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Abstract- In this study, free vibration behavior of a multilayered symmetric sandwich 

beam made of Functionally Graded Material (FGM) with variable cross-section is 

investigated. The elasticity and density of the Functionally Graded (FG) sandwich beam 

vary through the thickness according to the power and exponential laws by using 

mixture rules and laminate theory. In order to provide this, fifty layered beam is 

considered. Each layer is isotropic and homogeneous although the volume fractions of 

the constituents of the layers are different. Furthermore, the width of the beam varies 

exponentially along the length of the beam with rectangular cross-section. The natural 

frequencies are computed for conventional boundary conditions of the FG sandwich 

beam using theoretical procedure. The effects of material index, geometric index and 

slenderness ratio are also discussed. Finally, the obtained results are compared with 

those in literature and a finite element based commercial program ANSYS® and found 

to be consistent with each other.  
 

Key Words- Functionally Graded Materials, Free Vibration, Variable Cross-Section, 

Sandwich Beam  
 

1. INTRODUCTION 
 

 The Functionally Graded Materials (FGMs) are obtained by changing the 

volume fractions of constituents from one surface to the other gradually. So, the 

material properties of the structure can be adjusted according to demand. Due to this 

advantage, these materials have attracted the attention of many researchers. The field 

has been developed rapidly due to their wide practical application in machine, civil, 

aerospace and automotive areas.  

 Some studies have been performed to analyze the behaviors of FGM structures, 

e.g. [1-4]. Free vibrations of beams made of FGMs have been studied by some 

researchers. Aydogdu and Taskin [5] investigated free vibration of simply supported FG 

beam by using parabolic, first order and exponential shear deformation beam theories. 

Aydogdu [6] used Semi-inverse Method to find a relation between elasticity modulus 

and natural frequency and buckling. Pradhan and Murmu [7] presented thermo-

mechanical vibration analysis of beams and sandwich beams made of FGM under 

different conditions. Bedjilili et al. [8] coped with the free vibration of composite beams 

with a variable fiber volume fraction using the first-order shear deformation theory. A 

forth order differential equation of a homogenized beam deflection was dealt with by 

Murin et al. [9]. Mahi et al. [10] analyzed free vibration of symmetric FGM beam 
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subjected to initial thermal stresses by using a theoretical formulation and they assumed 

the material properties as temperature-dependent. Additionally, there are some studies 

related to free vibration behaviors of beams with variable cross section. Ece et al. [11] 

investigated the vibration of an isotropic beam which has a variable cross-section. 

Atmane et al. [12] presented a theoretical investigation for free vibration of a 

functionally graded beam with variable cross-section. Their theory is based on 

Kirchhoff-Love hypothesis and they only changed the material properties exponentially.  

 Cranch and Adler [13] presented the closed-form solutions for the natural 

frequencies and mode shapes of the unconstrained non-uniform beams with four kinds 

of rectangular cross-sections. Caruntu [14] examined the nonlinear vibrations of beams 

with rectangular cross-section and parabolic thickness variation. Datta and Sil [15] 

numerically determined the natural frequencies of cantilever beams with constant width 

and linearly varying depth. Laura et al. [16] used approximate numerical approaches to 

determine the natural frequencies of Bernoulli beams with constant width and bilinearly 

varying thickness. 

 In this study, free vibration behavior of a symmetric FG sandwich beam with 

variable cross-section is analyzed. The material properties of the FG sandwich beam 

vary through the thickness according to the power and exponential laws. As a result of 

this, effective elasticity modulus and mass density are obtained by using mixture rules 

and laminate theory. The width of the beam with rectangular cross-section changes 

exponentially along the length of the FG beam. Natural frequencies are found by using 

obtained effective material properties for various boundary conditions. The results 

obtained are compared with both ANSYS
®
 solutions and studies in the literature. All 

results obtained are found to be consistent with each other. The effects of material and 

geometrical indexes and slenderness ratio on the vibration behaviors of the sandwich 

beam with variable cross-section are also discussed. 
 

2. DETERMINATION OF THE EFFECTIVE MATERIAL AND GEOMETRY 

PROPERTIES 
 

 Consider a transversely vibrating symmetric sandwich beam with variable cross-

section made of functionally graded material as shown in Figure 1.  

 Here; L and h represent length and thickness of the beam, and b0 is half width at 

the left end of the beam. However, the width of the beam (b(x)) is supposed to vary 

exponentially along the length of the beam as follows, 
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Figure 1. A FG sandwich beam with variable cross-section 

 

  x

0b x b e                  (1) 

where β is geometric index and as β = 0, the beam has uniform cross-section. 

 The beam is assumed to compose of fifty FG layers in order to get more 

consistent value in the solution. Each layer is a mixture of Aluminum (Al) and Alumina 

(Al2O3) phases and layers are arranged symmetrically to the neutral plane of the beam. 

That is, the beam is stacked as [Al2O3/FGM/Al]s. The mixture ratio is chosen as a 

polynomial or an exponential function, and it is varied continuously and symmetrically 

through the thickness with respect to the neutral plane of the beam. 

 In order to obtain the effective material properties of the whole structure, 

following procedure is applied. Firstly, the material properties of the upper half of the 

beam are calculated from exponential and power laws as given in Eqs. (2) and (3). 

Secondly, effective material properties of the whole structure are obtained by using the 

formula of effective elasticity modulus for symmetric laminated composite structures. 

The exponential and power laws for elasticity modulus are given, respectively, as 

follow, 

    1 2z c
c

m

E1
E z E e , ln

2 E

   
    

 
               (2) 

   
n

c m m

1
E z E E z E

2

 
    

 
              (3) 

where Ec, Em, z and n are elasticity moduli of ceramic and metal phases, the coordinate 

axis in the thickness direction of the beam and material index, respectively. The 

variation of mass density in each layer through the beam thickness has also been 

considered to obtain more accurate results. The expressions written for elasticity moduli 

are also considered to be valid for density.  

    1 2z c
c

m

1
z e , ln

2

   
      

 
              (4) 

   
n

c m m

1
z z

2

 
      

 
              (5) 

 The above-mentioned variable z is defined as z = -1/2,-1/2+1/,-1/2+2/,…,1/2, 

where  is equal to (m/2)-1, where m represents the number of the layer of the beam. 
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 It is seen from Figure 1 that top and bottom surfaces of FG beam are pure 

ceramic, whereas the middle section of the beam is pure metal. The variations of 

elasticity modulus and the mass density through the whole thickness of the beam for 

various material indexes (n) are shown in Figure 2. 

 Eqs. (2-5) give elasticity modulus and mass density for each layer in upper half-

part of the beam. In order to find the elasticity modulus and the mass density throughout 

the whole beam thickness, the classical laminate theory will be used. 

 The bending moment on a symmetric FG sandwich beam can be written in a 

similar way used in laminated composite beam theory [17], 

   
m/2

3 3

z j j 1j
j 1

2b
M E z z

3r




                 (6) 

 

where r and zj are curvature of the beam and distance between the outer face of jth layer 

and the neutral plane, respectively. The bending moment can also be written as follows, 

ef yyE I
M

r
                  (7) 

where Eef  is the effective elasticity modulus and Iyy is the cross-sectional inertia 

moment about the neutral axis of the beam. Substituting Eq. (6) into Eq. (7), the 

effective elasticity modulus can be written as, 

   
m/2

3 3

ef z j j 13 j
j 1

8
E E z z

h




                 (8) 

Similarly, effective mass density can be written as follows, 

   
m/2

3 3

ef z j j 13 j
j 1

8
z z

h




                   (9) 

 In the calculation of the natural frequency, the effective elasticity modulus Eef  

and the effective mass density ef  can be used instead of elasticity modulus E and mass 

density  in a beam manufactured from isotropic and homogenous materials. 
 

 

  
(a)  (b)  

Figure 2. Variations of elasticity modulus (a) and mass density (b) through the thickness 

for exponential-law and different index values of power-law functions 
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3. THEORETICAL FORMULATION AND SOLUTION 
 

 The bending moment can be written from equilibrium equations of the beam as, 

 
 22

ef2 2

w x, tM
A x

x t


 

 
             (10) 

and, 

 2

ef 2

w x, t
M E I(x)

x


 


             (11) 

where A(x) = b(x) h is variable cross-sectional area, I(x) = b(x) h
3
 / 12 is variable inertia 

moment and t is time. The transverse displacement w(x,t) is expressed as, 

  i tw x, t W(x)e                (12) 

 Substituting Eqs.(11)  and (12) into Eq.(10) yields, 

     
 

4 3 2

2 2

4 3 2

d W x d W x d W x
2 W x 0

dx dx dx
               (13) 

where α
2
 = 12 ρef ω

2 
/ Eef h

2
. 

 As Eq.(13) is solved, the following expression can be obtained as, 

   1 1 2 2
x

i x i x x x2
1 2 3 4W x e C e C e C e C e




    
              (14) 

here, 2

1 4 / 2    and 2

2 4 / 2    and C1, C2, C3 and  C4 are (complex) 

constants. In other words, the solution can also be written as trigonometric form, 

          
x

2
1 1 2 1 3 2 4 2W x e B cos x B sin x B cosh x B sinh x




               (15) 

where B1, B2, B3 and B4 are real constants and they are determined by the boundary 

conditions.  

 Three different types of boundary conditions are considered in this study: 

clamped (C), simply supported (S) and free (F). These boundary condition types are 

described as, 

C W 0; dW / dX 0               (16) 
2 2S W 0; d W / dX 0               (17) 

2 2 3 3F d W / dX 0; d W / dX 0              (18) 

 The widely used boundary conditions are taken into account at two ends of the 

beam, i.e., C-C, C-S, S-S and C-F.  

 As the boundary conditions are applied to Eq.(15), four equations are emerged 

for each boundary conditions. The roots of these four equations are obtained by its 

determinant. As a result of this, the characteristic equations can be found for each 

boundary condition. For example, the characteristic equation of C-C boundary condition 

is as follow, 

       

   

L 2

1 2 1 2 2 1 1 2 2

2

1 1 2

e 2 sin L sinh L 2cos L cosh L

sin L sinh L 0

            

    

       (19)

 

 In order to calculate the natural frequencies, these characteristic equations are 

solved numerically. 
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4. RESULTS AND DISCUSSION 
 

 In this study, the fifty layered FG sandwich beam with variable cross-section is 

considered. The material properties of the constituents of the beam are given in Table 1.  

 The elasticity modulus and density of FG beam are taken to be variable and 

Poisson’s ratio  can be considered as a constant. Additionally, the width of the FG 

beam is also assumed to be exponentially variable along the length of the beam. The 

thickness and the length of the beam are constant and they are set to h = 5 mm and L = 

200 mm, respectively. The width at the left end of the FG beam is b0 = 20 mm. Material 

index (n) is considered as 0, 0.5, 1, 5 and 10, and geometric index (β) is -1/L, -0.5/L, 

0.0, 0.5/L and 1/L. The FG beam is isotropic, homogenous and uniform beam as n and β 

are equal to zero. 

 

Table 1. Material properties of the constituents of the FG sandwich beam 
Material E (GPa)  (kg/m3)  

Al 70 2700 0.3 

Al2O3 380 3950 0.3 

 

 The dimensionless natural frequencies for isotropic, homogenous beam of          

β =-1/L under C-F boundary conditions is compared with ones in literature and given in 

Table 2. It is seen that they are in conformity with each other. 
 

Table 2. Dimensionless natural frequencies for isotropic homogenous beam of β = -1/L 

under C-F boundary conditions 
Mode 

Number 

Present Ref. [11] Ref. [12] Ref. [13] Ref. [18] 

1 4.73491 4.72298 4.72300 4.73500 4.73470 

2 24.20181 24.20168 24.20170 24.20250 24.20050 

3 63.86449 63.86448 63.86450 63.85000 63.86080 

4 123.09791 123.09790 123.09800 - 123.09100 

 

 In order to support the accuracy of the results obtained from present method, the 

FG sandwich beam is also solved by the commercial program ANSYS
®

 using Finite 

element analyses. The beam is modeled in SOLIDWORKS
®
 and imported to ANSYS

®
.
 

The model is meshed by SOLID186 (3-D 20-Node structural solid) elements. 

SOLID186 is well suited to modeling irregular meshes. The material properties 

(elasticity modulus and density) of this element are taken from analytical calculations as 

effective values. The Block Lanczos method is used for the eigenvalue extractions.  
 

4.1. Effect of material index 

 Figure 3 illustrates the variations of the natural frequencies of FG beam versus 

material index (n) for C-S and S-S boundary conditions and geometric index β = 1/L.  

 It can be seen that natural frequencies decrease with increasing material index 

(n) for both boundary conditions. Namely, increase in the volume fractions of the 

ceramic phase in the FG sandwich beam causes increase in the natural frequencies. As a 

result of this, in order to achieve desired natural frequencies, the volume fractions of the 

constituents of the symmetric FG sandwich beam can be arranged. In order to verify the 

accuracy of the results obtained from present method, corresponding beam is also 
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solved by ANSYS
®
. The results obtained from both methods are very close to each 

other.  

4.2. Effect of geometric index 

 Figure 4 shows the variations of the natural frequencies of FG beam with 

geometric index (β) for C-S and S-S boundary conditions and material index n = 1. It 

can be seen from Figure 4(a) that natural frequencies gradually decrease with changing 

from narrowing to expanding of the cross-section for C-S beam. As for S-S beam, the 

natural frequencies of the beam with the narrowing or expanding cross-sections are 

symmetrical according to the one with uniform cross-section, as shown in Figure 4(b). 

As a result, for symmetrical boundary conditions, narrowing beams can provide more 

advantages than expanding beams because less material is used. It is also seen that the 

results of present and ANSYS
®
 solutions are very close to each other. 

 

  

(a)  (b)  

Figure 3. Variations of the natural frequencies with material index (n) for C-S (a) and S-S (b) boundary 

conditions and β = 1/L 

  
(a)  (b)  

Figure 4. Variations of the natural frequencies with geometric index (β) for C-S (a) and S-S (b) boundary 

conditions and n = 1 
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4.3. Effect of the combining of both indexes 

 The first three natural frequencies of the symmetric FG sandwich beam under 

different three type boundary conditions are listed in Table 3 for geometric index, 

material index and its function types. With increasing n and β, the natural frequencies 

gradually decrease in C-F beam for all mode numbers. As for the beam with 

symmetrical boundary conditions i.e. S-S and C-C, their natural frequencies are 

symmetrical according to the beam of uniform cross-section by increasing n and β, as 

also seen in Figure 4(b).  
 

Table 3. First three frequencies (Hz) of the symmetric FG sandwich beam 
β Type n C-F S-S C-C 

1 2 3 1 2 3 1 2 3 

-1/L 

Exp. exp 233.6 1194.

1 

3150.

9 

482.2 1952.

3 

4389.

6 

1110.

7 

3052.

0 

5975.

2 

P
o

ly
n

o
m

ia
l 0 266.7 1363.

3 

3597.

4 

550.5 2229.

0 

5011.

6 

1268.

1 

3484.

5 

6821.

9 
0.5 256.9 1313.

3 

3465.

6 

530.3 2147.

3 

4828.

0 

1221.

6 

3356.

8 

6572.

0 
1 248.8 1271.

8 

3356.

1 

513.6 2079.

4 

4675.

4 

1183.

0 

3250.

7 

6364.

2 
5 212.8 1087.

6 

2869.

9 

439.2 1778.

2 

3998.

1 

1011.

6 

2779.

8 

5442.

3 
10 194.3 993.4 2621.

4 

401.1 1624.

2 

3651.

9 

924.0 2539.

1 

4971.

0 
-

0.5/

L 

Exp. exp 201.8 1139.

4 

3095.

4 

485.7 1948.

9 

4384.

3 

1105.

6 

3045.

1 

5967.

6 

P
o

ly
n

o
m

ia
l 0 230.3 1300.

9 

3534.

0 

554.6 2225.

1 

5005.

5 

1262.

2 

3476.

6 

6813.

3 
0.5 221.9 1253.

2 

3404.

5 

534.3 2143.

6 

4822.

1 

1216.

0 

3349.

2 

6563.

6 
1 214.9 1213.

6 

3296.

9 

517.4 2075.

8 

4669.

7 

1177.

5 

3243.

3 

6356.

1 
5 183.8 1037.

8 

2819.

3 

442.4 1775.

1 

3993.

3 

1006.

9 

2773.

5 

5435.

4 
10 167.8 947.9 2575.

1 

404.1 1621.

4 

3647.

4 

919.7 2533.

3 

4964.

7 

0 

Exp. exp 173.5 1087.

1 

3044.

0 

486.9 1947.

8 

4382.

5 

1103.

8 

3042.

8 

5965.

1 

P
o

ly
n

o
m

ia
l 0 198.1 1241.

2 

3475.

3 

555.9 2223.

8 

5003.

5 

1260.

3 

3474.

0 

6810.

4 
0.5 190.8 1195.

7 

3348.

0 

535.6 2142.

3 

4820.

2 

1214.

1 

3346.

7 

6560.

9 
1 184.8 1157.

9 

3242.

2 

518.6 2074.

6 

4667.

8 

1175.

7 

3240.

9 

6353.

4 
5 158.0 990.2 2772.

5 

443.5 1774.

1 

3991.

6 

1005.

4 

2771.

4 

5433.

1 
10 144.3 904.4 2532.

4 

405.1 1620.

4 

3646.

0 

918.3 2531.

4 

4962.

6 0.5/

L 

Exp. exp 148.5 1037.

0 

2996.

9 

485.7 1948.

9 

4384.

3 

1105.

6 

3045.

1 

5967.

6 

P
o

ly
n

o
m

ia
l 0 169.5 1183.

9 

3421.

5 

554.6 2225.

1 

5005.

5 

1262.

2 

3476.

6 

6813.

3 
0.5 163.3 1140.

5 

3296.

1 

534.3 2143.

6 

4822.

1 

1216.

0 

3349.

2 

6563.

6 
1 158.2 1104.

5 

3191.

9 

517.4 2075.

8 

4669.

7 

1177.

5 

3243.

3 

6356.

1 
5 135.3 944.5 2729.

6 

442.4 1775.

1 

3993.

3 

1006.

9 

2773.

5 

5435.

4 
10 123.5 862.7 2493.

2 

442.4 1621.

4 

3647.

4 

919.7 2533.

3 

4964.

7 

1/L 

Exp. exp 126.6 988.7 2953.

9 

482.2 1952.

3 

4389.

6 

1110.

7 

3052.

0 

5975.

2 

P
o

ly
n

o
m

ia
l 0 144.5 1128.

7 

3372.

5 

550.5 2229.

0 

5011.

6 

1268.

1 

3484.

5 

6821.

9 
0.5 139.2 1087.

4 

3248.

9 

530.3 2147.

3 

4828.

0 

1221.

6 

3356.

8 

6572.

0 
1 134.8 1053.

0 

3146.

2 

513.6 2079.

4 

4675.

4 

1183.

0 

3250.

7 

6364.

2 
5 115.3 900.5 2690.

4 

439.2 1778.

2 

3998.

1 

1011.

6 

2779.

8 

5442.

3 
10 105.3 822.5 2457.

5 

401.1 1624.

2 

3651.

9 

924.0 2539.

1 

4971.

0 
 

4.4. Effect of the slenderness ratio 

 The variations of the natural frequencies against the slenderness ratio (L/h) for 

material index n = 1 and geometric index β = -1/L are depicted in Figure 5. As expected, 

natural frequencies decrease with increasing slenderness ratio for both C-S and S-S 

boundary conditions. Especially, while the natural frequencies of the beam reduce 

sharply for slenderness ratio between 5 and 10, they decline slowly after L/h = 10.  
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5. CONCLUSIONS 
 

 The free vibration of a symmetric FG sandwich beam with variable cross-section 

is investigated in this paper, and the verification is carried out by comparing the results 

in literature and obtained from ANSYS
®

 commercial software. The following 

conclusions can be drawn from the analyses: 

 The effective elasticity modulus and the effective mass density can be used 

instead of elasticity modulus and mass density in the governing equations, which 

belong to the natural frequencies, of the conventional materials.  

 Increase in the volume fractions of the ceramic in the symmetric FG sandwich 

beam causes increase in the natural frequencies. 

 The natural frequencies decrease gradually with increasing material index. 

 The natural frequencies vary symmetrically according to one of uniform cross-

section for symmetric boundary conditions i.e. C-C and S-S with increasing 

geometric index. Whereas, the natural frequencies for other boundary conditions 

decreases gradually.  

 The natural frequencies decrease drastically with increasing slenderness ratio for 

all boundary conditions. 

 It is found that present results are agreed with the results of the other methods in 

literature and ANSYS
®
.  
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