
ATCEM: a synthetic model for evaluating air traffic complexity

Mingming Xiao, Jun Zhang, Kaiquan Cai* and Xianbin Cao

School of Electronics and Information Engineering, Beihang University, Beijing, China

SUMMARY

Air traffic complexity, which measures the disorder of air traffic distribution, has become the critical
indicator to reflect air traffic controller workload in air traffic management (ATM) system. However, it is
hard to assess the system accurately because there are too many correlated factors, which make the air traffic
complexity nonlinear. This paper presents an air traffic complexity evaluation model with integrated
classification using computational intelligence (ATCEM). To avoid redundant factors, critical factors
contributing to complexity are analyzed and selected from numerous factors in the ATCEM. Subsequently,
to construct the mapping relationship between selected factors and air traffic complexity, an integrated
classifier is built in ATCEM. With efficient training and learning based on aviation domain knowledge,
the integrated classifier can effectively and stably reflect the mapping relationship between selected factors
and the category of air traffic complexity to ensure the precision of the evaluation. Empirical studies using
real data of the southwest airspace of China show that the ATCEM outperforms a number of state-of-the-art
models. Moreover, using the critical complexity factors selected in ATCEM, the air traffic complexity could
be effectively estimated. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Air traffic complexity is the quantitative description of the disorder of air traffic distribution [1] and
acts as an indicator of air traffic controller (ATCo) workload [2, 3]. It relates to the characteristics of
both traffic flow pattern and airspace structure. Nowadays, air traffic situation is becoming increasingly
complex because dynamic optimizations of traffic flow and airspace configuration are employed to
safely accommodate the rapid development of air transportation. As a result, in air traffic management
(ATM) system, more ATCo resources are needed to keep aircraft flying safely, efficiently, and expe-
ditiously. To reasonably allocate the limited ATCo resources over airspace, for example, to reconfigure
sectors and assign ATCos to sectors, it is important to accurately measure the air traffic complexity.
To assess the traffic complexity in real air traffic operation, two challenges need to be tackled. First

and foremost, the complexity factors are hard to select because too many correlated factors affect air
traffic complexity [4, 5]. The factors include static factors and dynamic factors. The static factors
are fixed and given by the spatial and physical characteristics of airspace (or a sector), such as terrain,
number of airways, air route structure, crossing waypoints, and navigation aids. The dynamic factors
vary as a function of time and depend on the air traffic pattern, for example, the number/density of
aircraft, separation between aircraft, mix of aircraft, proximity of aircraft, divergence/convergence of
aircraft, aircraft sensitivity, and aircraft speeds. Second, the process of driving air traffic complexity
is a very complicated mechanism, because of not only many influencing factors but also severe
nonlinearities [1, 6].
Therefore, it is very hard to develop a precise mathematical model for air traffic complexity. In

literature, many existing studies focus on creating more relevant factors to explain the air traffic
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complexity, such as traffic density, intrinsic attribute [1], and probabilistic factor [7]. But, a single
factor can only reflect air traffic complexity in a certain aspect.
In order to research air traffic complexity from a holistic point of view, some studies have proposed

a “dynamic density (DD)” model [8–10] to measure control-related workload as a weighted sum of
selected complexity factors, and the weights of these factors were determined through regression
analysis of the complexity data. Because the functional relationship between complexity factors and
workload is nonlinear, complicated, and largely unknown, a “black-box” approach is employed. For
example, Gianazza et al. [11, 12] applied a back-propagation neural network (BPNN) to model the
relationship between a small set of six complexity factors and three levels of air traffic complexity.
The six factors are selected from 28 studied factors, and the three levels of air traffic complexity are
used to guide sector reconfiguration. Neural network is a nonlinear modeling tool that can extract
and learn the relationship between input and output data. However, its instability and lack of robustness
[13] reduce its accuracy in high-speed air transportation system.
In ATM domain, the main motivation of evaluating air traffic complexity is to reflect ATCo

workload [2–4]. The higher the air traffic complexity is, the higher the workload will be. The informa-
tion about whether airspace is overloaded or not is critical to provide guidelines to ATCo resource
allocation and traffic flow management to ensure a safe operation environment for multiple aircraft.
Based on analysis of the problem, air traffic complexity evaluation can be accurately characterized
as a classification problem [12]. It can be defined as a process of classifying the levels of air traffic
complexity in airspace (or sector) according to complexity factors. Only three levels of air traffic
complexity, that is, low, medium, and high, need to be considered. Low complexity denotes that the
required workload ensuring aircraft safety exceeds what ATCo can provide, while the opposite is true
for high complexity. Medium complexity means this is a balance between the required workload and
the provided workload.
Based on the analysis in the preceding text, this paper presents an effective method, namely air

traffic complexity evaluation model with integrated classification (ATCEM), to classify air traffic
complexity. First, critical complexity factors are analyzed and selected from numerous factors in the
ATCEM to avoid redundant factors and scale up the evaluation model. Thereafter, to construct the
mapping relationship between selected factors and air traffic complexity, an integrated classifier is built
in ATCEM. In this classifier, a number of weak classifiers have been adaptively integrated as a strong
classifier inspired by [13, 14] using evolutionary learning based on aviation domain knowledge. With
efficient training and learning, the integrated classification method in ATCEM can effectively and
stably reflect the mapping relationship between selected factors and air traffic complexity. Empirical
studies using real data from the southwest airspace of China show that the ATCEM outperforms a
number of state-of-the-art models. Moreover, the critical complexity factors selected in ATCEM can
be used for evaluating air traffic complexity effectively.
The rest of this paper is organized as follows: Section 2 reviews and analyzes the air traffic complexity

factors. The ATCEM is proposed in Section 3. The specific genetic algorithm (GA)-based method for
selecting complexity factors and integrated classification method are described in detail. Section 4 pre-
sents the experimental studies, which include critical factor selection and empirical comparison between
ATCEM and state-of-the-art models. Lastly, conclusions and future work are presented in Section 5.

2. AIR TRAFFIC COMPLEXITY FACTORS REVIEW AND ANALYSIS

An “air traffic complexity factor” is a parameter or attribute that influences the level of air traffic
complexity. Till now, research on complexity factors has drawn much attention. Kopardekar et al.
[8–10] reviewed some complexity factors, proposed since 1963, and identified that aircraft count,
sector geometry, traffic flows, separation standard, aircraft performance characteristics, and weather
are the most common factors that affect air traffic complexity. Delahaye and Puechmorel [1] presented
some novel intrinsic factors, that is, aircraft density, divergence, convergence, and insensitivity to
measure air traffic complexity. Lee et al. [15] defined air traffic complexity by the sum of all aircraft’s
heading changes in response to an intrusive aircraft within a sector. Moreover, Prandini [7] presented a
probabilistic factor to measure midterm traffic complexity based on aircraft’s intent information and
current state. Crespo and Weigang [16] developed an agent evaluation function to airspace DD.
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A list of 28 complexity factors that have been consistently found to be relevant to air traffic
complexity has been presented in Table I. For a more thorough review of the listed factors, readers
can refer to the cited source literature.
The listed factors in Table I are defined from different perspectives. It is hard to describe the air

traffic complexity accurately using a single factor. For example, there are four aircraft in both sectors
A and B in Figure 1. The sectors are of the same size, but the spatial attributes (mainly the horizontal

Table I. Notations and definitions of the list of 28 air traffic complexity factors [11].

Notation Definition

Nb Number of aircraft within a sector [8, 9, 21, 23]
Nb2 Squared number of aircraft within a sector [8, 9]
Nds Number of descending aircraft within a sector [9, 21, 23]
Ncl Number of climbing aircraft within a sector [9, 21, 23]
F5, F15, F30, F60 Incoming flow of the controlled sector in future 5, 15, 30,

and 60minutes, respectively [3]
inter_hori Number of potential crossings (irrespective of the aircraft

direction on their trajectories) with angle greater than 20° [11]
inter_vert The ratio of flight phase (stable/climbing/descending) [11]
creed_ok Conflict perception indicator of pairs of aircraft in which vertical

separation occurs prior to separation [11, 24]
creed_pb Conflict perception indicator of pairs of aircraft in which vertical

separation does not occur prior to separation [11, 24]
σ2gs Variance of ground speed of aircraft within a sector [9, 21]
σgs/gs Ratio of standard deviation of speed to average speed [9, 21]
avg_vs Average vertical speed of aircraft within a sector [11]
vpro_1 Vertical proximity measure 1, inverse of the mean weighted horizontal

separation distance between aircraft pairs [8, 9, 21]
vpro_2 Vertical proximity measure 2, inverse of the average minimum horizontal

separation distance between aircraft pairs [8, 9, 21]
hpro_1 Horizontal proximity measure, inverse of the mean weighted vertical

separation distance between aircraft pairs [8, 9, 21]
V Geometric volume of a sector [11]
Dens Density indicator (mean) [1, 3, 11]
track_disoder Variability in headings (mean) [1, 3, 11]
speed_disoder Variability in speed (mean) [1, 3, 11]
Div Divergence between pairs of aircraft in the controlled sector (mean) [1, 3, 11]
Conv Convergence between pairs of aircraft in the controlled sector (mean) [1, 3, 11]
sensi_d Sensitivity indicator that measures the difficulty in solving potential conflicts in

case of divergence in the controlled sector (mean); a situation with a “high
sensitivity” is easier to resolve for the air traffic controller than one with a “low
sensitivity” [1, 3, 11]

insen_d Insensitivity indicator in case of divergence in the controlled sector (mean) [1, 3, 11]
sensi_c Sensitivity indicator that measures the difficulty in solving potential conflicts

in case of convergence in the controlled sector (mean); a situation with a “high
sensitivity” is easier to resolve for the air traffic controller than one with a “low
sensitivity” [1, 3, 11]

insen_c Insensitivity indicator in case of convergence in the controlled sector (mean) [1, 3, 11]

Figure 1. An example of comparison of air traffic complexity between two sectors.

317ATCEM: A SYNTHETIC MODEL FOR EVALUATING AIR TRAFFIC COMPLEXITY

Copyright © 2015 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:315–325
DOI: 10.1002/atr



proximity, i.e., hpro_1) within them are different. Potential conflict exists in sector A. It is seemingly
more difficult to keep the traffic safe in section A, and the air traffic complexity of sector A is
significantly higher than sector B. Hence, the air traffic complexity is the consequence of joint
contributions of a group of complexity factors.
In addition, too many input factors and redundancy among these factors lead to over-fitting when

constructing a mapping relationship between the factors and air traffic complexity. For example, there
are at least three factors (e.g., inter_hori, creed_ok, and creed_ok) to describe the influence of potential
conflict in traffic complexity.
Therefore, it is important to obtain a useful set of factors to evaluate air traffic complexity. In

literature, different models (i.e., DD and BPNN model) have their own sets of complexity factors.
Even for the same DD model, different studies (e.g., FAAWilliam J. Hughes Technical Center, NASA
Ames Research Center, and Metron Aviation) have used different sets of complexity factors. Their
factors are mainly selected either depending on domain-specific expertise or by principal component
analysis and sequential forward selection (PCA&SFS) [11], a feature selection method without
considering the nonlinear correlation among features. Till now, no comprehensive and generally
accepted set of complexity factors has been defined [3].
To effectively evaluate the air traffic complexity in any traffic operation scenario, it is important to

select an effective and comprehensive set of complexity factors. In this paper, the listed 28 factors,
which have been consistently found to be relevant to air traffic complexity, constitute a “factor pool”.
Subsequently, adequate complexity factors will be selected from this “factor pool” to effectively
evaluate the air traffic complexity.

3. AIR TRAFFIC COMPLEXITY EVALUATION MODEL WITH INTEGRATED
CLASSIFICATION

As stated in Section 1, air traffic complexity evaluation can be defined as the process of classifying
traffic complexity into different levels according to a set of complexity factors. The framework of
ATCEM is shown in Figure 2. ATCEM is a synthetic model, consisting of input variables, output
variables, and a mapping relationship between inputs and outputs. The mapping relationship consists
of factor selection and classification.
The input variables are the factors that contribute to air traffic complexity. Here, “factor pool”

(defined in Section 2), which consists of a number of important air traffic complexity factors, is an
ideal input set.
The output parameters are the levels of air traffic complexity in airspace (or sector). Here, air traffic

complexity is classified into three levels, that is, low, medium, and high level. Our ATCEM can also
accommodate more detailed classification of air traffic complexity. Low complexity means traffic
pattern is simple (e.g., low-density traffic operation and no conflict) and the workload needed to ensure
air traffic safely is below the workload ATCo can provide. Adjacent low-complexity sectors can be
merged to save ATCo resources. On the contrary, high complexity means traffic is hard to control
(e.g., high-density air traffic and high number of potential crossings and potential conflicts) and the
workload needed for keeping air traffic safe exceeds the workload ATCo can provide. Medium
complexity means a good balance on the sector, where the workload needed to ensure aircraft safety
is approximately equal to the workload ATCo can provide.
Because the functional relationship between complexity factors and level of air traffic complexity is

nonlinear, complicated, and largely unknown, an integrated classifier that is adaptively integrated

Figure 2. The framework of air traffic complexity evaluation model with integrated classification.
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based on a number of nonlinear weak classifiers to extract and learn the relationship between input and
output data can be a good candidate approach in evaluating the air traffic complexity. However, too
many input variables and redundancy among these variables would lead to over-fitting while
constructing the mapping relationship between input and output data [11]. Hence, before training
a classifier for this mapping, selecting critical complexity factors as classifier’s input is important
and necessary in ATCEM.
Consequently, the ideas for constructing our ATCEM are as follows: First, an effective and comprehen-

sive set of complexity factors (without redundant factor) is selected as input set for evaluating air traffic
complexity level. Then, based on aviation domain knowledge, an integrated classification method to
construct the mapping relationship between selected factors and air traffic complexity is proposed.
In the following subsections, details of factor selection and integrated classification employed in the

ATCEM will be introduced.

3.1. Complexity factor selection with genetic algorithm (GA)

From the analysis of complexity factors in Section 2, it is not simple to select critical complexity fac-
tors. On one hand, absence of any critical factors in ATCEM would result in incorrect classification of
air traffic complexity level. On the other hand, existence of redundant factors would lead to over-fitting
during the construction of mapping relationship between input and output data in ATCEM. Various
techniques have been proposed to select an optimum subset of features from a larger set of possible
features [17]. Based on the advantages of intelligent algorithm, that is, ensuring the chosen feature
set is optimum and without considering the relationship among features, a specific GA-based method
has been designed to select an effective and comprehensive set of complexity factors from the “factor
pool” in ATCEM.
The flowchart of the GA-based selection method is shown in Figure 3. In this method, a nonlinear

classifier is applied to classify the levels of air traffic complexity, and fitness is calculated with classi-
fication accuracy. Here, an evolutionary BPNN [18, 19] is generated and trained as the classifier. Air
traffic complexity is classified into Y={1, 2,…,K} levels, where K=3 and labels 1, 2, and 3 represent
low, medium, and high levels of air traffic complexity, respectively.
The sample space for training the nonlinear classifier is obtained from nS sectors and nT time periods

and denoted as S={(f1, y1), (f2, y2),…,, (fi, yi),…,, (fN, yN)}. Here, N= nS �nT is the number of sample
data, and fi and yi∈Y are the vector of the 28 complexity factors and the levels of air traffic complexity,

Figure 3. The flowchart of genetic algorithm-based selection method.
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respectively, in a given sector and time period. All the samples were divided randomly into two parts
with 60% and 40% samples. They were used as train set Strain and test set Stest, respectively.
Let Max_Gen be the maximum number of generations in the whole optimization, NP be the

population size, and α and β be the crossover rate and mutation rate, respectively. The details of
GA-based selection method are as follows:

(1) Encoding: Each individual is encoded as a binary vector [x1, x2,…, x28], in which, if xi=1, the i-th
factor in the “factor pool” is chosen as an input parameter of ATCEM; otherwise, the i-th factor is
not chosen.

(2) Initialization: First, the population Pop is initialized, that is, all genes in NP individuals in Pop are
generated randomly as either 0 or 1. Then, the classifier (a single BPNN) is initialized for classi-
fying air traffic complexity. The classifier consists of an input layer of 28 complexity factors and
an output layer of a probability vector, denoted as [OL,OM,OH]. OL, OM, and OH are the corre-
sponding probabilities of classifying the air traffic into low complexity, medium complexity,
and high complexity based on input data, respectively. The target of [OL,OM,OH] is [1, 0, 0], or
[0, 1, 0], or [0, 0, 1].

(3) Fitness evaluation: In order to avoid the influence on fitness value caused by the randomness of
initial weights and threshold values of BPNN, the GA [19] is applied to evolve the weights and
threshold values of BPNN. The fitness of each individual in population Pop is evaluated according
to Equation (1).

Fitness ¼ BIC
2
train � BIC

2
test

���
����½8� ðPG

train þ PL
train þ PM

train þ PH
train þ PG

test þ PL
test þ PM

test þ PH
testÞ� (1)

Here, the subscripts “train” and “test” denote the results of training set and testing set, respectively. PG

is the global proportion of correct classification of input vectors, and PL, PM, and PH are the percentages
of correct classifications for the low, medium, and high levels of air traffic complexity, respectively.
BIC represents the performance of BPNN in terms of goodness of fit and is calculated by Equation (2)
[11]. In Equation (2), λ is the number of unadjusted parameters of the BPNN (i.e., the number of
weights and threshold values of BPNN), K is the total levels of air traffic complexity (we have
K=3), N is the size of sample data (i.e., the size of training set or test set), ln(N) is the
log-likelihood, and t(n) and y(n) are the target and output vectors, respectively. The lower fitness is,
the better BPNN has been trained and the better set of complexity factors obtained.

BIC ¼ 2�λ�ln Nð Þ � 2�∑
N

n¼1
∑
K

k¼1
t nð Þ
k �ln y nð Þ

k

� �
(2)

(4) Genetic operators: Roulette wheel selection operator, two-point crossover operator, and the uni-
form mutation operator are employed for evolving the population Pop.

3.2. Integrated classification in ATCEM

Having selected a set of critical factors, how these factors affect the air traffic complexity is still
unknown. Here, an integrated classification method has been employed to construct the mapping
relationship between selected factors and air traffic complexity.
In this classification method, a number of weak classifiers with strong nonlinear mapping ability

between input and output data, such as BPNN [14, 18, 19], are generated and trained, and then all these
classifiers are adaptively integrated together in an ensemble based on aviation domain knowledge to
form a strong classifier to evaluate air traffic complexity. Let T be the number of weak classifiers.
The flowchart of integrated classification in ATCEM is provided in Figure 4.
In our ATCEM, T evolutionary BPNNs [18, 19], which can better reflect nonlinear relationship

between input and output data by evolving their weights and threshold values with evolutionary
algorithm, are generated and trained as weak classifiers. To improve the accuracy and stability of weak
classifiers, an adaptive boosting algorithm [20] is utilized to integrate these evolutionary BPNNs.
Adaptive boosting is a meta-algorithm that can be used in conjunction with many other learning
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algorithms to improve their performance. Hence, the outputs of all weak classifiers are combined using
a weighted sum to represent the final output of our ATCEM.
The sample space here, denoted as S={( fo1, y1), ( fo2, y2),…, ( foi, yi),…, ( foN, yN)}, is the same as

that stated in Section 3.1 except for the vector of complexity factor. f oi ¼ f 1oi; f
2
oi;…; f loi

� �
is the vector

of the l selected complexity factors (i.e., the optimum set of factors selected from the “factor pool” with
GA-based selection method, which will be detailed in Section 4.1). The vectors of complexity factors
are used as input of the integrated classifier, while different levels of air traffic complexity are used as
the output of ATCEM (denoted as [pL, pM, pH]), whose targets are [1, 0, 0], [0, 1, 0], and [0, 0, 1].

4. EXPERIMENTAL STUDIES

In this section, experiments are carried out to identify a set of critical complexity factors in our
ATCEM, and analyze the performance of ATCEM by comparing with existing models for measuring
air traffic complexity.
All experiments were carried out on data from southwest airspace of China, which consists of seven

sectors (Figure 5). The database used was extracted between 12:00AM and 04:00PM on 28 July 2010,
provided by the Air Traffic Control Center of China, including radar data of aircraft, the characteristics

Figure 4. The flowchart of integrated classification in air traffic complexity evaluation model with integrated
classification. BPNN, back-propagation neural network; AdaBoost, adaptive boosting.

Figure 5. The southwest airspace of China and the corresponding seven sectors.
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of sectors, and air traffic complexity of sectors. The radar data of aircraft were recorded every
4 seconds, and the degrees of sector complexity (low, medium, or high air traffic complexity) were
recorded every minute of the day. All complexity factors in the “factor pool” were computed every
minute for each sector according to the radar data of aircraft. A total of 6720 samples were obtained
and divided randomly into two parts with 60% and 40% samples, respectively, which were used as
train set Strain and test set Stest for ATCEM. For each model throughout our experiments, the results
were obtained on the basis of 25 independent runs to estimate the performance of ATCEM model
under the stochastic behavior that may be caused by the randomness in GA.

4.1. Air traffic complexity factor selection

The first experiment is aimed to select an effective and comprehensive set of complexity factors, which
will be used as input variables of our ATCEM, with GA-based selection method. The parameters of
GA-based selection method are presented in Table II.
Seven air traffic complexity factors are selected from the “factor pool”. Details of these selected

factors are presented as follows:

(1) Volume of sector (V): It is a geometric attribute of a controlled sector. In general, a sector with
larger size can accommodate more flights under separation standard, which leads to less workload.
In Reference [11], sector’s volume has been proved to greatly improve the prediction of sector
status, that is, the level (low, medium, or high level) of air traffic complexity.

(2) Number of aircraft within a sector (Nb): For a sector, more aircraft operating will increase the
traffic complexity and induce more workload. The volume of a sector and the number of aircraft
within a sector can be used together for roughly comparing complexity between the sectors. But
usually, the traffic complexity cannot be measured based on these two variables only (see the
example in Figure 1 in Section 2).

(3) Incoming flow of the controlled sector in future 5minutes (F5): This variable predicts the number
of aircraft that will enter into the controlled sector. The more the number of aircraft, the more will
be the complexity.

(4) Ratio of standard deviation of speed to average speed (σgs/gs): This variable can depict the disor-
der of aircraft operation. σgs is the standard deviation of aircraft speed within controlled sector.
Low standard deviation indicates less performance variation (i.e., speed disorder) between aircraft.
All aircraft flying at the same lower constant speed will be easy to control. Hence, with same
average speed, higher σgs/gs will increase air traffic complexity.

(5) Number of potential crossings (inter_hori): This variable counts the potential crossings (irrespective
of the aircraft direction on their trajectories) with angles greater than 20° [11]. It has a significant
impact on increasing sector complexity because potential conflicts may occur during controlling
aircraft that have potential crossings.

(6) Vertical proximity (vpro_2): It is defined as the inverse of average minimum vertical separation
between aircraft pairs [21]. Higher vertical proximity would increase the air traffic complexity
and cause controller to focus the attention on this pair of aircraft because of the possibility of
separation violation.

(7) Sensitivity indicator (sensi_c): It measures how fast aircraft are moving towards each other and
represents difficulty solving in potential conflicts in case of convergence in a controlled sector. A
situation with a “high sensitivity” is easier to resolve for the ATCo than one with a “low sensitivity”.

Table II. The parameters of GA-based selection method for selecting critical complexity factors.

Parameters Description Value

NP Population size 20
n Number of complexity factors 28
Max_Gen Number of generations in overall optimization 100
α Crossover rate 0.7
β Mutation rate 0.05

GA, genetic algorithm.
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With the aforementioned seven factors, our GA-based selection method searched for the best fitness
value, which related to percentage of correct classification and performance of classifier (Equation (1)).
It is probably because the combination of these seven factors can cover almost all critical characteris-
tics of air traffic in a sector. For example, the incoming flow of a controlled sector in future 15, 30, and
60minutes (F15,F30,F60) can be roughly predicted based on the information of F5 and σgs/gs; the
intrinsic attributes [11] of air traffic (from the 20th factor to 28th factor in Table I) can be represented
by a combination of σgs/gs, inter_hori, vpro_2, and sensi_c. Further advantages of the selected set of
factors will be presented in Section 4.2.

4.2. Comparing ATCEM to existing model

This experiment is aimed to evaluate the efficacy of ATCEM by comparing it with existing models. As
stated in Section 1, neural network can model the nonlinear complexity relationship between input and
output data and has been applied for air traffic complexity evaluation. Hence, the evaluation model
proposed by Gianazza et al. [11] is applied for comparison, including the structure of BPNN and
the complexity factor selection method, that is, combined PCA and SFS (PCA&SFS) method. We de-
note this compared model as BPNN_PCA in this paper.
With PCA&SFS factor selection method, six complexity factors are selected. They are sector

volume (V), number of aircraft within a sector (Nb), incoming flow of the controlled sector in future
60minutes (F60), aircraft density indicator (Dens), sensitivity indicator that measures the difficulty
to solve potential conflicts in case of divergence in the controlled sector (sensi_d), and variability in
headings (track_disorder). Two of these factors, V and Nb, are also selected with our GA-based
algorithm.
In order to evaluate the efficacy of each evaluation model, bothBIC value and percentages of correct

classification of sector complexity (i.e., {PG,PL,PM,PH}) are taken into account. The lower BIC is, the
better is the model obtained in terms of goodness of fit and model complexity. The higher the percentage
of correct classification is, the better is the air traffic complexity evaluation model obtained. The BIC
value and classification accuracies calculated from both training phase and testing phase were
analyzed statistically in terms of their average values and standard deviations over 25 independent runs
for each model, and the results are presented in Table III.
Because both factor selection method and classification method are different between ATCEM and

BPNN_PCAmodel, it is unclear whether superiority exists in selecting complexity factors with GA-based
method. Hence, we have further compared the ATCEM with IC_PCA model to investigate the contribu-
tion of selecting complexity factors with GA-based method. IC_PCA is the same as ATCEM, but with
selection method replaced by PCA&SFS. The results obtained by IC_PCA are also shown in Table III.
The output of all three models is the probability vector [OL,OM,OH]. OL, OM, and OH are the cor-

responding probabilities of classifying the air traffic into low complexity, medium complexity, and

Table III. Comparisons among ATCEM, BPNN_PCA, and IC_PCA for evaluating air traffic complexity.

Evaluating model Results

ATCEM BIC train PG
train PL

train PM
train PH

train
1.8253 (0.0255) 78.6% (0.0053) 76.5% (0.0111) 81.6% (0.0157) 76.4% (0.0177)
BIC test PG

test PL
test PM

test PH
test

2.2376 (0.0360) 76.7% (0.0054) 75.7% (0.0279) 79.4% (0.0193) 73.8% (0.0192)
BPNN_PCA BIC train PG

train PL
train PM

train PH
train

2.7406 (3.7562) 73.9% (0.0798) 75.5% (0.1582) 74.4% (0.1557) 72.1% (0.0601)
BIC test PG

test PL
test PM

test PH
test

3.1359 (3.8558) 71.9% (0.0789) 75.2% (0.1585) 71.9% (0.1507) 69.9% (0.0667)
IC_PCA BIC train PG

train PL
train PM

train PH
train

1.8693 (0.0241) 76.0% (0.0067) 79.3% (0.0124) 77.3% (0.0167) 72.2% (0.0186)
BIC test PG

test PL
test PM

test PH
test

2.2549 (0.0367) 74.0% (0.0080) 77.9% (0.0225) 75.2% (0.0226) 70.0% (0.0126)

ATCEM, air traffic complexity evaluation model with integrated classification; PCA, principal component analysis; BPNN,
back-propagation neural network.
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high complexity based on input data, respectively. The target of [OL,OM,OH] is [1, 0, 0], or [0, 1, 0], or
[0, 0, 1]. These models will classify the air traffic complexity to a level that has the highest probability.
For each level of air traffic complexity, percentage of correct classification (PL, PM, or PH) is calculated
based on real data samples and is analyzed statistically in terms of their average values and standard
deviations over 25 independent runs for each model.
In each row of the table, the best value is highlighted in boldface. It is clear that ATCEM has sig-

nificantly improved BIC and almost all the classification accuracies for sector complexity. PG is the
global proportion of correct classification for all input vectors, and PL, PM, and PH are the percentages
of correct classifications for the low, medium, and high levels of air traffic complexity, respectively.
The probabilities PG and PH have been increased up to 5% and 4%, respectively, which are very
critical in ATM system. Besides, the standard deviation of the BIC value and all classification accura-
cies obtained by ATCEM are much lower than those obtained by BPNN_PCA, which means ATCEM
is much more stable on air traffic complexity evaluation. We also note that the ATCEM, whose input
complexity factors are obtained by GA-based selection method, performs better than IC_PCA, espe-
cially in terms of PG, PM, and PH.
Furthermore, the Wilcoxon rank-sum test [22] was carried out on the results obtained by 25 runs of the

three compared models, and the one that is significantly better than the others (with the significance level
of 5%) is underlined. It can be observed that ATCEM significantly outperformed the BPNN_PCAmodel.
Benefiting from our GA-based factor selection and integrated classification, it is not surprising to find

the superiority of ATCEM for air traffic complexity classification. GA-based selection method can ensure
the chosen factors set is optimum without considering the relationship among factors, and moreover, the
seven selected factors {V,Nb,F5,σgs/gs, inter_hori, vpro_2, sensi_c} in our ATCEM cover almost all
important characteristics of air traffic in a sector. The superiority of our selected factors set can be noted
from the comparison between ATCEM and IC_PCA. Furthermore, from the comparison between
IC_PCA and BPNN_PCA, it can be seen that integrated classifier performs better than single classifier,
that is, the BPNN. The integrated classification method, which decreases the BIC value and the standard
deviation ofBIC value and improves the classification accuracy, is more stable and effective to reflect the
nonlinear complex relationship between selected factors and air traffic complexity.

5. CONCLUSION AND FUTURE WORK

In ATM system, it is critical to effectively measure the air traffic complexity. In this paper, a novel
ATCEM is presented to measure the air traffic complexity. ATCEM is composed of input variables,
output variables, and a classifier that constructs mapping relationship between input and output data.
A specific GA-based selection method is presented to select an effective and comprehensive set of
complexity factors as input variables. Then, an integrated classification is built in ATCEM to classify
the level of the air traffic complexity according to selected factors. With efficient training and learning,
ATCEM has selected seven efficient and critical factors, and with these selected factors, ATCEM can
effectively and stably evaluate the air traffic complexity. Empirical studies on the real-world data of the
southwest airspace of China clearly demonstrated the efficacy and stability of ATCEM.
Although preliminary results are promising, we firmly believe that the ATCEM presented here can

be further improved to increase the classification performance of air traffic complexity. A more effec-
tive integration method to form a stronger classifier with weak classifiers is under investigation to
enhance the performance of our ATCEM.

6. LIST OF ABBREVIATIONS

ATCEM Air traffic complexity evaluation model with integrated classification
ATCo Air traffic controller
ATM Air traffic management
BPNN Back-propagation neural network
BPNN_PCA An air traffic complexity evaluation model with BPNN and PCA&SFS
DD Dynamic density
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FAA Federal aviation administration
GA Genetic algorithm
IC_PCA The same air traffic complexity evaluation model as ATCEM, but factor selection

method replaced by PCA&SFS
NASA National aeronautics and space administration
PCA&SFS principal component analysis and sequential forward selection
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