn protection control.
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uncertainties in every entry of the network with different amplitudes and frequencies. Detailed patterns
of the flow rates of these disturbances are displayed in Figure 9. Note that, except the traffic demands,
the two scenarios share the same conditions including the initial state x(0).

Table I. Parameters of the links.

Links Length (m) Number of lanes Saturation rate si (veh/s) Exit rate

11→ 12, 13→ 12 300 3 0.4 0
20→ 21, 25→ 24 300 3 0.4 0
30→ 31, 35→ 34 300 3 0.4 0
41→ 42, 44→ 43 300 3 0.4 0
52→ 53, 54→ 53 300 3 0.4 0
21→ 22, 22→ 21 535 3 0.4 0.1
22→ 23, 23→ 22 580 3 0.4 0.1
23→ 24, 24→ 23 590 3 0.4 0.1
31→ 32, 32→ 31 520 3 0.4 0.1
32→ 33, 33→ 32 360 3 0.4 0.1
33→ 34, 34→ 33 460 3 0.4 0.1
42→ 43, 43→ 42 565 3 0.4 0.1
11→ 21, 41→ 31 300 2 0.3 0
02→ 12, 52→ 42 300 2 0.3 0
13→ 23, 63→ 53 300 2 0.3 0
14→ 24, 44→ 34 300 2 0.3 0
21→ 31, 31→ 21 370 2 0.3 0.1
12→ 22, 22→ 12 355 2 0.3 0.1
22→ 32, 32→ 22 440 2 0.3 0.1
32→ 42, 42→ 32 550 2 0.3 0.1
23→ 33, 33→ 23 530 2 0.3 0.1
33→ 43, 43→ 33 400 2 0.3 0.1
43→ 53, 53→ 43 540 2 0.3 0.1
24→ 34, 34→ 24 505 2 0.3 0.1

Figure 9. Patterns of disturbances.
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5.3. Comparison of criteria

For each scenario and for each control approach, three evaluation criteria are calculated for the compar-
ison [5, 9]: the total time spent

TTS kð Þ ¼ T
X
i

xi kð Þ; veh�sð Þ (93)

the relative queue balance

RQB kð Þ ¼
X
i

xi kð Þ2
x�i

; vehð Þ (94)

and the total delay (TD) of all vehicles in every cycle. Note that the TD can be only calculated by the use
of the CTM.
Table II gives the average values of these three criteria in every case. It is clear that the constrained

H∞ control leads to a reduction of all evaluation criteria compared with the LQ approach for each sce-
nario and each simulation model. Furthermore, we also observe that the improvements in the presence
of the disturbances (scenario 2) are greater than the nominal situation (scenario 1). This fact implies
that the constraint H∞ control is more powerful to attenuate disturbances.
Another observation is that the performances from the CTM are worse than the store-and-forward

model. The reason may be that the store-and-forward approach significantly simplifies the system
model and leads to “ideal” results, while the CTM is more close to the real situations. Nevertheless,
their differences do not change our conclusions.
Furthermore, note that our H∞ control method decomposes the system and only focuses on the con-

trollable part, but the LQ approach considers the system fully controllable. Hence, it is necessary to
examine the power of the LQ approach on the part that we consider uncontrollable. Figure 10 shows
the norm of the uncontrollable output ∥ zu∥ 2 in two scenarios. Observe that the two methodologies
always lead to the same (nearly same) curves. Indeed, they are overlapped in most of the time.
Specially in scenario 1, because there are no disturbances, the uncontrollable outputs stay unchanged
during the entire simulation. It follows from this observation that, although the LQ method considers
the system controllable, it cannot actually affect the uncontrollable part described in this paper either.

5.4. Effect of disturbances

The H∞ method is designed for disturbance attenuation. Hence, the effect of disturbances (in scenario
2) on the controllable subsystem of the test network is illustrated in this part. It is observed from
Figure 11 that the proposed H∞ control method reduces such effect rapidly in the first 5 cycles and

Table II. Comparison of the criteria.

Store and forward CTM

TTS RQB TTS RQB TD

Scenario 1
LQ 5.158e5 1.352e3 5.212e5 1.388e3 4.321e5
H∞ 5.026e5 1.321e3 5.071e5 1.352e3 4.162e5
Improvement �2.63% �2.3% �2.79% �2.68% �3.82%

Scenario 2
LQ 5.514e5 1.572e3 5.567e5 1.615e3 4.677e5
H∞ 5.356e5 1.524e3 5.388e5 1.552e3 4.501e5
Improvement �2.95% �3.14% �3.33% �4.07% �3.91%

CTM, cell transmission model; TTS, total time spent; RQB, relative queue balance; TD, total delay.
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then limits it under 0.8. Indeed, the value of zck k2
ωck k2 under the H∞ control is significantly smaller than the

one under the LQ approach. Because it has been shown that both methodologies have no influence on
the uncontrollable part, the proposed method also leads to better results for the entire system
(Figure 12).
We close this section by emphasizing that, because the LQ control strategy must solve a quadratic-

programming problem in local intersections at each step [7], our result is more efficient in the
sense that the feedback can be directly applied for each step, which gives us a flexibility on the level
of its applications.
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Figure 10. Norm of uncontrollable output ∥ zu∥ 2.
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6. CONCLUSIONS

In this paper, we proposed a robust controller for the disturbance attenuation of transportation network.
The errors between real traffic demands and the nominal ones are considered as disturbances, and a
constrained H∞ control has been formulated in terms of the maximization of the tolerance under con-
trol constraints. The necessary and sufficient solution has been presented in Theorem 3. However, such
solution needs to solve the non-LMI (64), which is an NP-hard problem. This lack of computational
efficiency forced us to choose the matrix Q = I in Corollary 1 such that the inequality can be trans-
formed into a linear form. The counterpart of this would be the loss of the optimal character of the tol-
erance α

γ. The obtained solution γ* is just sub-optimal in the sense that γ*≥ γopt where γopt is the true

optimal solution of Theorem 3. In the simulation study, we compared the constrained H∞ control
method with the LQ one presented in [7]. Two evaluation criteria have been used for the comparison:
the total time spent and the relative queue balance. It has been shown that our method leads to signif-
icant reductions of both evaluation criteria compared with the LQ approach. The further investigations
should deal with the comparison of the proposed constrained H∞ control with other strategies (e.g.,
model predictive control) in more elaborated (e.g., microscopic) simulation as well as in real systems.

7. LIST OF SYMBOLS AND ABBREVIATIONS

xi the number of vehicles in the lane i
ri the flow rate of the traffic demand to the lane i
di the flow rate of the exit flow from the lane i
σi,j the rate of the traffic flow from the lane j to the lane i
T the discrete-time step
gi the effective green time of the lane i in one cycle
c the cycle time
si the saturation flow rate of the lane i
λi,j ∈ [0, 1] the turning rate from the lane j to the lane i
λi,i ∈ [0, 1] the exit rate of the lane i
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