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SUMMARY

In this paper, a rear-end collision control model is proposed using the fuzzy logic control scheme. Through
detailed analysis of car-following cases, our fuzzy control system is established with reasonable control
rules. Furthermore, a genetic algorithm is introduced into the fuzzy rules refining process to reduce the
computational complexity while maintaining accuracy. Numerical results indicate that our genetic
algorithm-optimized fuzzy logic controller outperforms the traditional fuzzy logic controller in terms of
better safety guarantee and higher traffic efficiency. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A statistical report from the General Estimates System and the Fatality Analysis Reporting System
points out that rear-end collisions are most common in traffic accidents and are the cause of most traffic
injuries and property damages [1]. To alleviate the growing risks of rear-end collisions, the auxiliary or
automatic control methods look promising. Actually, there have been many classic automatic control
schemes proposed, such as proportional–integral–derivative control [2], sliding mode control [3], and
the linear quadratic optimal control [4]. Although these methods enable accurate control to be
exercised, they are highly dependent on precise mathematical models. In practice, however, an
accurate control model for vehicle collision avoidance is almost unavailable.
Instead of precise control, the fuzzy logic-based controllers (FLC) [5–9] are also well studied to

reduce the possible vehicle collisions in the last few years. Because of its superiority in solving
problems in multiparameter, nonlinear systems as well as capturing the driving characteristics in a
vehicular environment, it is feasible and preferable to apply FLC-related models to vehicular active
control issues. However, because the effect of an FLC relies on the number of fuzzy rules, an excessive
number of such will directly impair its effectiveness. Moreover, the number of fuzzy rules increases
exponentially with the number of fuzzy subsets, resulting in greater computational complexity of the
controller. Among various schemes that have been proposed to address the aforementioned problems
and has become an active research topic recently is combining neural network Back-Propagation (BP)
with fuzzy control [7, 10]. However, the neural network converges slowly and is prone to be stuck in
local optimum. Moreover, its training result is highly dependent on the original values. Unlike the neu-
ral network, the genetic algorithm (GA) is capable of searching for the global optimal solution and is
almost application independent. To efficiently reduce the risk in a car-following scenario, this paper
proposes a rear-end collision avoidance system that uses the fuzzy logic control model with its fuzzy
rules optimized by the GA. This GA-based FLC (GFLC) should be able to allow drivers to promptly
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avoid approaching risks and accurately make a brake, as well as accommodating driving behaviors of
drivers. Before giving out the principle of our proposed GFLC, a brief background of FLC and GA is
first given with summarized advantages.

1.1. Fuzzy logic controller

Fuzzy logic controller [11] is one of the most common intelligent control models composed of the
fuzzy linguistic variable, fuzzy set, and fuzzy reasoning module. It does not require a precise
measurement or estimation to the controlled variables, thus providing an effective approach to
challenges especially in the industrial control domains. A common structure of the FLC that consists
of the fuzzification, fuzzy reasoning, and defuzzification process is shown in Figure 1.
According to previous studies, an FLC has the following advantages:

(1) Using linguistic descriptions, there is no need to mathematically model the controlled parameters.
(2) System robustness can be achieved by addressing the lagged time-varying, nonlinear, and other

complex problems.
(3) It enables mathematical variables to be represented with linguistic variables and can describe

expertise with fuzzy conditional statements.
(4) By using linguistic rules and heuristic knowledge, an FLC has the ability to simulate the people’s

way of thinking [12], which benefits its coping mechanism within the complex system.

1.2. Genetic algorithm

Genetic algorithm was introduced by Holland [13]. It illustrates the biological evolutionary mechanism
and has been widely recognized in a broad variety of domains, like functional value optimization,
pattern recognition, and control [14]. GA is a global search algorithm, and its main idea is as follows:
an initial population is generated and then gradually yields optimal approximate solutions via
evolution based on the natural law. Individuals with high adaptive values in each generation are
retained based on the individual fitness through crossover and mutation, creating a new generation
of individuals with higher fitness level. The individual with the highest fitness level in the last
generation is regarded as the approximate solution to the problem. GAs are often viewed as function
optimizers, although the range of problems to which GAs have been applied is quite broad. The
advantages of the GAs can also be summarized as follows [15]:

(1) It can solve every optimization problem, which can be described with the chromosome encoding.
(2) It creates multiple solutions.
(3) Because the GA execution technique is not dependent on the error surface, it can solve

multidimensional, non-differential, non-continuous, and even non-parametrical problems.
(4) Structural GA enables the possibility to solve the solution structure and solution parameter

problems at the same time.
(5) The method is very easy to understand, and it practically does not demand the knowledge of

mathematics.
(6) GAs are easily transferred to existing simulations and models.

From the aforementioned descriptions, it can be concluded that a wise combination of the FLC and
GA model will provide a promising solution to our rear-end collision control problem and reach a good

Figure 1. Structure of fuzzy logic controller.
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trade-off between complexity and accuracy. Actually, many previous works have delved into solving
vehicle collision problems using artificial intelligence algorithms. Milanés et al. [5] proposed an
approach to the avoidance of rear-end collisions in congested traffic situations. In their work, two fuzzy
controllers, a collision warning system and a collision avoidance system, have been developed to warn
the driver or automatically avoid the possible collision during an emergency. Their controllers took the
time to collision into consideration while ignoring the transient acceleration/deceleration of the
trailing/leading cars. In this paper, we not only take into consideration the transient
acceleration/deceleration of the trailing/leading cars, but also optimize the introduced fuzzy rules by
turning to GA to yield fewer but the most effective rules. Mon and Lin [7] developed a supervisory
recurrent fuzzy neural network control system that is composed of a recurrent fuzzy neural network
controller and a supervisory controller. The former is investigated to mimic an ideal controller, while
the latter is designed to compensate for the approximation error between the recurrent fuzzy neural
network controller and the ideal controller. Although different from our system framework, their idea
to refine the outputs of the fuzzy processing unit using a supervisory controller is similar to ours where
the initialized fuzzy rules are further processed by the GA to improve the control efficiency and
precision. The latest work of Yin and Wang [16] also investigated the vehicle rear-end collision
avoidance issue by studying the safety distance mathematical model of proactive head restraint. The
safety distance calculation is carried out by analyzing the fuzzy relationship between dynamical and
kinematical parameters using a fuzzy logic model. Although their work seems to fully consider the
internal and external factors resulting in a collision involving the driver’s characteristics, weather
conditions, road situations, and vehicle’s characteristics, the thresholds they used for linguistic variable
definition were a little arbitrary and were not given detailed explanations, which make their work
applicable only under a specific condition. In [17], a fuzzy-based active control strategy to keep the
vehicle away from possible collisions has been proposed by evaluating the crisis index of urban
driving conditions. Because the crisis index or risk level is hard to calculate using mathematical
formulas, the fuzzy logic controller is introduced here to generate the final risk evaluation index
according to the input relative distance between the trailing and leading vehicles, the trailing vehicle
speed, and the time to collision. Even though their work has taken the different crisis states into
account, the fuzzy rules setting without further refinement process and real-test data verification seems
arbitrary and imprecise.
In our work, the relative distance error and the relative speed error between the leading and trailing

vehicles are introduced as the input variables of our fuzzy logic controllers, while the acceleration
speed is determined as an output by which the leading/trailing vehicles could avoid collision through
acceleration/deceleration. In addition, because of the dependence of the proposed FLC’s performance
on several factors (e.g., control rules and input/output membership functions), GA is used to further
optimize the control rules by finding the optimal combination of input/output variables.
The remainder of this paper is organized as follows: Section 2 presents our proposed GFLC scheme

in detail. The numerical results and performance evaluation are given in Section 3. Section 4 concludes
this paper.

2. GENETIC ALGORITHM-BASED FUZZY LOGIC CONTROLLER

In practical cases, the factors that influence driving safety are very complicated and usually include
weather conditions, road surface situations, response time of drivers, vehicle dynamics, and so on.
Because most of these factors are nonlinear and time varying, obtaining an accurate mathematical
model of the vehicle control system is difficult. In this context, some of the traditional methods
(e.g., proportional–integral–derivative control and linear quadric-form optimal control) are unable to
exercise accurate control. On the other hand, fuzzy control has advanced considerably in control and
reason applications in recent years mainly because of its independence from accurate mathematical
models. Its performance relies on the number of fuzzy rule bases, the number of linguistic variables
as well as the types and ranges of membership functions. An excessive number of fuzzy control rule
bases and linguistic variables results in longer FLC search time and higher computational complexity.
Therefore, the key to FLC design is to determine the fuzzy control rule base and input/output
membership function, which are usually acquired by expert summarization. However, in practical
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applications, an FLC generally cannot always guarantee its effectiveness, highlighting the need for
optimization. By reviewing previous studies, there are many optimization schemes that optimize fuzzy
control rules [18, 19] or the input/output quantified scale factors [20]. In this paper, GA is used to
optimize the control rules by finding the optimal input/output variables combination. The flowchart
of our proposed GFLC to avoid the rear-end collisions in car-following scenarios is shown in
Figure 2.
To exercise effective control over vehicles, a dual-input single-output fuzzy controller is designed as

Figure 2 illustrates. The relative distance error ds and the relative speed error dv between the leading
and trailing vehicles are defined as the input variables. The output acceleration FAd is defined as the
output variable. The input variables are given as

ds ¼ D� S; (1)

dv ¼ LV � FV (2)

where D denotes the distance between the leading and trailing vehicles, S denotes the expected
inter-vehicle space, LV denotes the speed of the leading vehicle, and FV denotes the speed of the
following vehicle.

2.1. Fuzzification of input/output variables

In our work, the ranges of the input/output variables are properly set based on practical considerations.
According to the braking distance algorithm from Mazda [21], we have

S ¼ 1
2

FV2

a�max
� LV2

a�max

� �
þ FV �τ1 þ dv�τ2 þ d0 (3)

where τ1 and τ2 denote the delay. d0 denotes the distance between the two vehicles after they stop.
Generally, τ1 = 0.1 seconds, τ2 = 0.6 seconds, and d0 = 1.5 m. In the case of the leading vehicle
braking immediately at a speed of 120 km/hour (i.e., 33.33meters/second), the expected inter-vehicle
space is 67.5m. So the relative distance error is set to the range from�67.5 to 67.5m. According to the
Chinese laws on the speedway [22], the vehicles drive at a speed varying from 60 to 120 km/hour, so
the range of dv in our work is [�60 km/hour, 60 km/hour]. Taking into account the comfort of drivers
and passengers, the acceleration of the trailing vehicle is set in the range [�8meters/second2,
8meters/second2].
The relative distance error ds, relative speed error dv, and acceleration FAd are first fuzzified into

seven fuzzy subsets: negative large (NL), negative medium (NM), negative small (NS), zero (Z),
positive small (PS), positive medium (PM), and positive large (PL). Before the fuzzification, scaling
transformations need to be made to the actual input variables such that they can be transformed into
the specified domains. In this paper, this is carried out in a linear manner:

Figure 2. Genetic algorithm (GA)-based fuzzy logic controller.
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x0 ¼ xmin þ xmax

2
þ k x�0 �

x�min þ x�max

2

� �
; (4)

k ¼ xmax � xmin

x�max � x�min

(5)

where x�0 denotes the actual input variable, x�min; x
�
max

� �
denotes the range of the variable, [xmin, xmax]

denotes the specified domain of the variable, and k denotes the scaling factor. For the relative distance
error ds, the scaling factor k1 = 0.05. Using Equation (4), it can be determined that the fuzzy domain
of the relative distance error is [�6, 6]. Because the range of the relative speed error dv is
[�16.67meters/second, 16.67meters/second] and the scale factor k1 = 0.36, the fuzzy domain of the
relative speed error is [�6, 6] by Equation ((4)). Similarly, because acceleration FAd is limited to
[�8meters/second2, 8meters/second2] and the scale factor k1 = 0.75, its fuzzy domain is [�6, 6].

2.2. Determination of membership functions

Next, the membership functions have to be determined to represent the degree of truth as an extension
of valuation. In our work, the triangle function is used as the membership functions for the relative
distance error ds, the relative speed error dv, and the acceleration FAd. The triangle function used is

η l; δ1; δ2; δ3ð Þ ¼

0 l≤δ1
1� δ1
δ2 � δ1

δ1 < l ≤ δ2

δ3 � l
δ3 � δ2

δ2 < l ≤ δ3

0 l > δ3

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(6)

where δ1 and δ3 denote the “feet” of the triangle, δ2 denotes the “peak” of the triangle, and η(l) denotes
the membership of the variable l. The domain of each linguistic variable is partitioned into seven parts,
as shown in Figures 3–5.

2.3. Establishment of the fuzzy rules

To construct the fuzzy rules used to control the risky vehicles when a specific condition is met, the
experience of drivers should be fully considered. According to the common response for a normal
person, the following typical driving scenarios are taken into account:

Figure 3. Membership function of ds. NL, negative large; NM, negative medium; NS, negative small; Z, zero; PS,
positive small; PM, positive medium; PL, positive large.

1739GA OPTIMIZED FLC TO AVOID REAR-END COLLISIONS

Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:1735–1753
DOI: 10.1002/atr



1 If the inter-vehicle distance is small and the speed of the trailing vehicle is substantially larger than
that of the leading vehicle, then rear-end collision has a high probability of occurrence. In this case,
the trailing vehicle should brake immediately to decelerate for collision avoidance.

2 If the inter-vehicle distance is still large and the speed of the trailing vehicle is close to that of the
leading vehicle, then rear-end collision has a small probability of occurrence. In this case, the speed
of the trailing vehicle can remain or increase properly.

3 If the inter-vehicle distance is small and the speed of the trailing vehicle is close to that of the
leading vehicle, then the driver of the trailing vehicle should brake slightly in order to effectively
prevent rear-end collision and ensure driving safety.

Variants of the aforementioned three scenarios should be processed, taking into account both
driving safety and driver’s comfort. In some cases, comfort can be traded off for higher driving safety.
Based on the aforementioned driving experiences as well as trial and error, a set of 49 rear-end
avoidance fuzzy control rules representing the actual driving experience is devised and shown in
Table I. The gth rule Rg is

if xds is Ag and xdv is Bg; then yFAd
is Cg (7)

where xds is the input value of ds, xdv is the input value of dv, yFAd
is the output value, Ag and Bg denote

the fuzzy subsets of ds and dv, respectively. Cg denotes the fuzzy subset of FAd. The fuzzy rule Rg can
be regarded as the fuzzy implication Ag×Bg→Cg over the product space Ufz×Vfz, where Ufz=Ag×Bg.
From Table I, it can be observed that the relation of ds and dv with FAd is nonlinear. Because of its

consistency with people’s way of thinking, the fuzzy relation is eminently acceptable to drivers.
Figure 6 shows the 3D curved surface corresponding to the fuzzy rules in Table I.
From the dv axis in the 3D curved surface, it can be seen that as the trailing vehicle’s speed gets

faster than the leading vehicle, the output deceleration increases until it reaches the mechanical

Figure 4. Membership function of dv. NL, negative large; NM, negative medium; NS, negative small; Z, zero; PS,
positive small; PM, positive medium; PL, positive large.

Figure 5. Membership function of FAd. NL, negative large; NM, negative medium; NS, negative small; Z, zero;
PS, positive small; PM, positive medium; PL, positive large.
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maximum deceleration of the vehicle. From the ds axis, it can be seen that the output deceleration
increases with a decrease in the inter-vehicle distance. Therefore, this 3D curved surface plot meets
the control requirements for collision avoidance.

2.4. Optimizing to the fuzzy rules using genetic algorithm

The fuzzy rules determined in the previous subsection will be optimized with the GA to reduce the
problem scale of our collision control strategy. Figure 7 is the flowchart of the GA used. The detailed
steps are given as follows.

2.4.1. Coding of the fuzzy control rule
To guarantee consistency of the fuzzy rules, this paper sequentially fixes the two input variables and
only encodes the output linguistic variables (i.e., the control variables). The linguistic values of the
control variables encompass seven fuzzy sets “{NL, NM, NS, Z, PS, PM, PL},” which are denoted
by 1, 2, 3, 4, 5, 6, 7 in the fuzzy control simulations, respectively. Next, the fuzzy control table in
Table I is coded into the following matrix according to the aforementioned fuzzy sets in a left-to-right,
top-to-bottom manner.
To optimize the fuzzy rules, we first encode it using the binary coding scheme. Each rule is

represented by four binary numbers, the first of which is the control bit and the other three are the rule
representation bits. The tandem coding method is employed by connecting these 49 rules to form a
chromosome. According to our predefined fuzzy rules, these 49 rules will be the parameters to be
optimized. The antecedents of the rules are ds and dv, and the consequent is FAd. Because the control
variable has seven fuzzy sets, the consequent of the rules can be represented via three-digit binary
coding, that is, 000, 001, 010, 011, 100, 101, and 110. If a certain fuzzy rule does not exist, then let
X denote the consequent of the rule and its code is 111. Thus, the 49 control rules in Table I can be
numbered as rule1 to rule49, sequentially. Next, the aforementioned 49 rules can be connected in a

Table I. Fuzzy control rules for the real-end avoidance system.

Relative distance error

Control variable NL NM NS Z PS PM PL

Relative speed error NL NL NL NL NM NM NS NS
NM NL NL NM NM NS NS Z
NS NL NM NS NS NS Z Z
Z NM NS Z NS Z PS PS
PS NM Z Z Z Z PM PL
PM NS Z Z PS PM PL PL
PL NS Z Z PS PL PL PL

NL, negative large; NM, negative medium; NS, negative small; Z, zero; PS, positive small; PM, positive medium; PL, positive
large.

Figure 6. 3D curved surface of the fuzzy control rules.
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tandem manner to provide the chromosome of the rules as shown in Figure 8. The chromosome of the
rules is the unit of the population, that is, the operand of GA. Each bit of the control gene controls the
corresponding rule. As a result, the GA-based optimization yields the fuzzy rules consisting of fewer
but more effective rules.

2.4.2. Determination of the fitness function
Because our FLC is designed to avoid rear-end collisions, the key to achieving this objective is to
ensure that both the relative distance error ds and the relative speed error dv are small. Therefore,
the objective function J in this paper is defined as

Figure 7. Genetic algorithm flowchart.

Figure 8. Chromosome of the rules.
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J ¼ dsj j þ dvj j (8)

It is worth noting from Equation (8) that the smaller the value of J, the better the performance of our
FLC. However, generally, the GA prefers individuals with high fitness. So our objective function
needs to be properly transformed into a fitness function, which is given by

f ¼ 1
1 þ J

(9)

2.4.3. Determination of the genetic parameters
The effectiveness of the GA relies on the related genetic parameters, including the population size
n, the crossover probability Pc, and the mutation probability Pm. Usually, the large size of the
initial population means a high space and time complexity. The size of the initial population is
usually within the range [20, 100] [23]. In our work, the initial population is obtained in the
following way:

(1) Randomly extract 80 matrixes with seven rows and seven columns as the matrixes of the control
variables. Elements of all matrixes are integers ranging from 1 to 7.

(2) Compute the fitness f of each individual, and sort these n individuals in the descending order of f.
(3) Eliminate m=30 individuals with small fitness, and define the remaining individuals as the initial

population S1, thereby obtaining an initial population whose size nS1 = 50.

Note that each individual represents a chromosome of the rules. In this paper, the crossover
probability Pc is 0.7. Because a small mutation probability Pm can effectively prevent damage to the
good individuals, Pm is set to 0.001. The number of iterations is G=30.

2.4.4. Determination of selection, crossover, and mutation operations
Biological evolution is achieved via genetic operations. Therefore, genetic operators are essential for
optimization of fuzzy rules.

1 Selection operator. For this paper, the fitness proportional selection operator is used. The fitness is
first calculated using the fitness function, and then, the replication probability of each individual is
obtained. The number of replications of this individual in the next generation is equal to the product
of the replication probability and the population size. Therefore, the higher the replication
probability, the more replications in the next generation; otherwise, the individual has few
replications in the next generation or is even eliminated. The probability Psi that each individual
is selected is denoted by

Psi ¼ f i

∑
ns1

j¼1
f j

(10)

where nS1 is the population size and fi is the fitness of the ith individual in the population.

2 Crossover operator. During the crossover operation, the chromosomes before the cross point
undergo the mutation operation, while those after the cross point undergo crossover and mutation
operations. The crossover probability Pc=0.7 and the crossover operation are illustrated in
Figure 9.

3 Mutation operator. The basic-bit mutation method is used in our work. Because binary coding is
carried out on the fuzzy control rules, the mutation operator involves reversing genes of some gene
bits (e.g., 0→ 1 or 1→ 0), as shown in Figure 10.

The mutation probability Pm=0.001. Note that the mutation operations improve the local search
ability of GA and avoid premature convergence.
Finally, through the GA optimization, the number of the fuzzy rules has been reduced from 49 to 28,

as shown in Table II.
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2.5. Defuzzification of the output variables

After refining the fuzzy rules, the vehicle’s acceleration can be computed based on the rules in Table II,
and the accurate values of the acceleration are available via defuzzification. The defuzzification pro-
cess takes the fuzzy sets and produces a single-value output. In this paper, the control variable is
defuzzified via the gravity method:

Y out ¼
∑
7

g¼1
l�ηCg lð Þ

∑
7

g¼1
ηCg lð Þ

(11)

where l, as we have stated before, is the value of the output in the domain, ηCg lð Þ is the membership of l
with respect to the fuzzy set Cg.
Consider that the values of the relative distance error and the relative speed error are �3.5 and �1.6,

respectively. The membership can be computed via the membership function η. Therefore, the

Figure 10. Illustration of the mutation operator.

Figure 9. Illustration of the crossover operation.

Table II. Optimized fuzzy rule base.

Relative distance error

Control variable NL NM NS Z PS PM PL

Relative distance error NL X X X X X X X
NM X X NS NS NM NS NS
NS X NM NS NS NS Z X
Z NM NS X NS PS PS PS
PS NM PS PS Z PS PM X
PM X PS PM PS Z PL X
PL X PM X X X X X

NL, negative large; NM, negative medium; NS, negative small; Z, zero; PS, positive small; PM, positive medium; PL, positive
large.
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membership of ds is ηNM(�3.5) = 0.75 with respect to NM and ηNS(�3.5) = 0.25 with respect to NS.
The membership of dv is ηNS(�1.6) = 0.8 with respect to NS and ηZ(�1.6) = 0.2 with respect to Z.
According to the memberships of the input variables with respect to the fuzzy subset and the fuzzy

rule table, three effective fuzzy rules can be concluded:

(1) If ds belongs to NM and dv belongs to NS, then the control variable FAd belongs to NM;
(2) If ds belongs to NM and dv belongs to Z, then the control variable FAd belongs to NS; and
(3) If ds belongs to NS and dv belongs to NS, then the control variable FAd belongs to NS.

According to the Mamdani’s inference rule [24], the membership of the control variable FAd is

ηNM 0:75; ; 0:8ð Þ ¼ min 0:75; ; 0:8ð Þ ¼ 0:75; (12)

ηNM 0:75; ; 0:2ð Þ ¼ min 0:75; ; 0:2ð Þ ¼ 0:2; (13)

ηNM 0:25; ; 0:8ð Þ ¼ min 0:25; ; 0:8ð Þ ¼ 0:25 (14)

By defuzzifying using the gravity method, the control variables can be accurately computed as

Y out ¼ 1
0:75þ 0:75þ 0:2þ 0:2þ 0:25þ 0:25

ð�3:5�0:75� 4:5�0:75� 3:6�0:2�
0:4�0:2� 3:5�0:25� 0:5�0:25Þ

�

¼ �3:25:

(15)

Instead of being used directly as the control quantity, Yout needs to be converted into the actual range
via scaling transform. When Yout is �3.25, the actual control quantity is �4.33. That is, the trailing
vehicle needs to decelerate at 4.33meters/second2 to avoid a possible rear-end collision.

3. SIMULATIONS

To validate the accuracy and effectiveness of our controller, GFLC is developed via MATLAB
Simulink as shown in Figure 11. Note that this implementation is basically consistent with our system

Figure 11. Simulation model of genetic algorithm-based fuzzy logic controller (GFLC).
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design structure shown in Figure 2, where function 2 calculates the relative distance error and function
1 generates the relative speed error. Afterwards, the errors between relative distance and speed will be
fuzzified into different linguistic variables. Then, the “GFLC” module will be invoked to choose the
corresponding fuzzy rule and execute the fuzzy reasoning, defuzzification, and GA-based optimization
process one by one. Finally, the acceleration variable FAd will be given as the FLC’s output. The
simulation will be halted if the two vehicles have collided; this will be decided by the comparator
module on the top right corner.
To demonstrate the superiority of our GFLC controller, both FLC and GFLC are simulated under

typical car-following scenarios. The simulation setup is as follows: the sampling time is 0.1 seconds;
total simulation time is 80 seconds; initial distance between two vehicles is 20m; the initial speeds
of the leading and trailing vehicles are 20 and 30meters/second, respectively. Note that in our
simulation, dv is initially set to �10meters/second to increase the possibility of rear-end collision.
The leading vehicle keeps a constant speed before 20 seconds and then accelerates at 1meters/second2

during 20–30 seconds. During 31–33 seconds, the leading vehicle begins to brake at 4meters/second2.
Note that the risk of rear-end collision with this configuration is very high between the leading and
trailing vehicles, so that the trailing vehicle ought to brake immediately to avoid the collision.
Numerical results are plotted in Figures 12–15 with the acceleration, speed, and inter-vehicle distance
compared between FLC and GFLC. To obtain the statistical average, each test is repeated 50 times.
The comparison for accelerations of the trailing vehicle is shown in Figure 12 between FLC and the

proposed GFLC. To further explore the difference between two models, a statistical analysis has been
given using the Statistical Product and Service Solutions toolset to the two sampling datasets. At first,
the normal distribution hypothesis is tested for the two datasets using the Kolmogorov–Smirnov
method, and the results indicate that two datasets both follow nonparametric distributions. Note that
the significance level is set to 0.05 for all tests. Next, from Figure 12, it can be observed that both
controllers instruct the trailing vehicle to brake during the early period of the simulation for rear-end
collision avoidance. Because we make the leading vehicle begin to brake at 4meters/second2 during
31–33 seconds, we will first check the response of two controllers during this period. By checking
the statistics of FLC and GFLC during 31–33 seconds with a Mann–Whitney test, it is noted that there
was significantly (M-W(U) =38, p=0.041) lower acceleration (with rank 9.45) for GFLC than for FLC
(with rank 9.45). These statistics indicate that our GFLC could quickly respond to the detected dangers
with sufficient speed reduction. In addition, it is noticeable that there is a sharp peak of accelerations
around 16 seconds for the FLC model as shown in Figure 12. To explore the statistical difference of
two controllers in the vicinity of this peak, we further check the dataset from the beginning to the
end of this peak, that is, 13.8–20 seconds. During 13.8–20 seconds, the FLC outputs a sharp peak
but the GFLC still recommends a slow deceleration. By checking the corresponding statistics with a
Mann–Whitney test, it can be found that there was significant difference (M-W(U) =49,
p=5.0749E-10) between two algorithms during 13.8–20 seconds. Note that the drastic speed
increasing and decreasing of FLC will make the driver and passenger uncomfortable even injured in

Figure 12. Comparison for accelerations of the trailing vehicle. FLC, fuzzy logic controller; GFLC, genetic
algorithm-based fuzzy logic controller.

1746 C. CHEN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:1735–1753
DOI: 10.1002/atr



practice. On the contrary, our GFLC could instruct the vehicle to drive smoothly and safely during the
car-following process compared with the FLC. Through checking the dataset of GFLC, it can be noted
that the trailing vehicle continues to brake till 37 seconds; after which, a positive accelerating
occurrence implies that our GFLC considers the collision risk is now low. As a result, we further
checked the period from 37 seconds to the end of simulation, that is, 80 seconds, and found that our
GFLC almost keeps a zero acceleration for the trailing vehicle (with the mean and standard deviation
only 0.009005 and 0.01716, respectively). However, during this period, FLC still yields nonzero
accelerations that vibrate around 0meters/second2. The standard deviation of FLC during this period
even exceeds 0.55meters/second2. This result also suggests that our optimized fuzzy rules are more
rational and more precise than those of FLC.
The transient speed comparisons between two models are depicted in Figure 13. For clarity, the

transient speed of the leading vehicle is also plotted. Note that in this scenario, both datasets also
follow the nonparametric distributions verified by the Kolmogorov–Smirnov test. It can be observed
that the leading vehicle keeps a steady speed before 20 seconds (with a 20m/second mean and zero
standard deviation), while the trailing vehicle adapts itself according to the instructions of the
corresponding controllers to avoid collision. It is also worth noting that before 7.8 seconds, shown in
Figure 14, FLC outputs continuous deceleration for the trailing vehicle, while GFLC outputs a

Figure 13. Comparison for transient speed of the trailing vehicle. LV, leading vehicle; FLC, fuzzy logic
controller; GFLC, genetic algorithm-based fuzzy logic controller.

Figure 14. Comparison for transient speed of the trailing vehicle before 8 seconds. FLC, fuzzy logic controller;
GFLC, genetic algorithm-based fuzzy logic controller.
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decrease before 4.8 seconds and then an increase till approximately 20 seconds. Actually, because the
dv is initially set to �10meters/second, the trailing vehicle will reduce the gap to zero between two
vehicles after 2 seconds. Under such circumstance, our GFLC first outputs a deceleration to avoid
the possible collision in advance. After a continuous deceleration before 4.8 seconds, the inter-vehicle
distance returns to a safe level and then an acceleration has been given out by our GFLC till about
20 seconds. In comparison, FLC instructs the trailing vehicle to drive at a very low speed. The mean
value during 8–13.8 seconds is only 15.2167meters/second with a very small standard deviation, that
is, 0.0013. This statistics indicates that FLC has overestimated the risk and result in a lower driving
efficiency. A Mann–Whitney test to the two datasets showed that there is significant difference
between two models (M-W(U) =3392, p=0.00001) and the speed recommended by GFLC (with rank
118.42) is more than FLC (with rank 84.58) during 0–20 seconds, implying a better driving efficiency
of GFLC. During 20–30 seconds, because of the acceleration of the leading vehicle, both controllers
suggest a fast speedup for the trailing vehicles. However, by checking the points carefully, it has been
found that our GFLC outputs more precise controlling instructions that are almost strictly consistent
with our simulation configurations. On the contrary, FLC instructs the trailing vehicle to accelerate
too fast for too long (with a range of 13.536 and mean of 23.3017), say about 14–31 seconds, which
may not conform to the real driving experiences of most drivers [25]. During 31–33 seconds of
simulation, GFLC instructs the trailing vehicle to decelerate as soon as the leading vehicle decelerates,
effectively avoiding the possible rear-end collision. With FLC, the trailing vehicle’s speed changes
relatively slowly, thus increasing the rear-end collision risk. During 34–80 seconds, GFLC enables
the trailing vehicle to drive at an almost constant (with the standard deviation coefficient only
0.01569) rate of 17.9777meters/second for mean, reducing the risk and at the same time improving
the driving efficiency. With FLC, it shows great fluctuation (with the standard deviation 1.5645 and
standard deviation coefficient 0.08673), indicating the instability of its adopted fuzzy rules.
To show the superiority of our controller from another side, we also compare the inter-vehicle

distance of two models. It is well known that the distance between two vehicles directly influences
the collision risk and the driving efficiency [26]. From Figures 12 and 15, it can be observed that
the inter-vehicle distance actually changes with the variation of acceleration. With GFLC, the
inter-vehicle distance changes more slightly (with the standard deviation and standard deviation
coefficient equaling to 7.2458 and 0.2092, respectively) than FLC (with the standard deviation and
standard deviation coefficient equaling to 12.6482 and 0.3417, respectively) during the entire
simulation procedure and almost remains the same during 40–80 seconds (with the standard deviation
only 0.3079 compared with 4.2854 for FLC). In contrast, FLC causes continuous fluctuations and
outputs a higher standard deviation coefficient, that is, 0.1175 compared with only 0.008547 for
GFLC. At about 4 seconds, FLC even outputs an inter-vehicle distance of no more than 6m, which

Figure 15. Comparison of inter-vehicle distance. FLC, fuzzy logic controller; GFLC, genetic algorithm-based
fuzzy logic controller.
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greatly increases the rear-end collision risk. Similarly, FLC also gives out a very large value, that is,
over 60m around 18 seconds, which is really unnecessary considering the continuous low speed
of the trailing vehicle before. It is also worth noting that the lasting duration of inter-vehicle dis-
tance over 40m (above the red line in Figure 15) exceeds approximately 27 seconds for FLC while
it is only about 9 seconds for our GFLC. This large difference confirms once again that GFLC is
more effective than FLC in terms of driving efficiency. A Mann–Whitney test to both datasets (fol-
lowing nonparametric distributions) indicates that there is significant difference between two
models (p=0.001).
To verify our numerical results in a real environment, a practical validation test is also

implemented on two programmable autopilot Arduino cars as shown in Figure 16. The cars are
driven and steered by two front wheels and are equipped with an Arduino Mega board, which is
based on the ATmega2560 processor, a single-axis gyroscope and a two-axis accelerometer for
attitude determination. Arduino [27] is an open-source electronics prototyping platform based on
a flexible, easy-to-use hardware and software. The microcontroller on the board is programmed
using the Arduino programming language (based on Wiring) and the Arduino development
environment (based on processing). The spacing between a car and its preceding vehicle is
measured by two infrared sensors (i.e., the actual spacing measurement is the averaged value of
the two sensors). The longitudinal speed and acceleration are detected by an incremental encoder
sensor that was installed on the shaft of the rear wheels and an acceleration sensor that was
installed on top of the vehicle, respectively. The ATmega2560 processor is used as the real-time
computing and control unit. It is worth noting that even robot–vehicle tests still have their
limitations with regard to the credibility of the results. For instance, the vehicular dynamics on road
and practical impact on drivers cannot be completely simulated through demonstrator robots.
Therefore, the objective of our simulation is just verifying the correctness of the proposed model
and algorithm; the application of GFLC to the real road environment still needs comprehensive
tests and verifications before practical usage.

Figure 16. Collision avoidance test bed based on Arduino cars.
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Our test configurations are as follows:

(1) The initial distance between two cars is 5m. The initial speeds of the leading and trailing cars are
0.3 and 0.5meters/second, respectively.

(2) The leading car keeps a constant speed before 20 seconds and then brakes during 20–23 seconds
with a deceleration of 0.02, 0.05, 0.08, and 0.1meters/second2, respectively.

(3) Results of each test are traced into a log file every second. To obtain the statistical average, each
test is repeated 15 times.

Figure 17 shows the output accelerations of the trailing car under different cases, where A denotes
the adopted accelerations during 20–23 seconds. Before 20 seconds, it can be noted that there is no
apparent difference among the four groups of tests with A varying. Because dv in these cases is also
negative, that is, �0.2meters/second, our GFLC controller suggested a continuous deceleration before
10 seconds to reduce the possible rear-end collision risk. After 10 seconds, because two cars have kept
a safe distance, a gradual acceleration is instructed to increase the driving efficiency on the condition
that safety is guaranteed. After 20 seconds, because different decelerations for the leading car are
executed, our GFLC controller also outputs different accelerations for the trailing car. It is worth
noting that our controller outputs different decelerating strength at 20 seconds according to the values

Figure 17. The accelerations of the trailing car under different cases

Figure 18. Speeds of the leading and trailing cars under different cases.
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of A. These results are reasonable considering the risk levels caused by the sudden braking of the
leading car. After the immediate deceleration, a continuous decelerating is suggested by our GFLC
controller but with the deceleration value slowly increasing. After approximately 31 seconds, all cases
output a zero acceleration because the leading car has actually stopped, except for the case where
A=0.02meters/second2.
The sampled speed per second for both leading and trailing cars is plotted in Figure 18 with different

settings of A. Because the speed of cars are captured by the incremental encoder sensor and logged into a
file every second, the speeds before 20 seconds have a little deviation from the theoretical values. Note
that the speed of the trailing car after 20 seconds is in direct proportion to the value of A, where a larger A
will result in a lower suggested speed. Actually, by comparing the results of Figures 17 and 18, it can be
concluded that both figures are consistent to show the same actions of the car-following process. For
example, after approximately 31 seconds, the trailing car almost keeps a constant speed in Figure 18,
which is verified by the accelerations in Figure 17 during the same period. After 15 simulations, no
collision occurred so that safety of the two cars has been guaranteed using our GFLC model.

4. CONCLUSIONS

In this paper, a novel fuzzy controller is proposed, which leverages GA to optimize the fuzzy control
rules, to improve the performance on rear-end collision avoidance of the vehicular control system, and
enhances the emergency response ability. Simulation results successfully indicate that the proposed
controller outperforms the traditional one and is capable of avoiding the possible rear-end collision
while increasing the traffic efficiency. Our future work will attempt to incorporate the advanced sensor
system into our vehicular dynamics control framework and propose an effective active-control system.
This could further reduce collision risks by introducing precise prediction algorithm depending on the
online data collection module.

5. LIST OF SYMBOLS AND ABBREVIATIONS

ds relative distance error
dv relative speed error
FAd output acceleration
D the distance between the leading and trailing vehicles
S the expected inter-vehicle space
LV the speed of the leading vehicle
FV the speed of the following vehicle
τ1,τ2 delay
d0 the distance between the two vehicles after they stop
x0* the actual input variable
[xmin

* , xmax
* ] the range of the variable

[xmin, xmax] the specified domain of the variable
k the scaling factor
δ1,δ3 the “feet” of the triangle
δ2 the “peak” of the triangle
η(l) the membership of the variable l.
xdx the input value of ds
xdv the input value of dv
YFAd output value
Ag,Bg the fuzzy subsets of ds and dv
Cg the fuzzy subset of FAd

Rg fuzzy rule
J objective function
ns1 population size
fi the fitness of the ith individual in the population
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Psi the probability of each individual is selected
Pc crossover probability
Pm mutation probability
l the value of the output in the domain
ηcg(l) the membership of l with respect to the fuzzy set Cg

FLC fuzzy logic-based controllers
BP back-propagation
GA genetic algorithm
GFLC GA-based FLC
NL negative large
NM negative medium
NS negative small
Z zero
PS positive small
PM positive medium
PL positive large
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