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Abstract: In this study, we present SimCommSys, a simulator of communication systems that we are releasing under an open source license.
The core of the project is a set of C + + libraries defining communication system components and a distributed Monte Carlo simulator. Of
principal interest is the error-control coding component, where various kinds of binary and non-binary codes are implemented, including
turbo, LDPC, repeat-accumulate and Reed–Solomon. The project also contains a number of ready-to-build binaries implementing various
stages of the communication system (such as the encoder and decoder), a complete simulator and a system benchmark. Finally,
SimCommSys also provides a number of shell and python scripts to encapsulate routine use cases. As long as the required components
are already available in SimCommSys, the user may simulate complete communication systems of their own design without any additional
programming. The strict separation of development (needed only to implement new components) and use (to simulate specific constructions)
encourages reproducibility of experimental work and reduces the likelihood of error. Following an overview of the framework, we provide
some examples of how to use the framework, including the implementation of a simple codec, the specification of communication systems
and their simulation.
1 Introduction

Error-correcting codes are everywhere, from CDs (using Reed–
Solomon codes), the now interstellar space communication
between NASA and the Voyager 1 probe (using a convolutional
code concatenated with a Golay code), to current terrestrial HDTV
broadcasts (DVB-T2, using concatenated low-density parity-check
(LDPC) and BCH codes). Shannon’s seminal paper [1] showed
that almost error-free communication is possible provided the rate
of the information transmitted is below the capacity of the channel.
Unfortunately, the proof is based on a probabilistic argument and
does not provide a way of constructing codes that achieve the
channel capacity while still being practical to encode and decode.
Since then, the error-correction code community has developed a
plethora of different codes and associated encoders and decoders.
Modern codes, such as turbo [2], LDPC [3] and polar codes [4],
have come very close to the channel capacity while still having
encoders and decoders ‘simple’ enough to be useful.

As new codes continue to be developed whose performance need
to be evaluated, most researchers in this field will at some point
have written a simple test and performance measurement harness.
To do this, it is likely they will have needed to implement or find
at least: (a) a fast finite field representation for their code alphabet,
(b) vector and matrix representations capable of handling finite
fields for their encoder and decoder, (c) a channel implementation
to simulate the transmissions of codewords, (d) a framework that
glues together the encode, transmit, decode steps for a large
number of codewords and computes the symbol error rate (SER)
and frame error rate (FER) and (e) for more complex systems, a
way of using this framework on a cluster to speed up the processing
time. Although being able to code these things is arguably a good
learning experience for any new researcher, most of these imple-
mentation tasks are peripheral to the main research problem of
designing codes.

These elements are needed to test the code, but should be inde-
pendent of the code and remain unchanged across codes. In fact,
researchers having to implement these components separately is a
likely source of additional errors which might hide problems in
the performance of the designed code. For example, a channel
which introduces less noise than required for a specific
signal-to-noise ratio (SNR) might boost the claimed performance
of a code. Consequently, having a framework of well-tested
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components that provide all the required features allows the
researcher to concentrate on code design and testing it. It also pro-
vides other researchers with a means to reproduce the results more
easily.

Current choices for researchers are limited, and each option has
its caveats. Perhaps the most popular solution, MATLAB [5] and
its Communications Toolbox includes implementations of a very
wide range of current schemes. However, it comes at a considerable
financial cost, particularly for parallel computation, limiting its
availability to researchers. Furthermore, its usual workflow requires
the user to write scripts to describe a given system, making it easy to
introduce logical errors. The interpreted nature of the language also
makes the implementation of novel code constructions inefficient,
unless one makes use of the MATLAB to C/C + + interface
(which requires considerable technical skill). An alternative open-
source solution exists in the form of IT + + [6, 7], a library of math-
ematical, signal processing and communication system compo-
nents. Although this library includes implementations of most
current schemes, it is designed to be used by programmers, and
the implementation of a system requires the user to write C + +
code. Notably, the library does not include a simulation framework,
so that the user is responsible to collect results and decide when a
simulation has converged.

Our simulator of communication systems (SimCommSys) C + +
framework helps address all these issues. It runs on both Windows
and Linux and can also use NVIDIA GPUs using CUDA [8]. It has
been developed over more than 15 years by the first author and was
used successfully in a number of papers [9–13]. The source code
has been released under the GNU General Public Licence version
3 (or later) and can be found, together with its documentation, at:
https://github.com/jbresearch/simcommsys.

Researchers are provided with a host of existing codecs, channels,
modulators and different performance measures to gather results
quickly. Furthermore, the implementation is highly modular and
every component is designed around simple-to-use interfaces
which make it straightforward to extend the framework with new
codecs as well as other components like channels, modulators etc.
as required. Particular attention is also paid to the correctness of im-
plementation and verifiability, for increased confidence in the results
obtained. Internal checks are performed at multiple levels, and are
available to the user through the debug build.
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The rest of this paper is organised as follows. In Section 2, we
describe the structure of the framework in more detail, highlighting
the main components of interest. This is then followed by some
examples of how to use SimCommSys in Section 3 and how to
extend the framework in Section 4. We conclude with an invitation
to other researchers to use and contribute to the project.

2 SimCommSys: the framework

2.1 Communication system model

Fig. 1 shows a simplified version of the communication system
model that is supported by our framework. The codec block repre-
sents the code that is to be tested, and consists of an encoder and its
corresponding decoder. To create a new code, the user simply needs
to inherit from the abstract class codec or, if the code can provide
soft output, codec_softout. In turn this inherits from the
codec class; it is provided for convenience, and also allows itera-
tive decoding between the codec and modems that support this.
The remaining components are straightforward to explain.

After encoding the information with the encoder, it is the responsi-
bility of the mapper component to translate, if required, the output
symbols of the encoder to the symbols that can be modulated by the
chosen modulation scheme. For example, this translation is
necessary when the code alphabet is over Fq with q = 2k for some
k > 1, and the channel modulation scheme is binary. The mapper
can also be used to interleave the codec output and to puncture
it to increase the code rate. Obviously, at the receiving end any
interleaving or puncturing needs to be undone and the received
symbols need to be mapped back to the alphabet that the codec
understands.
The modem is responsible for translating the abstract symbols to

their equivalent channel representation. A number of different
modems are available, including commonly used ones for channels
with a signal-space representation. These include M-ary phase-shift
keying (PSK) with variable M [including M = 2 for binary PSK
(BPSK) etc.] and quadrature amplitude modulation (QAM). Null
modems are also available for abstract channels.
Finally, the channel represents the medium over which the modu-

lated signal is transmitted and exposed to noise or corruption. Again
a number of channels are available, including the commonly used
additive white Gaussian noise (AWGN) channel. Abstract channels
are also available, including the q-ary erasure channel, q-ary
symmetric channel and also channels with insertion, deletion and
substitution errors. In the case of such synchronisation error
channels, the length of the transmitted sequence (i.e. entering the
channel) might not be the same as that of the received sequence.
A summary of the principal communication system components

available in the SimCommSys code base is given in Table 1. This is
followed by a list of codec sub-components in Table 2.

2.2 Monte Carlo simulator model

In addition to the ease of setting up different combinations of
codecs, mappers, modems and channels, the framework also pro-
vides a feature-rich simulator. This can be configured to gather
Fig. 1 SimCommSys communication system model
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numerous performance measurements of the described system, in-
cluding SER, FER and the timings of various components. An over-
view of the simulator model implemented by our framework is
shown in Fig. 2, where the communication system is considered
as a block box that performs the complete cycle of events of
Fig. 1. In SimCommSys, the simulator object defines the input
sequences to be cycled through the communication system object;
a results collector component compares the input and output of
the communication system and computes the required statistics.
This modular architecture allows the user to simulate any given
communication system under different input conditions and to
collect a range of possible results. The simulator object implements
a substantial part of the experiment interface: that concerned with
computing a single sample. The accumulation of aggregate statistics
from multiple samples is typically performed by the binomial ex-
periment object; this is suitable for error-rate experiments, which
can be seen as Bernoulli trials. Finally, the Monte Carlo object
implements the necessary loops to obtain enough samples until con-
vergence is achieved. A summary of classes providing simulation
types and related facilities (such as results collectors) can be
found in Table 3.

2.3 Local or distributed simulation

The simulator (through the Monte Carlo object) is designed to work
in a distributed setup using a client–server model, but can also work
as a single local process. The latter mode is useful, for example, for
quick simulations or when gathering timings for benchmarking and
optimisation.

In client–server mode, a server process controls the simulation
and is responsible for gathering all the results. When starting a dis-
tributed simulation, the user specifies the port the server listens on.
The user also passes a text-based configuration file that specifies the
details of the components needed in the simulation (see Section 3
for examples). The user can then start any number of client pro-
cesses either on the same machine or across any number of net-
worked computers. The clients communicate with the server
process using TCP/IP socket connections to the specified port.
The server process keeps track of the number of clients and can
accept new ones at any time. Additionally, if a client process dies
or is otherwise disconnected, the server removes it from the list
of connections and is otherwise unaffected. Together, these allow
the user to dynamically scale the resources allocated to a particular
simulation. Once the server process has finished the simulation, it
will cleanly terminate all the clients before stopping. Should the
server process stop inadvertently, for example if the user switched
off the machine running the server process, all clients terminate
automatically when their connection with the server process is
lost. This behaviour prevents the client processes from using up
resources on the client machines unneccessarily. Fig. 3 illustrates
this principle. Note that in the distributed case, timings are only
useful provided all the client machines are homogeneous both in
hardware and software.

When starting a simulation, the user also specifies the range of
channel conditions to be simulated and the convergence requirements
for the simulation. The channel conditions are usually specified in
terms of the SNR or error probabilities, with the range specified by
the initial and final values and a step factor. Depending on the
requirements of the channel used, the user can specify whether the
step factor is applied additively (e.g. in the case of the AWGN
channel) or multiplicatively (e.g. for abstract channels like inser-
tion–deletion or erasure channels). Convergence requirements may
be specified as the number of error events to be accumulated (conven-
tionally 100) or by specifying the required confidence interval (as an
error margin together with a confidence value). When a confidence
interval is set, the simulation is considered to have converged
when the true value is within the error margin of the current estimate,
at the stated confidence level.
access article published by the IET under the Creative Commons
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Table 1 Summary of the principal communication system components available in the code base

Base Class Description

codec reedsolomon Reed-Solomon code over Fq of length n∈ {q, q − 1} and dimension 1 < k < n− 1 with Berlekamp decoder
ldpc LDPC code over Fq of length n and dimension m
mapcc convolutional code with BCJR decoder [14]
repacc repeat-accumulate code with BCJR decoder
sysrepacc systematic repeat-accumulate code with BCJR decoder
turbo parallel concatenated convolutional code with variable interleavers and BCJR decoder
memoryless simple mapping, with or without repetition
uncoded uncoded transmission (output is copy of input)
codec_multiblock meta-codec that concatenates a number of blocks of the underlying codec (for interleaving across blocks)
codec_concatenated meta-codec that concatenates a sequence of codecs (with intermediate mappers)

blockmodema dminner sparse inner codes with distributed marker sequence and Davey–MacKay decoder [15]
marker marker codes with bit-level MAP decoder [16]
tvb time-varying block codes with GPU-enabled symbol-level MAP decoder [9, 17]

mapper map_straight each modulation symbol encodes exactly one encoder symbol
map_interleaved random interleaving of symbols within the block
map_permuted random permutation of symbols at each index
map_aggregating each modulation symbol encodes more than one encoder symbol (e.g. binary codecs on q-ary modems)
map_dividing each encoder symbol is represented by more than one modulation symbol (e.g. q-ary codecs on binary modems)
map_stipple punctured mapper for turbo codes, with all information symbols transmitted and parity symbols taken

from successive sets; equivalent to odd/even puncturing for two-set turbo codes
map_concatenated meta-mapper that concatenates a sequence of mappers

blockmodem direct_blockmodem abstract q-ary channel modulation
M-ary phase shift

keying

MPSK modulation with Grey code mapping of adjacent symbols in constellation

qam quadrature amplitude modulation for square constellations with Grey code mapping of adjacent symbols

channel awgn additive white Gaussian noise channel (for signal-space modulations)
laplacian additive Laplacian noise channel (for signal-space modulations)
qec q-ary erasure channel (for abstract modulations)
qsc q-ary symmetric substitution channel (for abstract modulations)
qids q-ary insertion, deletion and substitution channel (for abstract modulations)
bpmr bit-patterned media recording channel of [18]

aThe encoders/decoders in this section are implemented using the blockmodem interface because of the required access to the channel, which is only
available through the blockmodem interface.
Once the server process is up, all that any client process requires
is the hostname or IP address of the server process and the port
number it is listing on. On connection, the server sends the
system configuration to the client together with the channel
Table 2 Summary of available codec sub-components

Base Class

fsma dvbcrsc circular recursive systematic con
gnrcc non-recursive convolutional cod
grscc recursive convolutional code ov
nrcc binary non-recursive convolutio
rscc binary recursive convolutional c
zsm a zero-state machine or in other
cached_fsm meta-fsm that pre-computes and

interleaverb flat null interleaver (usually used fo
berrou the original turbo code interleav
helical helical interleaver [20]
rectangular simple rectangular interleaver
shift_lut circular-shifting interleaver
named_lut a general interleaver specified a
uniform_lut random interleaver (with unifor
rand_lut random interleaver with simile
onetimepad interleaver that performs symbo
padded meta-interleaver that concatenat

aThis class implements a finite state machine interface, which is used to specify th
the mapcc and turbo classes; it is also used to specify the accumulator in rep
bThis class implemented the interface for the interleaver used in parallel concaten

This is an open access article published by the IET under the Creative
Attribution-NonCommercial-NoDerivs License (http://creativecommon
licenses/by-nc-nd/3.0/)
parameter to simulate. Each client seeds its random generator
with a true random value from the OS. This ensures that all
clients simulate different random input sequences, noise patterns
and (for applicable systems) different random system components
Description

volutional code from the DVB standard [19]
e over Fq with encoder polynomials expressed in controller-canonical form
er Fq with encoder polynomials expressed in controller-canonical form
nal code with encoder polynomials expressed in controller-canonical form
ode with encoder polynomials expressed in controller-canonical form
words a repeater
caches the input/output table of its component fsm

r the first parity sequence)
er of [2]

s a look-up table (generated externally)
m distribution)
property [20]
l-by-symbol modular addition between input and a random sequence
es any interleaver with a onetimepad

e encoder in a convolutional code. This is needed for obvious reasons in
acc and the mapping in memoryless.
ated convolutional codes, creating diversity between the parity sequences.
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Fig. 2 SimCommSys simulator model

Fig. 3 SimCommSys client–server model
(e.g. random interleavers). The client instantiates all the necessary
components and runs the simulation sending results back to the
server process regularly. The server process aggregates results
from all clients, and stores these in a human-readable text file.
Intermediate results (i.e. aggregate results that have not yet con-
verged) are stored regularly on file, with the full state of the simula-
tion. This allows the server to continue a previously terminated
simulation, and mitigates the risk of server failure on long-running
simulations. The code base provides a python module and a
simple script which can be easily modified to present the results
graphically using the matplotlib library [22].
In all of the above, the only programming required by the user is

the implementation of any new components and a simple adaptation
of the python script to visualise the results if required. All the other
aspects of the simulation are taken care of by the framework. In the
next section, we will demonstrate how to set up a system and run a
simulation.
Table 3 Summary of classes providing simulation types and related facilities (suc

Base Class

experiment_binomiala commsys_simulator generic si
user-speci
parameter

commsys_stream_simulator variation o
reception,
priori and

commsys_threshold variation o
the modem
in this obj

experiment_normalb commsys_timer meta-expe
communic

results collectorc errors_hamming conventio
errors_levenshtein as for err

metric [21
fidelity_pos computati

synchroni
hist_symerr computes
prof_burst determine

a correctly
determine

prof_pos computes
prof_sym computes

aImplements the interface for an experiment where a binomial proportion is estima
bImplements the interface for an experiment where the samples take a normal dist
cAlthough there is no base class, the interface is specified in commsys_simula

collected in a given simulation.
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3 Using SimCommSys

3.1 Running a quick simulation with a simple codec

The most common use case is to set up and simulate a communica-
tion system under a range of channel conditions. This starts with the
specification of a simulation based on a communication system, de-
fining the mapper, modem and channel to be used as well as what
results we want to gather. The file shown in Fig. 4 is an example of
how to achieve this for a very simple setup: an uncoded BPSK
transmission over AWGN. As can be seen from the config file,
each component has its own heading followed by a number of para-
meters. A version number is usually included to allow old configur-
ation files to be read provided the newer version of the serialisation
code can provide default values for any missing or changed para-
meters. The file format allows the inclusion of comments, indicated
by lines starting with a #, which are skipped when the file is read.
h as results collectors)

Description

mulator of communication systems, supporting random, all-zero or
fied input sequences and a modular results collection interface; simulation
specifies channel conditions
n commsys_simulator that simulates stream transmission and
where the start and end of each frame are not assumed to be known a
are instead estimated by the receiver
n commsys_simulator where the simulation parameter specifies
threshold setting; the channel conditions are fixed to a value specified

ect

riment to determine timings of individual components of a given
ation system

nal SER and FER computed using the Hamming distance metric
ors_hamming, with additional SER computed using the Levenshtein
]
on of the fidelity metric at frame and codeword boundary positions, for
sation error-correcting codes
histogram of symbol error count for each block simulated
s the error probabilities for the first symbol in a frame, a symbol following
-decoded one, and a symbol following an incorrectly decoded one; used to
the error burstiness profile
symbol-error histogram as dependent on position within block
symbol-error histogram as dependent on source symbol value

ted, approximating the error with a normal distribution.
ribution, and the mean of the distribution needs to be estimated.
tor, where objects of this type are used to specify the results to be
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Fig. 4 Uncoded BPSK transmission over AWGN

Fig. 6 Simulation output for uncoded BPSK transmission over AWGN
In this example, we are simulating a communication system with
a signal-space channel representation and gathering error rates
using the Hamming distance. Within the simulator we can specify
whether an all-zero, random or user-specified information sequence
should be used. The actual communication system starts with the
uncoded class defining a binary code of length 16 320 bits.
This is passed through a straight mapper (i.e. left unmodified)
and modulated with a PSK modem of alphabet size 2 (i.e. a
BPSK modem). The result is transmitted on an AWGN channel.
Note that the communication system allows us to define separate
channel objects for the transmit and receive functions. This is
unused here, and would allow us to simulate the system with a mis-
matched receiver.

The user can test the system file by simply running a short simu-
lation using the ‘QuickSimulation’ command as shown in Fig. 5.
This will run the simulation at an SNR of 6.8 dB for ten seconds.
The final output should look something like Fig. 6. This output
also allows us to determine the speed at which a simulation of
this code runs. For this simple codec, the simulator computed
135.8 frames of 16 320 bits each per second, equivalent to 2.22
Mbit/s (on an Intel Core i5-3570K central processing unit using a
single core at 3.4 GHz).

3.2 Quick simulation of a more complex system

Consider next a more complex system with a Reed–Solomon code
in concatenation with a convolutional code, as used in the NASA
Voyager mission [23, 24]. The corresponding configuration file is
shown in Fig. 7. This defines a serially concatenated construction,
as follows. The outer code is a (255, 223) Reed–Solomon code
defined over F256 (using the reedsolomon component). A
random interleaver operates over four successive outer codewords,
so that any burst errors are distributed across four codewords
Fig. 5 Running a short simulation

This is an open access article published by the IET under the Creative
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(achieved using the map_interleaved component). The inner
code is a rate-1/2 convolutional code, specified by the feedforward
polynomials 1 + z−2 + z−3 + z−5 + z−6 and 1 + z−1 + z−2 + z−3 + z−6.
In the serialised file, these are represented by the strings
1011011 and 1111001. The Reed–Solomon encoder output is
converted from F256 to F2 (binary) using the map_dividing
component. The output of four Reed–Solomon codewords is
equivalent to 8160 bits; this is terminated with six tail bits before
encoding with the convolutional code. The mapcc component
uses the BCJR algorithm [14], minimising SER. The output
for this code at an SNR of 2.2 dB after ten seconds is
shown in Fig. 8. Note that this corresponds to a decoding speed
of 36.9 kbit/s which is about sixty times slower than the uncoded
transmission.
3.3 Running a proper simulation

Having tested the simulator configuration files and verified that they
are working, it is now a simple step to start a simulation. For the
uncoded system, this can be done as shown in Fig. 9. This starts
the server process, listening on port 9000. The simulation starts
with the channel SNR at 1.5 dB and works its way up to 11 dB
in steps of 0.1 dB. The point at which the simulation switches to
the next SNR value is determined by the convergence requirements,
which can be specified either in terms of the number of error events
encountered or as a confidence interval. In this case, we specify an
error margin of ± 5% at a 95% confidence level.

In this example, the simulation stops completely when at least
one of the measures (SER or FER in this case) has fallen below
10−5. Note that this can and usually should occur well before all
noise values have been explored. Alternatively, the user can set
--floor-max which would require all measures to fall below
this threshold before the simulation stops. As SER≤ FER, ‘floor-
min’ is usually used if the SER is more important to measure
while ‘floor-max’ is used if the FER is the main focus.

Any number of clients can now be started using the command
shown in Fig. 10, where the server_address could be
localhost if the client is started on the same machine or alterna-
tively the IP address or the DNS-resolvable name of the computer
where the server process is running.

Repeating the same process for the concatenated system of
Section 3.2 and for a system with the inner convolutional code
alone, we now have the necessary results to plot a performance
comparison, as shown in Fig. 11. The theoretical error rate for the
uncoded AWGN channel is also shown, clearly coinciding with
our simulation. For comparison, the figure also includes previously
published results from [24]. As expected, our simulation of the
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Fig. 7 Serially concatenated Reed–Solomon and convolutional codes

Fig. 8 Simulation output for serially concatenated Reed–Solomon and con-
volutional codes

Fig. 9 Running the server process for a proper simulation

Fig. 10 Running the client process

Fig. 11 Performance comparison of two codes used in the NASA Voyager
mission: previously published results from [24] and theoretical results for
the uncoded channel are shown in blue
same convolutional code shows better performance; this is because
we use a bit-optimal (maximum a posteriori (MAP)) decoder rather
than the Viterbi decoder. On the other hand, our simulation of the
concatenated system shows slightly worse performance since we
use a random interleaver covering four Reed–Solomon codewords
rather than an infinite interleaver.
A collection of example systems is included in the repository.

This includes the systems shown in this section, together with the
simulation results and plot script. For further details on constructing
simulations for specific components, please consult the user
documentation.
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4 Extending SimCommSys

To illustrate how the framework can be extended we will implement
the simplest of codes, the ‘uncoded’ code, where the information
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Fig. 14 uncoded.cpp (decode)
sequence is transmitted as is and the received sequence is simply
decoded by taking a hard decision. This will illustrate several fea-
tures and concepts of the framework without getting bogged
down in any implementation issues of an actual codec. To make
this exercise slightly more interesting, our implementation
extends the codec_softout abstract class rather than the plain
codec abstract class. This class defines the interface for a soft-
input, soft-output codec, and allows us to look at some of the fea-
tures used by most modern codes.

The main method that needs to be implemented for the encoding
is the do_encode method of Fig. 12. Note the use of templates in
the code fragment. Throughout the framework, templates are used
to provide support for a range of code alphabets and numerical pre-
cisions with very little extra programming effort. The actual code
alphabet and numerical precision are defined when the templates
are instantiated, and can be chosen at run-time as part of the serial-
isation process.

Decoding is implemented as a two-step process. First, the
decoder in initialised with the probabilities of the received se-
quence. For a soft-input, soft-output codec, the methods that need
to be implemented for this are the do_init_decoder
methods of Fig. 13. Note that this method is overloaded, having
two implementations with different parameters. Therefore two var-
iants of this method need to be implemented: one where only the
channel statistics for the received sequence are available and
another where prior probabilities for the transmitted sequence are
also given. The latter interface is required for systems involving it-
eration between the modem and codec components.

Next, the actual decoding takes place; this may be repeated a
number of times in an iteratively decoded code, where each succes-
sive decoding makes use of information from previous decodings.
For a soft-input, soft-output codec, the methods that need to be
implemented for this are the softdecode methods of Fig. 14.
This method is also overloaded: the first implementation computes
the posterior probabilities of the decoded sequence only, whereas
the second one also computes the posterior probabilities of the
encoded sequence. It is up to the calling class to decide which of
these methods to use as there may be a computational cost in com-
puting both values when only one is needed. For example, in the
case of turbo codes, only the probabilities of the information
symbols are required as input to the next decoding stage, whereas
the probabilities of the parity check symbols are not required. On
Fig. 13 uncoded.cpp (init_decoder)

Fig. 12 uncoded.cpp (encode)
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the other hand, with LDPC codes the sum–product algorithm
needs to compute the probability of all symbols as everything is
used in the next iteration.

The last two required functions provide serialisation support to
the codec. These allow the codec to be read in from file when
setting up a simulation, and also allow the server to send a serialised
version of the system to be simulated to its clients. To achieve this,
each component of the system needs to implement the following
two methods of the serialisable abstract class. In this
example, the serialisable interface is inherited through the
codec and thus the codec_softout class. The first method
writes the details of the codec to an output stream (e.g. a file or a
socket), whereas the second method reads the necessary class para-
meters (and components, where applicable) from an input stream.
Both are shown in Fig. 15. Note that the libbase:eatcom-
ments manipulator filters out any comments in the input stream.
There are some more boiler-plate methods that need to be imple-
mented, including methods to return a short description of the
codec and methods to return the length, dimension and alphabet
size of the code.

For such a templated class, the implementation file needs to
contain explicit instantiations of the different combinations of tem-
plate parameters of the codec. Fig. 16 shows how Boost preproces-
sor metaprogramming [25] is used to create the various instances of
the templated codec which can then be serialised using the name of
Fig. 15 uncoded.cpp (serialise)
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Fig. 16 uncoded.cpp (boost)
the class. Finally, we must ensure that serialisation system ‘sees’ an
object of this type on startup: this is done by adding an object of this
type as a field or parent class of serializer_libcomm. For
templated classes, it is enough to include an object with any of
the explicitly instantiated template parameters.

5 Conclusions

In this paper, we have presented SimCommSys, a simulator of com-
munication systems released under an open-source license. An
overview was given of the core of the project, a set of C + + librar-
ies defining a number of communication system components and a
distributed Monte Carlo simulator. The more common use case,
where a communication system is defined and then simulated
using the framework, was demonstrated. Finally, a tutorial for
extending the framework was given, using the implementation of
an ‘uncoded’ codec as an example.
SimCommSys fills a current void, providing a reliable platform

for simulating communication systems without any additional pro-
gramming (as long as the required components are already available
in SimCommSys). Development is only necessary when extending
the framework by implementing new components. The strict separ-
ation of development and the framework’s use to simulate specific
constructions encourages reproducibility of experimental work and
reduces the likelihood of error.
The project has been in development for many years, and has

evolved to support changing requirements. For example, most re-
cently the framework has been used to simulate codes for synchron-
isation error channels, which as far as we know is not supported by
any other publicly available software. We expect the project to con-
tinue to evolve as the needs of its users change. The wider its user
base, the more comprehensive the software will become. We en-
courage potential users to download and use the project in their
own research. Support is available through the project forum,
whereas feature requests and bug reports may be submitted
through the project tracker. Developers who wish to contribute to
J Eng, 2014, Vol. 2014, Iss. 6, pp. 332–339
doi: 10.1049/joe.2014.0055

This is an open
Attribution-
the project are asked to contact the maintainer; community
support is welcome.
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