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SUMMARY

Traffic data fusion has much to do with combining available or considered data sources in the best
possible way. In this, it is very similar to optimizing a portfolio of financial assets in regard of return
and risk. This article draws the analogy between these two mostly different scientific worlds, i.e. finance
and engineering. Similarities and differences in context of weighted-mean data fusion based on numerical
traffic flow measurements such as travel times or speeds are discussed. This, in particular, includes guessing
the potential benefit of negative weights. Optimal weights are derived following a strict mathematical theory
based on assumptions (parameters) about systematic bias and correlations of the considered data sources.
Moreover, a specific way of reducing the systematic bias of the fusion results is proposed and compared to
common methods. The whole approach is demonstrated based on position data from two independent vehicle
fleets in Athens, Greece. In this context, the problem of parameter calibration is solved by applying an
advanced tool for such floating car data systems, called “self-evaluation”. The experiments show that the
proposed methods reliably reduce the systematic bias and variance of the fusion results with regard to the
original data as well as in comparison to the naïve fusion approach that uses equal weights for all data sources.
Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Data fusion has become “an inevitable tool” [1] in connection with intelligent transportation systems
(ITS) over the last decades. By combining data of multiple sources, the quality of traffic information
can be improved significantly. This finally enables new and better services for road users [2]. The re-
cent survey articles by El Faouzi et al. (see [1, 3]) give a comprehensive overview about existing prac-
tices for a number of ITS applications. In this context, the authors distinguish between statistical
methods (e.g. weighted mean), probabilistic approaches (e.g. Bayesian inference, Kalman filtering)
and techniques based on artificial intelligence (e.g. neural networks). Moreover, the relevant literature
(cf. [4, 5]) also mentions several layers of data fusion ranging from basic refinements of measurement
signals to higher-level aggregation of information in order to fully describe the current state of a larger
system, e.g. the overall efficiency of the transport network of a city.
Within this extensive framework, the present article focuses on the integration of pre-processed traf-

fic data of one type, e.g. mean travel times or mean speeds, at the level of single road sections, thereby
assuming that appropriate local subsystems are already in place for the data assimilation over time (by
e.g. an extended Kalman filtering technique). Using the terminology of the unified framework given by
Li et al. [6], such a fusion is called estimate fusion. The sources of such data can be conventional sta-
tionary detectors (e.g. induction loops), floating car data (FCD) systems, tracking of Bluetooth devices,
automatic vehicle identification (AVI) or video surveillance (cf. [7–9]). Other means are possible as
well including those which provide linkwise traffic state information based on suitable models only.
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While the present fusion approach requires all local estimates to be of the same type, homogeneity is
not required at the sensor level, as long as every local subsystem transforms the local sensor data to the
one agreed quantity. As is well known, each source will have its own (context-dependent) quality in
terms of a potential systematic bias and a specific error range (i.e. variance). Moreover, there may
be correlations between some or all of the considered sources that need to be taken into account when
fusing their data. This is in order to avoid giving too much weight to some parts of the available
information.
As can be seen from literature, the combination of data based on diverse, e.g. on conventional and

more recent detector technologies, is of particular interest in context of traffic data fusion.
Nanthawichit et al. [10] or Cipriani et al. [11], for instance, integrate loop data with FCD by applying
Kalman filter techniques with state equations based on a macroscopic traffic flow model. Mehran et al.
[12] combine probe and fixed sensor data, implementing and enhancing a solution proposed by
Daganzo [13, 14], based on the kinematic wave theory. In addition to that, Kong et al. [15] propose
a model for the fusion of data from loop detectors and floating cars that uses evidence theory in order
to increase the accuracy and robustness of mean speed information for urban road networks. Alterna-
tively, the fuzzy regression model by Choi and Chung [16] can be implemented for the fusion of link
travel times estimated from FCD and loop detectors. But also the fusion of data for the same quantity
to be estimated, and/or from multiple sensors of the same type has been addressed for traffic state
estimation and in other areas, e.g. in signal or image processing, radar tracking and portfolio
optimization.
For traffic forecast, El Faouzi [17] discusses the use of constrained or unconstrained regression to

combine l predicting models at a given time t for the same uncertain variable yt + h. Yuan et al. [18]
use a discretized macroscopic traffic flow model formulated in Lagrangian (vehicle number/time) co-
ordinates (which move with the traffic stream), providing a set of observation equations to deal with
FCD. An extended Kalman filter (EKF) is used to combine the model predictions with the sensor ob-
servations. Arguments are given in favor of Lagrangian approaches which offer benefits in terms of
both estimation accuracy and computation in comparison to a state estimator based on the same model
formulated in Eulerian (space/time) coordinates which are fixed in space. In order to be able to inte-
grate Eulerian sensors (loops, cameras and radar), suitable observation models (for local sensors) have
to be derived, appropriately addressing the fact that the coordinates are no longer fixed but moving
with vehicles.
Regarding other areas of application besides traffic data fusion, Kolosz et al. [19] proposed a com-

bination of Analytical Hierarchy Process and Dempster–Shafer theory for prioritizing and fusing sus-
tainability measures in context of ITS. Moreover, in the finance world, Markowitz’ portfolio theory
[20] calculates the optimal shares of financial assets in terms of minimizing the risk of the investment
in total (in terms of minimum variance) while making sure of an optionally defined expected target
return. Interestingly, a nice analogy can be drawn between this approach and traffic data fusion as is
explained further in Section 2.
In their linearly constrained least squares (LCLS) approach for multisensor data fusion, Zhou et al.

[21] combine sensory information
¯
x tð Þ in order to obtain a good consensus on the (one) signal s(t). In

contrast to a minimum variance solution like in [20], the expected power of the fused information is
minimized. It is shown that this solution converges to the minimum variance solution when the number
of measurements tends to infinity. A problem with the approach however is that a Gaussian noise
environment is assumed, which does not generally hold in practical applications. Xia et al. [22] address
this problem in a so-called cooperative learning algorithm for data fusion: using a different objective
function, the approach minimizes the absolute deviation of the fusion estimate from the original ran-
dom signal. This is done following a problem formulation as a cooperative neural network, and the
occurring ordinary differential equations are solved with the well-known Euler method. Sun et al.
[23] give a decentralized Kalman filter where every sensor subsystem has a local optimal Kalman filter
and independently estimates the states, respectively. The sensors are assumed to have correlated
noises. The first layer of a two-layer fusion structure has a netted parallel structure to recursively
determine the cross covariance between every pair of sensors at each time step. The second layer is
the fusion center that fuses the estimates and variances of all local subsystems, and the cross covari-
ance among the local subsystems from the first fusion layer to determine the optimal matrix weights
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and yield the optimal (i.e. linear minimum variance) fusion filter. Moreover, Xiao et al. [24] proposed
a robust algorithm for the problem of fusion in a distributed network of sensors with dynamically
changing topology. A more detailed comparison of the present fusion approach with the closest related
techniques is given in Section 3.
Probably, the most common statistical method for fusing speed or travel time information (or other

numerical measurements) is computing a weighted mean of the input data xi where i=1,…,n as pro-
vided by n given sources (cf. [16, 25]), i.e.

x̂ :¼
Xn
i¼1

wixi (1)

with suitable weights wi∈ IR. Clearly, the question arising then is about the optimal weights in terms of
minimizing the systematic bias and variance of the fusion result. In context of so-called meta-analysis,
Brockwell and Gordon [26] give the corresponding answer in case of Gaussian distributed measure-
ment errors and unknown Gaussian bias for all xi. Moreover, El Faouzi [25] discusses the situation
even without any assumption about specific distributions.
Interestingly, the whole topic is mathematically strongly related to the basic concepts of modern

portfolio theory (cf. [20, 27]) in finance. This, however, has never been recognized in the ITS literature
so far. For this reason, the next section starts with a very short review of the principles of portfolio op-
timization (see Section 2.1) and then draws the analogy between finance and traffic data fusion (see
Section 2.2). As a result, this formal correspondence generates a new level of understanding of what
happens in context of weighted-mean data fusion as in Equation (1). This also includes guessing the
benefit of possible negative weights wi. Additionally, Section 2.3 derives an alternative formulation
for dealing with biased input data while discussing the drawbacks of the closest related approach as
described by El Faouzi in [25]. The practical calibration of the weights wi is part of Section 2.4 that,
in particular, adapts the concept of so-called self-evaluation of FCD (see [28]) for estimating system-
atic bias and variance of the input data. Finally, Section 3 gives a comparison to related fusion
approaches.
Section 4 exemplarily shows the results of a prototypical implementation of the proposed algorithms

that were applied to integrating the data of two complementary FCD fleets in Athens, Greece. The ar-
ticle ends up with some conclusions (see Section 5) including a short discussion of the fundamental
difference of combining biased or unbiased input data in terms of the achievable accuracy (i.e. vari-
ance) of the fusion result.

2. PORTFOLIO THEORY AND TRAFFIC DATA FUSION

Assume that there is someone having a fixed amount of money to be invested in buying stocks. But
which stocks should he or she buy and what are the best ratios given the available assets where each
of them has its own expected return and risk? Modern portfolio theory (cf. [27]) answers this question
by calculating the optimal shares in terms of minimizing the risk of the investment in total while mak-
ing sure of an optionally defined expected target return. In this context, the basic principles reach back
to the year 1952 when Harry M. Markowitz—who was awarded the Nobel Prize in Economics in 1990
for his findings—published his pioneering article [20] about “Portfolio Selection”.

2.1. Principles of portfolio optimization

Given n (possibly correlated) different assets, let Xi be the random return of asset i where i=1,…, n.
Moreover, for all i, j=1,…, n, denote the expected return of asset i by μi := IE(Xi) and the covariance

of the assets i and j by σij :=Cov(Xi,Xj). In particular, σi :¼ ffiffiffiffiffi
σii

p ¼ Var Xið Þ1
2 then represents the risk

of asset i for all i=1,…, n. Finally, let C := (σij)i,j = 1,…,n be the corresponding symmetric n× n covari-
ance matrix.

Any portfolio consisting of some or all of the assets is then defined by a vector
¯
w :¼

w1;…;wnð ÞT∈IRn of relative shares where
¯
wT 1̄ ¼ 1 with

¯
1 :¼ 1;…; 1ð ÞT∈IRn . Note, when so-called
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short selling (shorting) is allowed, wi is not necessarily restricted to the interval [0, 1], but may also be
negative or greater than 1 for some i=1,…, n. Regardless of that, the portfolio return X̂ in each case is
given by

X̂ ¼
Xn
i¼1

wiXi : (2)

Hence, minimizing the portfolio risk without defining an expected target return is equivalent to min-
imizing the variance of X̂ , i.e.

Var X̂
� � ¼Xn

i¼1

Xn
j¼1

wiwjσij ¼ ¯
wTC

¯
w→ min

¯
w ∈IRn

! (3)

subject to
¯
wT

¯
1 ¼ 1. In other words, by introducing the Lagrangian multiplier λ, the equation

∇
¯
wh ¯

w; λ
� �

¼ 0
¯

(4)

for the first derivative of h with regard to
¯
w has to be solved where

h
¯
w; λ
� �

:¼
¯
wTC

¯
wþ λ

¯
wT 1

¯
�1

� �
(5)

and
¯
0 :¼ 0;…; 0ð ÞT∈IRn. One obtains

2C
¯
wþ λ 1

¯
¼ 0

¯
(6)

which finally yields

¯
w ¼ � λ

2
C�1 1

¯
(7)

given that the inverse C� 1 of the covariance matrix C exists. As can be shown, this is always the case
if there is no risk-free combination of the considered assets.
The value of λ is then derived from the constraint

¯
wT

¯
1 ¼ 1 or its (by transposition) equivalent form

¯
1T

¯
w ¼ 1, respectively, by plugging in the term from Equation (7) so that

λ ¼ � 2

1T
¯
C�1 1̄

: (8)

Hence, the optimal (also called “minimum-variance”) portfolio—given that no target return is de-
fined—is determined by the vector

¯
w� :¼ w�

1;…;w�
n

� �T
: ¼

C�1 1̄

1T
¯
C�1 1̄

(9)

and has the expected return
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μ̂� :¼
Xn
i¼1

w�
i μi ¼ ¯

w�
� �T

¯
μ (10)

where
¯
μ :¼ μ1;…;μnð ÞT .

Figure 1 schematically shows the location of the minimum-variance portfolios in a return-risk dia-
gram (also called μ� σ diagram) given two fixed assets with different correlations ρ :¼ Cov X1;X2ð Þ

σ1σ2
. As

can be seen, these portfolios indeed reduce the overall risk compared to each single asset given that
no expected target return is defined. In general, each optimal portfolio in terms of having the lowest
possible risk for a given expected return ν̂ is located along one of the depicted curves that can be
derived in a similar way as the optimal shares

¯
w� from Equation (9). In fact, one just needs to add

the constraint ν̂ ¼
¯
wT

¯
μ to the optimization problem in Equation (3). See the Appendix for a detailed

description of the solution of this extended problem.
Finally, achieving a larger expected return than the maximum of all expected returns given by the

single assets always induces a higher risk (cf. Figure 1) and is possible only if shorting is allowed.
The same holds if a lower expected return than the lowest one of all single assets shall be realized.
Of course, this is not of interest from a finance point of view but may be important when transferring
the whole concept to traffic data fusion further below. Needless to say, for real investments, only the
upper branch of the optimal portfolio curves from Figure 1 (also called “efficient frontier” [27]) is rel-
evant as it obviously yields higher returns than the corresponding portfolios on the lower branch with-
out changing the overall risk.

2.2. Adaption to traffic data fusion

Now, what is the analogy between portfolio theory as described above and traffic data fusion? As can
be found, optimizing a portfolio directly corresponds to searching for the optimal weights

¯
w ¼

w1;…;wnð ÞT when combining the (random) measurements xi from a given set of n data sources
(e.g. detectors or models) for i=1,…, n according to

x̂ :¼
Xn
i¼1

wixi (11)

as in Equation (1) at a certain instant t of time and a fixed location ξ of the road network. At this point,
xi can be seen as a realization of a random variable Xi that is characterized by its expectation μi= IE(Xi)

and its standard deviation σi ¼ Var Xið Þ1
2 for all i=1,…,n.

E
xp

ec
te

d 
re

tu
rn

 (
μ)

 →

Risk (σ) →

Figure 1. Schematical return-risk diagram with optimal portfolio curves in case of two available assets with dif-
ferent correlations ρ.

149TRAFFIC DATA FUSION BASED ON MARKOWITZ’ PORTFOLIO THEORY

Copyright © 2015 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:145–164
DOI: 10.1002/atr.1351



Why is that reasonable? And what is the physical meaning of σ? Consider the example of FCD used
for estimating the mean speed (e.g. 1-min aggregates) at time t for the road cross section ξ. Further-
more, for simplicity, assume that just one floating car has passed ξ during the relevant aggregation in-
terval at time t so that the corresponding measurement x depends on the trajectory of this vehicle only.
Then, following the common FCD approach (cf. [7, 29]), x could be the average travel speed, i.e. the
inverse of travel time, between the nearest transmitted vehicle positions ξ(1) and ξ(2) of which one is
located upstream and the other one downstream of ξ. Hence, x depends on the true mean speed ν̂ at
ξ, of course, but is also affected by the rest of the vehicle trajectory that again is influenced by numer-
ous additional random factors, namely the spatio-temporal variation of traffic flow on the driven route
between ξ(1) and ξ(2).
That means, x is the sum of ν̂ and a random error term that may entail significant deviations in

the measurements and may also be responsible for some possible systematic bias. In particular
regarding σ, two different influencing factors are found that are hardly to be separated in practice,
namely the independent “real” measuring errors because of the general degree of accuracy of the
measurement devices on the one hand and the variations in traffic as explained above on the
other hand.
Interestingly, the spatio-temporal patterns of traffic does not only reinforce the measurements Xi for

i=1,…, n to be random variables with non-zero variance, but may also induce correlations between
them depending on how far each data source is affected by possibly overlapping surrounding traffic
conditions. In contrast to FCD, the measurements of local detectors such as induction loops are mostly
determined by what happens at the specific location where they are installed, for instance. So, the mea-
surement error is more or less independent of the surrounding traffic. On the other hand, Bluetooth
detection or AVI may be examples that have a very similar behavior as FCD regarding this aspect.
Consequently, let C= (σij)i,j = 1,…,n be the covariance matrix for the measurements Xi where
σij=Cov(Xi,Xj) for all i, j=1,…, n, and thus σi ¼ ffiffiffiffiffi

σii
p

for all i=1,…, n.
Of course, the conformity of the notation here and in the previous sections is not quite acciden-

tal, but underlines the analogy between portfolio theory and traffic data fusion. In this way, the
available data sources are the “assets”, each of them providing a random measurement Xi (“return”)
where i=1,…,n. Moreover, the portfolio return X̂ from Equation (2) becomes the fusion result
where wi for i=1,…, n is the weight (or “share”) of the ith data source in the corresponding “detector
portfolio”.
Hence, all formulas from Section 2.1 (and the Appendix) can directly be applied to traffic data fu-

sion, too. In this context, for all i=1,…, n, the standard deviations σi as well as σ̂ ¼ Var X̂
� �1

2 can be
treated as the “risk” of observing measurements far from the corresponding expectation values
μi= IE(Xi) and μ̂ ¼ IE X̂

� �
, respectively. In other words, poor data sources in terms of large variances

are the “risky assets” that nevertheless might prove beneficial.
In order to demonstrate that, consider a hypothetic example with two uncorrelated data sources

(“assets”). Moreover, let μ1 ¼ μ2 ¼ ν̂ where ν̂ is the true reference value (e.g. true link travel time
in seconds). That is, none of the sources has a systematic bias. Regarding Figure 1, that means
the depicted curves become degenerated in such a sense that all possible portfolios (including the
optimal portfolio and the assets themselves) lie on a horizontal line. Given σ1 = 1 and σ2 = 2, the
minimum-variance portfolio, i.e. the optimal fusion, then has a reduced standard deviation
σ̂�≈0:9 following Equations (9) and (3). Interestingly, the weights

¯
w� are proportional to the recip-

rocals of the variances of each data source. This, by the way, holds whenever C is diagonal, i.e. in
case of pairwise uncorrelated assets (cf. [16, 25, 26]). In particular, note that w�

i ≥0 for all i=1,…, n
in this situation.
Now, take a third data source that also has no systematic bias (i.e. μ3 ¼ ν̂) but is much poorer in

terms of its standard deviation σ3 = 6. Moreover, let X1 and X3 be correlated with ρ=0.7
(i.e. Cov(X1,X3) = 4.2) while X2 and X3 are uncorrelated, i.e. Cov(X2,X3) = 0. Based on Equation (9),
one obtains the weights for the minimum-variance fusion, namely

¯
w� ¼ 0:96; 0:14;�0:1ð ÞT , resulting

in a significant reduction of about 18% regarding σ̂ compared to fusing X1 and X2 only. That is,
Equation (3) yields σ̂�≈0:74 while still μ̂� ¼ ν̂. Obviously, negative weights (“shorting”) are an impor-
tant instrument for improving the quality of the fusion result.
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So far, all Xi in this section have been unbiased measurements, i.e. IE Xið Þ ¼ μi ¼ ν̂ for all i=1,…,n
where ν̂ is the true reference. For, in this case, the minimum-variance fusion automatically is an unbi-
ased estimator of ν̂ because of

¯
wT

¯
1 ¼ 1. In other words, according to Equation (2), one obtains

IE X̂
� � ¼ IE

Xn
i¼1

wiXi

 !
¼
Xn
i¼1

wiμi ¼ ν̂
Xn
i¼1

wi ¼ ν̂ : (12)

But what happens if IE Xið Þ≠ν̂ for some or all i=1,…,n? Of course, it is still possible to compute the
minimum-variance fusion as in Equation (9). However, X̂ will typically have a systematic bias in this
case.
For instance, consider again the three-asset example from above, but now with μ1 = 32, μ2 = 29.5 and

μ3 = 28.5 while all other values remain constant. Moreover, let ν̂ ¼ 30. Figure 2 shows the correspond-
ing optimal “portfolio curves” (cf. Section 2.1), i.e. the locations of the optimal pairwise combinations
of the measurements as well as the optimal fusion of all three “assets” in a μ� σ diagram as computed
according to the formulas in the Appendix. Then, the minimum-variance fusion based on all three
sources yields an expected value μ̂�≈32:0 and thus a systematic bias of about 2.0. On the other hand,
the optimal unbiased fusion has a standard deviation σ̂�≈1:53. Finally, Figure 2 also shows that—in
terms of minimizing the “risk”—fusing all measurements Xi for i=1,…,n is always superior to com-
bining just a (small) subset of them even if there are sources with very large standard deviations com-
pared to others.

2.3. Handling of systematic bias

One of the major goals of data fusion is the reduction of the systematic error in case of biased input
data. Note that it does not matter here whether the input is biased because of inaccurate sensor mea-
surements or because of data pre-processing in case of high-level fusion (cf. “registration problem”
[4]). The discussion above showed that Markowitz’ portfolio theory provides all necessary tools for
solving this task. For, it is always possible to make X̂ as in Equation (2) to be an unbiased estimator
of the true value ν̂ (“target return”) by adding the constraint

¯
wT

¯
μ ¼ ν̂ (cf. Section 2.1).

From a practical point of view, that means it is not sufficient to guess the covariances σij for all
i, j=1,…, n from historical measurements when calibrating the weights

¯
w . But, one also needs

knowledge about the expectations μi= IE(Xi) for all i=1,…, n as well as the true value ν̂ based
on some reference data that allow the offline computation of the optimal weights in advance.
Afterwards, of course, these weights may be used as an approximate setting for fusing further online
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Figure 2. Optimal fusion curves in a μ� σ diagram in case of three data sources.
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data, too, assuming that μi for i=1,…,n and ν̂ do not vary too much over time. For this purpose, it
might be useful to define time slices with typically similar traffic conditions (cf. Section 2.4), for
instance.
However, one of the drawbacks of this method is that μi for i=1,…, n as well as ν̂ also differ from

one road section to another even if all variations over time are neglected. Hence, in respect of area-
wide data fusion, one would need an enormous amount of reference data during the calibration process
which is not realistic. Consequently, the only option would be to assume that—for simplicity—the
same values of μi for i=1,…,n and ν̂ hold for a large number of roads in parallel.
As this is unrealistic as well, El Faouzi (see [17, 25]) proposes a slightly different approach for deal-

ing with biased measurements in context of aggregative fusion schemes as in Equation (1). He defines
an estimator of ν̂ according to

X̂ ′ :¼ w0 þ
Xn
i¼1

wiXi (13)

where w0∈ IR is an additional weight used for bias correction. Moreover, he drops the corresponding

normalizing condition
¯
wTþ1̄þ ¼ 1 with

¯
wþ :¼ w0…;wnð ÞT and 1̄þ :¼ 1;…; 1ð ÞT∈IRnþ1 so that the

weights
¯
wþ have no longer to sum up to 1. Finally, he computes

¯
wþ from some reference data via com-

mon regression methods.
But what does his approach mean to the optimal unbiased combination of the measurements in terms

of minimizing the variance (“risk”) of the fusion result? Obviously, the definition of X̂ ′ yields

IE X̂ ′
� � ¼ w0 þ

Xn
i¼1

wiμi (14)

so that each unbiased estimator in Equation (13) must satisfy

w0 ¼ ν̂ �
Xn
i¼1

wiμi (15)

where ν̂ is the true reference again. Now, Var X̂ ′
� �

is to be minimized among all
¯
wþ∈IRnþ1. This is

equivalent to

Var X̂ ′
� � ¼ Var w0 þ

Xn
i¼1

wiXi

 !

¼ Var
Xn
i¼1

wiXi

 !
→min

¯
wþ ∈IRnþ1 !

(16)

Because Var ∑n
i¼1wiXi

� �
≥0 for all

¯
wþ∈IRnþ1 , the solution is trivial, namely w�

1 ¼ … ¼ w�
n ¼ 0.

Moreover, one obtains w�
0 ¼ ν̂ based on Equation (15).

Consequently, in terms of variance minimization, the optimal estimator X̂ ′
� �� ¼ w�

0 þ∑n
i¼1w

�
i Xi ¼ ν̂

is a simple constant that—except for its offline calibration—does not depend on anymeasurements and thus
is not even a form of data fusion any more. Thus, the practical utility of such an approach is
very limited.
However, keeping El Faouzi’s idea of bias correction in mind, one may use the same formula as in

Equation (13), but with retaining the original constraint
¯
wT 1̄ ¼ 1 for

¯
w ¼ w1;…;wnð ÞT . In other

words, the normalization constraint is relaxed for w0 only while all other weights still have to sum
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up to 1. As can be seen, finding the weights
¯
w�
þ for the optimal unbiased combination of the measure-

ments Xi with i=1,…, n is then equivalent to a two-step approach with computing the “minimum-
variance portfolio” according to Equation (9) first and correcting the resulting systematic bias
(cf. Section 2.2) afterwards by adding the term w�

0 :¼ ν̂ �∑n
i¼1w

�
i μi (cf. Equation (15)).

Obviously, here is the major difference between data fusion and portfolio theory. While manipulat-
ing a fusion result (i.e. its expectation μ̂) after minimizing its variance is very easy, it is impossible to
change the expected return of a fixed portfolio in finance. That means, data fusion allows more flexi-
bility in a certain sense. However, also the last described two-step approach has the same drawbacks as
the basic idea from the beginning of Section 2.3 (i.e. adding the constraint

¯
wT

¯
μ ¼ ν̂ ) for avoiding

biased results. Namely, because the systematic error of the fusion results varies from one location to
another, area-wide bias correction would again require an unrealistic amount of reference data
covering all road sections. Consequently, one had to assume that the true reference ν̂ is constant for
a large number of roads. This, of course, is mostly unrealistic as already discussed above.
For this reason, a slightly different approach (cf. [30]) is proposed here that allows for varying ν̂ but

(given that μi≠ 0 for all i=1,…, n) instead assumes that pi :¼ ν̂
μi
for all i=1…, n is (more or less) con-

stant for all considered roads (or at least for suitable known sets of roads, cf. Section 2.4). In other
words, let each data source have a fixed relative error regarding its expectation μi= IE(Xi).
From a practical point of view, it is possible then to guess pi based on a sample set of m explicit

measurement values c kð Þ
i of source i and m corresponding reference values o kð Þ

i . For, let p kð Þ
i :¼

o kð Þ
i =c kð Þ

i where k=1,…,m and i=1…, n, and define the sample mean p�i :¼ 1
m ∑m

k¼1 p
kð Þ
i as an estimator

for pi. Alternatively, pi may be approximated based on average values of the measurements via

pi≈p
�
i :¼

1
m

Xm

k¼1
o kð Þ
i

1
m

Xm

k¼1
c kð Þ
i

(17)

for i=1,…,n (cf. Section 2.4).
Given that pi really is a fixed number and p�i ¼ pi ¼ ν̂

μi
for all i=1,…, n, one then obtains

IE p�i Xi

� � ¼ ν̂
μi
IE Xið Þ ¼ ν̂ : (18)

Hence, Yi :¼ p�i Xi is an unbiased random measurement of the true value ν̂ . That means, the
“minimum-variance portfolio” consisting of Y1,…,Yn is an unbiased estimator of ν̂, too, and Equation

(9) can directly be applied for computing the optimal weights ew�
¯

¼ ew�
1;…; ew�

n

� �T
for the fusion of all

Yi where i=1,…, n, without taking care of any “target return”. However, note that the modified covari-

ance matrix eC :¼ eσij� �
i;j¼1;…;n has to be used instead of C where

eσij :¼ Cov Yi; Yj

� � ¼ p�i p
�
j Cov Xi;Xj

� � ¼ p�i p
�
j σij (19)

for all i, j=1,…,n. Finally, the optimal (non-normalized) weights for combining the original measure-

ments Xi for i=1,…,n according to Equation (1) are given by the vector
¯
w� ¼ p�1ew�

1;…; p�new�
n

� �T
.

2.4. Parameter calibration

This section describes the approach chosen to calibrate the parameters for the present method of traffic
data fusion in case of interpreting travel time data from two FCD systems, including the handling of sys-
tematic bias as described in Section2.3. There are two families of parameters that must be estimated. The
first is the set of parameters needed for the correction of the systematic bias, i.e. the p�i for i=1,…,n. The
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second is the vector of optimal weights ew�
¯

¼ ew�
1;…; ew�

n

� �T
for the actual fusion of the unbiased random

measurements Yi which, in particular, includes guessing their covariances eσij for i, j=1,…,n.
The first family of parameters, p�i

� �
i¼1;…;n , is estimated with an advancement of a method called

“self-evaluation” (cf. [28]). The approach followed here (cf. [30]) relies on two basic assumptions.
First, the approach of [28] is based on the assumption that the observed actual travel times for individ-
ual vehicle trajectories can be used as a ground truth for the mean link travel times computed by a FCD
system. Second, to extend this approach to periodically computing systematic biases for each link of
interest, another assumption has to be made. It is assumed that it is possible to define corresponding
periods (time slices) with typically similar traffic conditions.
If the requirements of the first assumption are met, then, for a particular observation period, the

absolute systematic bias can be computed as the difference of two mean values, namely the mean ac-
tual trajectory travel time and the mean travel time on these trajectories computed by the FCD system
(see [28]). More precisely, the first mean value is that of m observed actual travel times o(k) for k=1,…,m
for individual vehicle trajectories (denoted ō), and the second mean value is that of the travel times
c(k) for k=1,…,m computed by the FCD system along the same trajectories at the time of observa-
tion (denoted c). The travel times c(k) for k=1,…,m are computed by summing up the mean link
travel times computed by the FCD system at the respective periods of travel on a trajectory, for all links
constituting the respective individual trajectories [28].
It is of note that, in the scope of self-evaluation, the mean link travel times are computed without use

of the link travel times observed for the vehicle that generated the respective trajectory [28]. In other
words, yet it is computed as usual as the arithmetic mean of the travel times of all individual vehicles
observed on that link during the respective period, but the link travel time of the vehicle that drove the
ground truth trajectory is excluded from this arithmetic mean. This is done in order to avoid any cir-
cular reasoning that would be introduced by comparing an observation, namely the actual trajectory
travel time, with a computed value (partly) based on exactly this observation.
The relative systematic bias then, of course, is the ratio of the absolute systematic bias and the mean

observed actual trajectory travel time, given as percentage c�o
o �100% . Also notice that the method

described in [28] yields only one global value for the overall systematic bias of the FCD system per
observation period (e.g. 1 h), and that only one data source (i.e. one vehicle fleet) is considered.
A practical implementation can use a digital road map. In such a map, links of the road network are

usually tagged with constructional attributes like e.g. speed limits. According to Section 2.3, then as-
sume that similar relative systematic biases are in effect on links with identical attributes in corre-
sponding periods. That means, no further distinction needs to be made between such links, and, for
every set of corresponding periods and every such set of links, the same value of the relative systematic
bias can be used for the computations in the following.
In contrast to the method of [28], the present approach aims at a data fusion, and therefore n data

sources (e.g. FCD from n vehicle fleets) are considered instead of only one. Therefore, the computation
of systematic biases is done for each of the n data sources separately, that is, for i=1,…, n, percentage
systematic biases are calculated as ci�oi

oi
�100%.

Moreover, whereas the previous method was used for the diagnosis of the (global) systematic bias
only, the present approach also aims at correcting the systematic bias in the data. For this purpose, cor-
rection factors p�i ¼ oi

ci
for every data source i=1,…, n are calculated alongside the systematic biases as

in Equation (17). To see that the p�i with i=1,…, n as given here have in fact the property of correcting
the systematic bias estimated from the m sample trajectories for data source i, or more precisely, from

the m computed travel times c 1ð Þ
i ;…; c mð Þ

i , and the m observed actual travel times o 1ð Þ
i ;…; o mð Þ

i , notice
that in analogy to Equation (18)

1
m

Xm
k¼1

p�i c
kð Þ
i ¼ p�i

m

Xm
k¼1

c kð Þ
i ¼ oi

ci
�ci ¼ oi (20)

holds.
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For i=1,…, n, the trajectory data of source i are used for the calculation of p�i . Because of the typ-
ically rather low penetration rates for FCD and the resulting lack of sufficient amounts of tracking data,
it will often not be possible to do this separately for every individual link and for every period of
interest. For this reason, the approach followed here calculates the correction factors with regard to
L sets of links with identical constructional attributes, and T sets of corresponding time periods, respec-
tively. Thereby it relies on the validity of the second assumption. The result is a separate set of param-
eters p�i

� �
i¼1;…;n

for each of the L link sets and each of the T period sets, i.e. there are correction factors

p lð Þ
i tð Þ� for all l=1,…,L and t=1,…,T where i=1,…, n (cf. Equation (21)).
More precisely, for each data source i where i=1,…,n, for each set Ll of links with identical con-

structional attributes where l=1,…,L, and for each set Tt of corresponding periods where t=1,…,T, a

separate estimation of the true average travel times ν̂ lð Þ tð Þ on the links in Ll for the periods in Tt is done,
using trajectory data of source i. Thereby, ν̂ lð Þ tð Þ is estimated as the average trajectory travel time o lð Þ

i tð Þ
for trajectories of source i on links in the particular set Ll, and during observation periods in Tt. In do-
ing so, it is also assumed that the observed travel time along a trajectory can be allocated to individual
links without introducing any further systematic bias. In other words, one assumes that a reintroduction
of any significant systematic bias during the necessary arithmetic decomposition of the total trajectory
travel time to individual links can be avoided by appropriate means (cf. [29]).

Then, separate estimations of the expected average travel time μ lð Þ
i tð Þ for each data source i and the

aforementioned links and periods are done, as the average travel time c lð Þ
i tð Þ on links of trajectories of

data source i that are also in the particular set Ll, and observed during periods in Tt, as computed by the
FCD system, using tracking data from source i. The final correction factor used for data source i where
i=1,…,n, for each set Ll of links with identical constructional attributes where l=1,…,L, and for each
set Tt of corresponding periods where t=1,…,T, is

p lð Þ
i tð Þ� :¼ o lð Þ

i tð Þ
c lð Þ
i tð Þ

: (21)

This is an estimator for ν̂ lð Þ tð Þ=μ lð Þ
i tð Þ (cf. Section 2.3).

Notice that the approach only uses the trajectories of data source i when calculating the estimator

o lð Þ
i tð Þ for ν̂ lð Þ tð Þ. This is done in order to match the degree of data coverage on individual links during

the computation of c lð Þ
i tð Þ for data source i, respectively. For this reason, there are n estimators of the

true average travel times ν̂ lð Þ tð Þ, namely o lð Þ
i tð Þ, one for every data source i=1,…, n.

When estimating the second family of parameters, ew�
i

� �
i¼1;…;n or as vector, ew�

¯
¼ ew�

1;…; ew�
n

� �T
, the

following assumption is made: it is assumed that the covariances {σij}i,j = 1,…,n of the (original) data
sources can be estimated appropriately as sample covariances, using historical measurements as a sam-
ple. The magnitude of the measurement error of the data sources will typically be affected by possibly
overlapping, surrounding traffic conditions (cf. Section 2.2), and therefore the estimated covariances
reflect how much the measurement errors of the sources change together and whether they have similar
or opposite behavior.
Now, the key to estimating the covariances is to define time slices with typically similar traffic con-

ditions as before: in the present approach, periods are considered as corresponding if and only if they
define the same time of day (TOD), and the same day of week (DOW). This choice is based on the
assumption that on the same DOW and at the same TOD, similar traffic conditions can be expected
on the same road section. Then, measurements based on corresponding time slices can be collected for
e.g. several months. For example, one could expect similar traffic conditions on a certain fixed road
segment during all periods from 09:15 a.m. to 09:30 a.m. (i.e. time slices of 15min) on all Wednesdays
in the collected data of three months, resulting in a total number of T=24 �4 �7=672 sets of corre-
sponding time periods with 12 elements (time slices) per set if assuming that every month had exactly
4weeks.
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During calibration, the weights ew�
i

� �
i¼1;…;n

for fusing the bias-corrected measurements Yi are deter-

mined following Equation (9), in which, for all i, j=1,…, n, the covariances σij are replaced by the
modified (i.e. bias-corrected) termseσij from Equation (19). Notice that the assumed fixed relative errors
p�i required here have already been estimated during the previous phase of calibration according to
Equation (21) as inspired by the approach of [28] where the dependency on the link sets (index l)
and the sets of corresponding time periods (index t) is suppressed in the notation here. In fact, for
all data sources i, j=1,…, n, the covariances eσij are estimated as sample covariances from the afore-
mentioned historical measurements. More precisely, given the period set Tt and the link set Ll, let
N := |Ll| � |Tt| be the product of the number of elements of Ll and Tt. Then, the eσij are calculated as

eσij ¼ 1
N � 1

XN
k¼1

y kð Þ
i � yi

� �
y kð Þ
j � yj

� �
(22)

where yi ¼ 1
N ∑N

k¼1 y
kð Þ
i and yj ¼ 1

N ∑N
k¼1 y

kð Þ
j , respectively, and the y kð Þ

i with k=1,…,N are the unbiased
historical measurements belonging to the considered period and link set, that is, the bias-corrected re-

alizations y kð Þ
i ¼ p�i x

kð Þ
i of the random variable Yi ¼ p�i Xi (indices l and t suppressed). The x kð Þ

i with
k=1,…,N are the original historical measurements of data source i, of course, that belong to the con-

sidered period and link set of interest as well (analogously, for k=1,…,N, the y kð Þ
j are the bias-

corrected historical measurements of data source j).
The result of Equation (22) then is separate covariance matrices eσij� �

i;j¼1;…;n
for each of the T sets

of corresponding time periods and for each of the L link sets. Thus, there are also different fusion
weights ew�

i

� �
i¼1;…;n

for each period set and each link set. Note that, in such a sense, the proposed

data fusion is not static over time but accounts for varying traffic conditions even if there is no
explicit dynamical model as it is used by other fusion approaches based on Kalman filtering, for
instance (cf. Section 3).

3. RELATED WORK

This section gives a comparison of the presented fusion approach to the closest related fusion methods
[17, 18, 21–25] outlined in Section 1. A general difference is that the present approach proposes esti-
mate fusion rather than sensor fusion, thereby assuming that appropriate local subsystems are already
in place for the data assimilation over time (by e.g. an extended Kalman filtering technique). An advan-
tage is the use for fusion of the data provided by already existing subsystems of independent technol-
ogy partners, each such data collection and processing subsystem with their own characteristics with
respect to the used technology and quality. This is possible with an only loosely coupled (and therefore
quick) technical setup because the fusion center of the resulting fusion system does not require any
input from or change at the sensor level of the participating systems.
In contrast to previous approaches which assume unbiased measurements (with one notable excep-

tion, i.e. the works by El Faouzi [17, 25]), the present approach handles the case of biased measure-
ments with a linear correction for every spatio-temporal “regime” of corresponding periods (time
slices, e.g. in terms of DOW/TOD), and of corresponding links with identical constructional attributes.
By that, the bias correction is handled via a discretized, time-varying linear transformation, using the
relative error. Because fusion is at the level of estimates, a potential dependence of the relative error on
the dynamics of traffic flow is not modeled explicitly. Nonetheless, the relative error (and also the
covariance matrix) is assumed to be fixed for a particular spatio-temporal regime only, that is, it is still
assumed to change over time, and with the constructional attributes of the considered links. This is
motivated by the assumption that there are periodically repeating traffic flow patterns that result in
similar sensor qualities for corresponding periods on all links with identical constructional attributes
(cf. Section 2.4).
Moreover, the present approach estimates the required a priori information (such as the sensor cross

covariances) by vertical rather than by horizontal sampling of the observed data: this means that
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covariances for one regime are calculated by sampling the measurements in all corresponding periods.
This is different from horizontal sampling where each sample consists of measurements in subsequent
periods, as applied in all aforementioned approaches.
More precisely, the multi-sensor optimal information fusion Kalman filter by Sun et al. [23] as-

sumes white noises with zero mean. The LCLS approach by Zhou et al. [21] assumes Gaussian noises.
Both the robust distributed sensor fusion method by Xiao et al. [24] and the cooperative learning al-
gorithm by Xia et al. [22] mention the possibility of non-Gaussian errors, but they require them to
be independent with zero mean. The individual methods of the unified framework by Li et al. [6] either
assume unbiased measurements or that all biases are known a priori. The only work explicitly address-
ing the case of biased measurements is the aforementioned work on short-term traffic forecasting by
El Faouzi [17] (see also [25]). Section 2.3 already gave a more detailed discussion of this approach.
Regarding the linear correction applied for bias-correction in the present approach: some but not all

of the aforementioned methods apply a corresponding linear transformation, but then rather with the
idea of expressing the sensor observations as an affine function of the system state (that is, relating
the observed sensor measurement to the state of the modeled stochastic system by a linear equation,
namely the sum of said linear transformation of the state and a random term for observation noise),
and none of them gives a detailed discussion of a time-varying transformation. More precisely, the
LCLS approach by Zhou et al. [21] does not apply a linear transformation. The same holds for the
work on short-term traffic forecasting of El-Faouzi [17]. The multi-sensor optimal information fusion
Kalman filter by Sun et al. [23] assumes that H, a linear transformation applied to the system state
when relating it to a sensor measurement, is time-varying in general, but the approach does not discuss
a concrete realization. It is of note that H is not subject to improvement at a transition t to t+1 between
subsequent points in time, and also that H is often modeled as a constant matrix by other Kalman fil-
tering approaches. When relating the unknown parameter to be estimated to a sensor measurement,
Xiao et al. [24] also apply a linear transformation that does not change over time. The cooperative
learning algorithm by Xia et al. [22] assumes a time-invariant vector of scaling coefficients when re-
lating the sensor measurements to the original random signal. Finally, all methods described by the
unified framework by Li et al. [6] (e.g. BLUE and WLS) assume that a corresponding linear transfor-
mation of the quantity to be estimated is not varying in time.
The present approach uses a different covariance matrix for every spatio-temporal regime. In partic-

ular, vertical sampling is used to determine an estimation of such a covariance matrix. By contrast,
techniques based on Kalman filtering like [11, 23] usually estimate the initial covariances by horizontal
sampling, which are then improved (corrected) at every discrete time step, based on appropriate recur-
sive equations. Instead of covariances, the expected power of the fused information is used in the
LCLS approach by Zhou et al. [21], which is estimated using horizontal sampling. Both the unified
framework by Li et al. [6] and the robust distributed sensor fusion method by Xiao et al. [24] simply
assume prior knowledge of the covariances rather than discussing how to estimate them empirically. In a
first part of his work on short-term traffic forecasting, ElFaouzi [17] uses horizontal sampling to estimate
covariances, and later in a second part of the paper (which discusses stationary vs. non-stationary
underlying processes), he proposes time-varying covariance matrices. They are estimated using the
whole sample, but higher weights are assigned to the more recent observations. Finally, the cooperative
learning algorithm by Xia et al. [22] does not require an empirical estimate of covariances, because it
targets the least absolute deviation of the fusion estimate from the original random signal.

4. IMPLEMENTATION AND RESULTS

A first prototype of the proposed approach for fusing travel times (or travel speeds) from various
sources of traffic information (such as tracking data from FCD) has been implemented during the pro-
ject SimpleFleet [31]. It has been applied to two FCD systems in Athens, Greece. The vehicle fleets
belong to the Greek telematics and fleet management service providers BK Telematics and Zelitron.
They show different characteristics in terms of sampling frequency (BK Telematics: on average 0.22
samples per minute; Zelitron: on average 1.08 samples per minute), fleet size (BK Telematics: about
1500 vehicles, Zelitron: about 600 vehicles), average number of reporting vehicles per 5-min batch
of GPS samples (BK Telematics: 424, Zelitron: 399) and, as will be seen later in this section, also
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in terms of variance of the mean link travel times computed from their tracking data. In the following,
results of the data fusion for a selected route in Athens are given in order to demonstrate the effective-
ness of the approach. This route is part of the Greek motorway 1 and has a length of 9471m passing a
motorway junction from southwest to northeast and vice versa, i.e. the road is bidirectional. It is shown
in Figure 3 where the stretch of interest is depicted as a dotted line.
Figure 4 gives the results of the initial experiments. Here, the weights for the fusion have been de-

rived using the mean link travel times as computed from three months of FCD (from December 2012
to February 2013). The average link length of the used OpenStreetMap digital map was 77.0m
(minimum: 12.3m, maximum: 353.3m). Then, in order to model a typical use case of offline
computation, the fusion has been applied to the same data of the two sources, as collected during this
observation period.
In Figure 4a, the abscissa shows the links of the examined stretch of road in spatial order of subse-

quent links. The ordinate shows the standard deviation of the mean link travel times in the considered
time intervals, that is, the respective standard deviations have been computed based on all considered

Figure 3. Route in Athens (dotted line), where FCD of two fleets have been collected, and where the proposed
data fusion approach then has been used. © OpenStreetMap contributors (CC BY-SA).
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corresponding time slices (cf. Section 2.4) of the examined period of three months (for the experi-
ments, time slices of 15min have been used).
First, rising edges, peaks and falling edges of standard deviation are observed on adjacent links,

representing the stochastic nature of traffic and differences in road condition. Second, as predicted,
the standard deviation (and thus also the variance) of the fusion result is always smaller on average
than those of the two data sources. This can be seen even better in Figure 4b where the cumulative dis-
tribution of the observed standard deviations is shown. Obviously, there is significant shift to the left,
i.e. to lower standard deviations in case of data fusion.
It is also interesting to compare the performance of the proposed fusion method to the naïve ap-

proach that assigns equal weights of 1/n instead of the optimal weights ew�
¯

¼ ew�
1;…; ew�

n

� �T
to the n

data sources. Therefore, the experiment has been repeated, applying the constant weight of 1/2 to
the two data sources. The proposed fusion method with optimal weights reduced the standard deviation
on a link by 32.2% on average, when comparing the fusion result to data source 1 (the Zelitron fleet),
whereas the naïve approach yielded a respective reduction of only 7.0%. When comparing the results
of the proposed fusion method to data source 2 (the BK Telematics fleet), a reduction in standard
deviation by 36.5% on average has been achieved, contrasted by only 12.8% for the naïve approach
(see Table I).
A next subject was to model the use case of an online computation. Calculating the optimal weights

in general (i.e. for large n) involves quite complex mathematical operations, including, e.g. the
inversion of a rather large number of covariance matrices and the complete computation of all
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Figure 4. Offline use case: comparison of standard deviations of the data sources with that of the fusion result
(south–north route): (a) per link (b) as cumulative distribution.
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bias-correction factors. Therefore, continuously updating the weights online might not be feasible in
practice. Instead, the following heuristic approach has been chosen: sets of weights are calculated
offline for periods of three months (e.g. for each season of the year). Then, the weights calculated
for a certain period are used for the corresponding period of the next year, too. That means the
weights are not recalculated but are directly used for the online calculation of the weighted mean
in Equation (1). This approach is based on the assumption that similar traffic conditions can be
observed in corresponding periods (e.g. for the winter of 2012/2013 and the winter of 2013/2014).
Thus, for a respective further experiment, the weights calculated during the first experiment (that is,

for the period of December 2012 to February 2013, using the mean link travel times computed from
these three months of FCD) have been used for applying the proposed fusion approach to the corre-
sponding period of the next year, that is, December 2013 to February 2014. Figure 5 gives the results
of this second experiment (for the same route as in the first experiment). As before, also a naïve fusion
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Figure 5. Online use case: comparison of standard deviations of the data sources with that of the fusion result
(south–north route): (a) per link (b) as cumulative distribution.

Table I. Average reductions in standard deviation.

Offline approach Online approach

Proposed Naïve Proposed Naïve

Reduction for source 1 (%) 32.2 7.0 11.3 9.8
Reduction for source 2 (%) 36.5 12.8 13.5 12.0
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approach has been applied to the period in question to allow for a comparison with the proposed
method. The online approach reduced the standard deviation on a link by 11.3% on average, when
comparing the fusion result to data source 1 (the Zelitron fleet), whereas the naïve approach yielded
a smaller respective reduction of 9.8%. When comparing the results of the proposed online method
to data source 2 (the BK Telematics fleet), a reduction in standard deviation by 13.5% on average
has been achieved, contrasted by a smaller reduction, 12.0%, for the naïve approach (see Table I).
Notice that in both the offline and the online approach, handling of systematic bias (cf. Section 2.3)

has been applied. Table II gives the remaining systematic bias for the two (bias-corrected) data sources
and the fusion result, for the offline and the online approach, respectively. It can be seen that the sys-
tematic bias in the fusion results remains small. For the offline case, it is even smaller than in both data
sources. In this context, finally note that the bias in the original data, i.e. the original Xi instead of Yi
where i=1, 2, was significantly larger, e.g. for data source 1 it was � 11.04% for the data used in
the offline approach, and � 9.06% for the data used in the online approach.

5. CONCLUSIONS AND FURTHER DISCUSSION

The experiments above show that the optimized weighted-mean data fusion in connection with the
proposed bias correction from Section 2.3 reliably reduces systematic error and variance of the fusion
result X̂ . In case of unbiased (or bias-corrected) measurements Xi, the resulting variance σ̂2

i is in fact
lower than the variance of each single Xi for all i=1,…, n. For, the minimization in Equation (3)
guarantees that

Var X̂
� �

≤Var
Xn
k¼1

wkXk

 !
(23)

for all
¯
w ¼ w1;…; ;wnð ÞT∈IRn with

¯
wT

¯
1 ¼ 1. That means, with wk=1 for i= k and wk=0 else for any

fixed i∈ {1,…,n}, one obtains

Var X̂
� �

≤Var wiXið Þ ¼ Var Xið Þ ¼ σ2i (24)

as proposed.
But note that this does not necessarily hold for unbiased measurements when the additional con-

straint
¯
wT

¯
μ ¼ ν̂ is used for defining the target expectation value of the fusion as in the original formu-

lation of portfolio theory (cf. Section 2.1 and the Appendix). Let, for instance, X1 and X2 be two
uncorrelated random measurements with IE(X1) =μ1 = 10 and IE(X2) =μ2 = 15 while the true reference
is ν̂ ¼ 8. Moreover, assume that Var X1ð Þ ¼ σ21 ¼ 5 and Var X2ð Þ ¼ σ22 ¼ 10. The relevant optimization
problem (cf. Section 2.1 and the Appendix) from Equation (A1) then yields Var X̂

� � ¼ σ̂2 ¼ 11:4.

Thus, indeed σ̂2 > σ2i for i=1, 2.
That finally means, the proposed bias correction method from Section 2.3 does not only reduce the

systematic error of the fusion results, but may also help in avoiding an unwanted increase of the final
variances. A second advantage is that the parameter calibration in case of FCD is heuristically possible
without any further data because of the described “self-evaluation” (cf. Section 2.4). All in all, this
makes the presented approach very attractive for offline and online data fusion depending on the
amount of available measurement data.

Table II. Remaining systematic bias.

Offline approach Online approach

Systematic bias of source 1 (%) 2.32 0.11
Systematic bias of source 2 (%) 4.28 6.90
Systematic bias of fusion result (%) � 0.73 2.83

161TRAFFIC DATA FUSION BASED ON MARKOWITZ’ PORTFOLIO THEORY

Copyright © 2015 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:145–164
DOI: 10.1002/atr.1351



Nevertheless, future research could try to find even better options for calibrating the fusion param-
eters, namely the bias correction factors p�i

� �
i¼1;…;n

and the covariances {σij}i,j = 1,…,n of the data

sources. This may include a better definition of periods with similar traffic conditions as well as
optimizing the considered link sets (cf. Section 2.4). Moreover, it might also be useful to go through
the extensive literature about portfolio optimization in finance in order to see how the problem of
estimating the correlations between the available assets was solved there. Finally, of course, the
explicit integration of other data than FCD within the proposed data fusion framework should be part
of further studies.
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APPENDIX

As in Section2.1, assume that there are n assets with expected returns
¯
μ ¼ μ1;…; ; μnð ÞT and covariance

matrix C= (σij)i,j = 1,…,n. The question then is how to find the optimal portfolio in terms of minimizing its
risk σ̂ :¼ Var X̂

� �1
2 for some given expected target return ν̂ where X̂ is defined as in Equation (2). This

yields the non-linear optimization problem

Var X̂
� � ¼

¯
wTC

¯
w→ min

¯
w ∈IRn

! (A1)

subject to
¯
wT 1̄ ¼ 1 and

¯
wT

¯
μ ¼ ν̂ where

¯
w ¼ w1;…; ;wnð ÞT is the vector of relative shares of all single

assets in the considered portfolio.
By introducing the Lagrangian multipliers λ and κ, one obtains the equivalent form

∇
¯
wh ¯

w; λ; κ
� �

¼ 0
¯

(A2)

where

h
¯
w; λ; κ
� �

:¼
¯
wTC

¯
wþ λ

¯
wT 1

¯
�1

� �
þ κ

¯
wT

¯
μ� ν̂

	 

: (A3)

Explicitly computing the first derivative in Equation (A2) then yields

2C
¯
w ¼ �λ

¯
1� κ

¯
μ (A4)

which is the same as

¯
w ¼ � λ

2
C�1 1

¯
� κ
2
C�1

¯
μ (A5)

whenever C is invertible (cf. Section 2.1). Finally, the Lagrangian multipliers λ and κ are determined
by the constraints of the optimization via plugging in Equation (A5). Thus, consider the linear system
of equations
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1 ¼
¯
wT 1

¯
¼ � λ

2
1T
¯
C�1 1

¯
� κ
2 ¯
μTC�1 1

¯
(A6)

ν̂ ¼
¯
wT

¯
μ ¼ � λ

2 ¯
1
TC�1

¯
μ� κ

2 ¯
μTC�1

¯
μ; (A7)

or in short

a11 a12

a21 a22

	 

λ

κ

	 

¼ 1

ν̂

	 

(A8)

with the constants a11 :¼ �1
2 1

T

¯
C�1

¯
1 , a12 :¼ �1

2
¯
μTC�1

1
¯
, a21 :¼ �1

2 ¯
1TC�1

¯
μ ¼ a12 and a22 :¼

�1
2
¯
μTC�1

¯
μ. In this context, remember that (C� 1)T=C� 1 because C is symmetric. Hence,

λ

κ

	 

¼ a11 a12

a12 a22

	 
�1 1

ν̂

	 

(A9)

¼ 1

a11a22 � a212

a22 �a12

�a12 a11

	 

1

ν̂

	 

i.e.

λ ¼ a22 � a12ν̂
a11a22 � a212

; (A10)

κ ¼ a11ν̂ � a12
a11a22 � a212

: (A11)

Moreover, the optimal portfolio in sense of Equation (A1) is obtained by plugging in all these numbers
into Equation (A5).
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