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Abstract

By using weight coefficients, technique of real analysis, and Hermite-Hadamard's
inequality, we give a more accurate Hardy-Mulholland-type inequality with
multiparameters and a best possible constant factor related to the beta function. The
equivalent forms, the reverses, the operator expressions, and some particular cases
are also considered.
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1 Introduction
Assuming that p > 1, }9 1=1, aub, >0, a={an, €l,b=1{b,)2, €l |al, =

(Zf::la’,’,,)l% >0, and [|b]|, > 0, we have the following Hardy-Hilbert inequality with the

best possible constant factor (see [1], Theorem 315):

S
sin(wr /p)
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The more accurate and extended inequality of (1) is given as follows (see [1], Theorem 323
and [2]):

S aub, T
D <——Jal,lbl, (©<a<D), (2)

m+n—a sin(r/p)

where the constant factor is the best possible. Also, we have the following Mulhol-

sm(rr /p)

land inequality similar to (1) with the same best possible constant factor (see [3] or

sin ﬂ/p

(1], Theorem 343, replacing “, b” by dw, by):

X; ; Inmn s1n(n/p) (Z ml‘l’) (Z nHI) ' ®)

n=2

Inequalities (1)-(3) are important in analysis and its applications (see [1, 2, 4—20]).
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Suppose that u;,v;> 0 (i,j € N ={1,2,...}) and

u, := i i, V, = i vj (m,meN). (4)
i=1 j=1

Then we have the following Hardy-Hilbert-type inequality ([1], Theorem 321):

e le] 1/q 1/p

Wm U @b b4
DX < T lally 161l ®)
oo m+ Vi sin(m /p)

For p; = vj =1 (i,j € N), inequality (5) reduces to (1). Replacing /ﬁ,ﬁqam and v,ypb,, by am
and b, in (5), respectively, we obtain the equivalent form of (5) as follows:

00 00 an dlr’n o bZ %
ZIZU +V, sin(Z )(Z ‘) (Z?) ' (6)

n n=1 Un

In 2015, Yang [21] gave the following extension of (6). For 0 < 11,43 <1, A1 + Ap = A,
decreasing sequences {u,,}5 ; and {v,}52;, and Uy = Vi, = 00, we have the following in-

equality with the best possible constant factor B(Aj, 15):

ZZ(U + V)t

m=1 n=1

—_

1 1

o Up(l—)»l)—l L 1P Vq(l—kz—l) pl e
< B(A1,12) |:Z % Z nT_IW , (7)

m=1 Wim n=1 Up
where B(u, v) is the beta function (see [22]):
00 tu—l
B(u,v) := —dt ,v>0). 8

(u,v) /o T (w,v>0) ®)

In this paper, by using weight coefficients, technique of real analysis, and the Hermite-
Hadamard inequality, we give a Hardy-Mulholland-type inequality with a best possible

constant factor - S 88 follows.

( ]
For p1 = vy 1 decreasing sequences {i,,}5o; and {v,}i°;, and Uy = Vi = 00, we have

1 1
o 00 u p-1 p[ v, \7! q
_r Hm P ) o, 9
) Sin(”/p) {%(Mmﬂ) am:| |:n22:<vn+1) n:| ( )

which is an extension of (3). So, we have obtained a more accurate and extended inequal-
ity of (9) with multiparameters and a best possible constant factor B(A1, A2). We also con-
sider the equivalent forms, the reverses, the operator expressions, and some particular
cases.
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2 Some lemmas and an example

In the following, we make appointment that p #0,1, }l’ + é =1,0<A, A <1, A +Ay=A,

145,05 > 0 (i, € N), with pu1 = vy =1, Uy, and V, are defined by (4), —m <@ <1, =y <
2 2

oo 1 00 1
B <1, au, b, >0, ||“||p,<l>~A = (Zm=2 qu(m)ﬂI:n)p , and ||b||q,\ll;h = (Zn=2 \I’)L(Vl)bZ)q, where

U, \**
) (Inal, P07 (meN\{1}),

CDA(m) = <
Mm+1

n+l

Vi, \*!
W, (n) := ( ! > (InBV,)1072271 (e N\{1}).

Lemmal [fa€R,f(x) is continuous in [a — %, a+ %], and f'(x) is strictly increasing in the

intervals (a — %,a) and (a,a + %) and satisfying
lim f'(x) = f'(a—0) <f'(a+0) = lim f'(x),

X—>a— X—>a+

then we have the following Hermite-Hadamard inequality (cf. [23]):

1
a+y
fla)< / X f(x)dx. (11)
a-3
Proof Since f’(a — 0) (< f'(a + 0)) is finite, we define the linear function g(x) as follows:

gw)=f(a-0)x-a)+fla) xe [”_ %,m %}

Since f’(x) is strictly increasing in (a — %,zz), we have that, for x € (a — %, a),
(fx) —g®)) =f'(x) —f'(a—0) <0.

Since f(a) — g(a) = 0, it follows that f (x) —g(x) > 0,x € (a — %, a). In the same way, we obtain
f(x) —g(x)>0,x € (a,a + 3). Hence, we find

f:ff(x) dx > /:fg(x) dx = f(a),

2

that is, (11) follows. a

Examplel If {1} ; and {v,};°, are decreasing, then we define the functions p(t) := s,
te(m—-1,m] (meN); v(t) :=v,, te€(n-1,n] (neN), and

x Yy
Ux):= / w(@)dt (x>0), V(y):= / v(t)dt (y>0). 12)
0 0
Then it follows that U (m) = U,,, V(n) = V,,, U(00) = Uy, V(00) = Vo, and

U'(x) = ux) = wm, x€(m—1,m),

V') =v(@) =v,, ye€m-1n)(mneN).
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For fixed m, n € N\{1}, we also define the function

_ I BV (x) 1 1
S):= V(x)(Inal, + In BV (x)»’ xe |:n T §:|

Then f(x) is continuous in [n — %,n + %]. Forx € (n - %,n) (n € N\{1}), we find

I BV (x) A1n*27 BV (x) 1-2Xy
V@) Inall,+mBV(E) | V> (x) }
Uy

x Vx)Inal,, + In BV (x))*"

o=

Since 1 — Xy > 0, it follows that f’(x) (< 0) is strictly increasing in (n — %, 1) and
lim f'(x) = f'(n-0)

In*>1gv, Aln*27t gy, 1-Xy
- + +
V, Inal, +InBV, V27
Uy
X .
V.(Inal,, +InBV,)*

In the same way, for x € (1,1 + %) (n € N\(1}), we find

In*271 BV (x) Aln*2 L BV (x) 1-2,
Vi(x) " Inall, +InBV(x) * V222 (x):|

Un+l

X V@) (inall, + n V()"

f’(x):—[

so that f'(x) (< 0) is strict increasing in (n, n + %). In view of v,,1 < v, it follows that
lim f'(x) = f'(n + 0) > f'(n - 0).
X—>Nn+

Then by (11), for m, n € N\ {1}, we have

s i 027! BV (x)
J(n) < /n% ) da = /n% V(x)Inal,, + In BV (x))* dx. (13)

Definition 1 Define the following weight coefficients:

nd 1 Umllnhaum
Ao, m) = , meN\{1}, 14
w(ha,m) ;m*(aﬁumv,,) V,In' 2 gV, M1 a4
ad 1 w1 12 BV,
@ ()= Pt 2BV N, (15)

In*(epU,,V,) U, In' ™ «l,

m=2

Lemma?2 If{u, ) and{v,}2, aredecreasing and Uy, = Vo, = 00, then for m,n € N\{1},
we have the following inequalities:

®(Aa,m) < B(A,A2) (0 <Ay <1,A1>0), (16)

@ (A, 1) < B(A,A2) (0 <A <L Ay>0). (17)



Yang and Chen Journal of Inequalities and Applications (2016) 2016:82 Page 5 of 16

Proof Forx e (n— 2,11 + = )\{n}, Ups1 < V'(x), by (13) we find

> 3 M ol 12 BV (x)
ko m Z / V(x)(Inal, + In BV (x))*

<

X Int all, I BV (x) V(%)
22:/ (Inall, +InBV(x)* V(x) =

1
2

[ M ald, I BV (x) V(%)
B j; (Inal,, +In BV (x))* V(x)

Setting ¢ = l&i‘gy’:), since BV(2) = B(1+ ) >1and “///((xx)) dx = (Inal,,) dt, we find

o 1
A, —— 27V dt = B(hy, Ag).
w(gm)</0 107 (A1, 12)

Hence, we obtain (16). In the same way, we obtain (17). O
Note For example, u,, v, = n% (0 <o <1) satisfy the conditions of Lemma 2.

Lemma 3 With the assumptions of Lemma 2, (i) for m,n € N\{1}, we have

B(h1,42)(1 = 0(Aa, m)) < w(hg,m) (0 <Ay <1,41>0), (18)
B(h,A)(1=9(,m) < (A,m) (0<hy <1,42>0), 19)
where
A2
8y, 1) = 1 In*2 B(1 + vy) 1

B(A1,22) Ap[1 + %M] In*2 all,,

ol

- \In*2al,

€(0,1) (O(m)e(l_ﬁ,l)), (20)
Buy

1 In™ (1 + ) 1
B(A1,22) A[1 + 71“"‘(lln"g‘(/’z)"z)]A In* BV,

~ “\InM BV,
€ (0,1) (ﬂ(n)e(l_—a,l)>; (21)
o2

(ii) for any ¢ > 0, we have

19()“1!”) =

o]

Mm+1 1 1
=- +c0(1) ), 22
%Umlnhcaum c<1nca(1+m) ¢ ()> 22)

= Upa 1 1 ~
= - D). 23
gvnln”ﬁvn C(lncﬂ(1+vz)+CO( )> (23)
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Proof In view of 8 <1 and 8 > m > 1o it follows that 1 < ﬁ— +1 < 2. Since, by
Example 1, f(x) is strictly decreasing in [n, 1 + 1] for m € N\({1}, we find
I ol In*27! BV (x)
a)()"Zr Zf A
V(x (Inal,, + In BV (x))

[ WM all, "2 BV (x) V' (x)
B /2 (Inal,, +In BV (x))* V(x)

~ /00 In™ all, In*27 BV (x) V' (x)
- 1

d
= (nall, +In V) V() *

dx.

2 IMall, I BV (k) Vx)
- f1 6.1 (Inal, + nBV(x)* V(x)

Setting ¢ = lnﬁ‘/x),wehaveln/SV(1 b +1)-1n,3( 18,) = 0 and
g all,, vy

* ]' Ao—1
A2, 271 dt
o( zWI)>/O ar0

2 M all, I BV(x) V(x)
_/1 8,1 (Inall, +InBVx)* Vix)

= B(h, 22)(1 = 0o, m)),

1 2 M all, I BV (x) V (k)
" B, 2) /1 £ (Inall, +InpV(x Nt Vix)

€ (0,1).
There exists 0(m) € (1 ’3 ,1) such that

1 In™ all,
B(\1,A0) (Inall, + In BV (1 + 6(m)))*

2 /
X /; 5 In*27 BV (x) V' dx
=41

9()\.2,1’}’[) =

= V(x)
~ 1 I ald,, In*? B(1 + vy)
B(A1,A2) Ap(Inall,, + In BV (1 + 0(m)))*
1 In*? B(1 + vy) 1

" B, k) Aol + M] In*2 al,,
Inal

Since we find

In*2 B(1 + vy) 1

0<O(Ay,m) < ,
(A2, m) ABOg, ha) 2 all,

namely, 6(Ay, m) =
and (21).

(1 il ), we obtain (18) and (20). In the same way, we obtain (19)



Yang and Chen Journal of Inequalities and Applications (2016) 2016:82 Page 7 of 16

For any ¢ > 0, we find

oo

Mm+1
Z U, In"*« = Z u, 1n1+cotLI

_ M2 " Z Wm
Uy ally  “= U, In"*all,
U’(x
= 1+sau Z/ . u ]n1+c dx

M2 / U'(x)
< Tiearn T T ol F
WIinall, “—=Jua U(x)In " al(x)
M2 /°° U'(x)
=T o T Tt
UWIn*all, Jo, Uw)In*al(x)

_ Ha . 1
U In**all, chna(l+uy)

1 1 M2
== +c ,
clina(l+ps)  Upn™* all,

i Kl Z/’”“ U'(x) dx
U, n"*all, U, n"*all,

o m+1 L[’(x)
g ,;/m UG ali()

VI all(x)  clnfa(l+po)

_ /”o U'(x)dx 1 1
2 Ulx

Hence, we obtain (22). In the same way, we obtain (23). O

3 Main results and operator expressions

In the following, we also set

-1
En(m) = w(Ay, m)( m )p (lnaum)p(l_m_l

Vm+1 . (24)
W, (n) = (M, n)(v ”1> (In V)12 (m,n € N\{1}).
n+
Theorem 1 (i) For p > 1, we have the following equivalent inequalities:
> i SRR T 05)
= o 0 (@Bl V)
-1 Y
Un+l InP*2= BV, Am P
- < llall,, 26
! iz (@, m)p1V, [Z 1n*(aﬁumvn)} } = lalp3, (26)

(ii) for 0 < p <1 (or p < 0), we have the equivalent reverses of (25) and (26).
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Proof (i) By Holder’s inequality with weight (see [23]) and (15) we have
oo p
Y
|:m=2 In*(epU,,V,) i|

i ( U,l,fq(lnaum)(l‘“)/qv% ; )( (InpV,)0- /plullq ) p
— In*( aﬂU VX (Ingv,) 0=l ") Nt (nald,,) -0/,

m=2

i Uy (nald,) =Py,
A(ozﬁu V) (InBV,)i*2ubld

m=2
-1
i 1 (V)i 1
X
—~ In*(«BU,,V,) U U, (Inal,)! x1UZ+11
— (w_()\bn))p_lvn i Un+luﬁl_l(lnaum)(l_h)(p_nﬂfn (27)
(In BV 2 01 £V, In (@BU,, Vi) (In BV, 2l
Then by (14) we find
1
[0 o0 -1 (1-21)(p-1) »
Upy u,, (Inal, 1
<[y v ( I>A ; }
L n=2 m=2 I (@BUn V) Va(n BV,,) 2,LLm+
_ 1
) iivml(lnau ) Ul (Inald, -0
Lm=2 n=2 ln}\(aﬂu V) Vi (IH,BV )1 Azlum 1 "
- o [\ :
- Zw(xz,m)( ” ) (lnaL[m)p(l)‘l)lafn:| , (28)
| m=2 Mm+1
and then (26) follows.
By Holder’s inequality we have
I= i (V)P ol S ay
"L (@)1 VP o 0 @B V)
1
1 (InBV,)r "2
X [(w(xl,n))qV_T”an <JlIbll,5, - (29)
n n+l
Then by (26) we have (25).
On the other hand, assuming that (25) is valid, we set
p-1
(IIIIBV) 2= Un+1 i A,
by, := , N\({1}. 30
(w (M, n))P- v, X:;lnk(aﬂumvn) ne Nl (30)

Then we find J? = ||b||2%. If ] = 0, then (26) is trivially valid; if J = oo, then by (28), (26)
takes the form of equality. Suppose that 0 < J < co. By (25) it follows that

1617, =17 =1 < llall,, 1613, (31)
-1
1613 =7 < lall, 3, (32)

and then (26) follows, which is equivalent to (25).
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(i) For 0 < p <1 (or p < 0), by the reverse Holder inequality with weight and (15), we
obtain the reverse of (27) (or (27)), then we have the reverse of (28), and then the reverse
of (26) follows. By Holder’s inequality we have the reverse of (29), and then by the reverse
of (26) the reverse of (25) follows.

On the other hand, assuming that the reverse of (25) is valid, we set b, as in (30). Then
we find J? = ||b||ZY%. If ] = oo, then the reverse of (26) is trivially valid; if J = 0, then by
the reverse of (28), (26) takes the form of equality (= 0). Suppose that 0 < J < co. By the
reverse of (25) it follows that the reverses of (31) and (32) are valid, and then the reverse

of (26) follows, which is equivalent to the reverse of (25). O

Theorem 2 Ifp > 1, {im}oe, and {v,};2, aredecreasing, Us, = Voo = 00, |lallp,e, € Ry, and

16llg,w, € R,, then we have the following equivalent inequalities:

i a— TV b , 33
2 2 i ap,vy) BNl 1blo, (33)
1
o Uil 1 iy - Am e
. AL D Sy B(A, & , 34
g X; Vi ’ ;lnl(aﬁumvn) < B0, da)lalpo, (34)

where the constant factor B(Ay, 1) is the best possible.

Proof Using (16) and (17) in (25) and (26), we obtain equivalent inequalities (33) and (34).
For ¢ € (0, p)1), we set h=A— (e (0,1)), hp = Ag + & (> 0), and

Ay = Kot lnxl‘laum - Ko ln’\l_;f_lal,[m,
m u,, (35)
Z’ Un+l 5\27671 Un+l Ap—E-1
n=71n BV, = In**"7a7 BV,.
n n

Then by (22), (23), and (19) we have

S e\
a E _ m+1 n+1
1.0, 1B, (mZ Gonau, ) \ & v gy,

I N oYe) ’ ol
_E[lngo{(1+u2) te ] [lnsﬁ(1+U2) e ] ’

: 111)L O{,Bu V) In* (C(ﬂ[,[ V)U lnl MO(U annEH,BVn

n=2 m=2 n=2 Lm=2
o0 o0 1 U

= w(kl,n)"i” > B(h1,A2) <1 - O( - )) el
HZ V,In**' BV, 22: " gV, /) ) VuIn®* BV,

o0

I Un+l > Un+l
ot Bl )

= \V,(Ingv,)la™

1 -~ - 1 ~
= EB()\I» )\2)|:m + S(O(l) - O(l)):|
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If there exists a positive constant K < B(A1,A3) such that (33) is valid when replacing
B(A1,)2) by K, then, in particular, we have el < eKllallp,o, ||l~)||q,\p)h, namely

13 13 1 ~
B()Ll - ;,)\42 + I;) [m + S(O(l) - O(l))}

1

q

1 5 1 N
<K[1n8a<1+m) * SO(”] [ln‘sﬂ(l o) ”O(D}

It follows that B(A1, 1) < K (¢ — 0%). Hence, K = B()A1, A;) is the best possible constant
factor of (33).
Similarly to (29), we still can find the following inequality:

I<1lbllgw, - (36)
Hence, we can prove that the constant factor B(A1, A;) in (34) is the best possible. Other-
wise, we would reach a contradiction by (36) that the constant factor in (33) is not the best

possible. g

Remark 1 (i) For @ = 8 =1in (33) and (34), setting

U, \""
m(m):=< ’”) (In U, 001,

m+1

Ve \*!
L ) (In V)11 (1, n € N\{1}),

Un+l

Y(n) = (

we have the following equivalent Mulholland-type inequalities:

o0 o0 a b
YD s <BOw Al bl (37)
n=2 m=2 In (UmVn)
o Unsl Ap—1 C a 1’
PRty — < B, M) |2l » 38
22 7 g };mk(umvn) (22 allpg, (38)

which are extensions of (9), and the following inequality:

ry L 1
= Un+l = Am i T = um P i
iz Vs [Z ln(UmVn)] } * Sin(Z) [Z<um+1) a[:”] ' e

n=2 m=2 m=2

(ii) For ; =vj=1(,j eN), A =1, A1 = %, Ay = }7, (33) reduces to the following more

accurate and extended Mulholland’s inequality:

g b r (S \P ()
Z:Zjln(ozﬁmn)<sin(n/p) (Z ml—p> (Z nl—q) ) (40)

m=2 n=2 m=2 n=2

where 3 <a,B<1
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Forp>1, \I-’ifp (n) = %1 (In B V,)P*>71, we define the following normed spaces:

{a={amlp s llallpe, <o},

vaCD}\
lyw, = {b = {ba}2 bl 4w, <00},

—— — oo
Lwiv = {e=1{cn}32 lell, g1-» < oo}

Assuming that a = {a,,}5,_, € [, 0, and setting

o0 am
c={ealyly =) S, neN\{1},
= I (aBUp V)

we can rewrite (34) as follows:

||C||p,\1,;—p <B(M, Ao)llallpe, < o0,

thatis, c € lpyq/)lt—p.

Definition 2 Define the Mulholland-type operator T : [, ¢, — lp y1-» as follows: For any
7EA
a={anu}y € lyo,, there exists a unique representation 7z = c € lp plr Define the formal

A

inner product of Tz and b = {b,}2, € [y, as follows:
0o [ oo yy
(Ta, b) := Z;LZ; m]bn. (41)
Then we can rewrite (33) and (34) as follows:
(Ta, b) < B(h1, A2)llallpo, 1Dl q,, (42)
I Tﬂ||p,q,;—p < B(A1, A)llallp, @, - (43)
Define the norm of the operator T as follows:

I Tall,, y1-»
TEL
IT|:= sup ———"—
a)el,o, 1alpe;

Then by (43) we find || T'|| < B(A1, 1) Since the constant factor in (43) is the best possible,
we have

T = B(*1,22). (44)

4 Some reverses
In the following, we also set

~ U r-1
Q, (m) = (1 —6(Ag, Wl))( m ) (]naum)P(l—M)—l,

m+1

-1
Fi(n):= (l—ﬁ(kl,n))( i )q (In V)14~ (m,n € N\{1}).

Un+l
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For 0 <p <1orp <0, westill use the formal symbols ||al|,e,, |6llgw;, 14,5, and 1Dl 7, »

and so on.

Theorem 3 If0 < p <1, {iu},, and {v,},2, are decreasing, Uy, = Voo = 00, ||allp,0, € Ry,
and ||bllgw, € R, then we have the following equivalent inequalities with the best possible

constant factor B(hy, 12):

0o o0 ﬂmbn
PN S s By Aa) a5, 1Bl (46)
n=2 m=2 In (aﬂumvn) »
v > a P 7
n+l " m
271 gy, — > B(A, Mo)llall, s, - 47
{2; 7 B [;maﬁumv,,)“ (i 22)lall, g, (47)

Proof Using (18) and (17) in the reverses of (25) and (26), since

(0o m)? > (B 12))P (1- 00 m))? (0 <p<D),
(@ ()7 > (BOa,i2)T (q<0),
and
L ! (0<p<l),

(B(A1, A2))P! g (o (A, n))P1

we obtain equivalent inequalities (46) and (47).
For ¢ € (0, pA1), we set A1, Ay, dy, and b, as in (35). Then by (22), (23), and (17) we find

1 1
o0 P oo q
(=62, m) it |” Uni1 !
all, s 1bllgw, = E E
lallp, 1Pl [ Uy, 10" all,, Y, ' BV,

m=2

o~ U = I ’
m+1 m+1
= O
<Z u, n'"*¢ o, Z (U In**2*¢ o U, ))

m=2

~ 1
Un+l
X e
(; V,, In'*® ,BV,,)

1 1 z 1 5|
= g[m + 8(0(1) - Ol(l))] [m + 80(1)] ’

1

n=2 m=2 mrn

_ i i 1 Mm+1 lnileV Un+l
| 5o M (@BULV,) U, I al, | Valn™ BV,
00
=Y w e < xl,mz”’“i*f
- V 1 &+ /3 V 1 &+

+ e(~)(1):|.

= 13(}\ A2) 1
T |:1n5,3(1+v2)
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If there exists a positive constant K > B(1, A;) such that (46) is valid when replacing
B(A1,42) by K, then, in particular, we have &I > eKllal g, ||ZJ||q_\p)L, namely

e e 1 ~
B(Al — ;,Az + I;) [71118 B+ 0) + sO(l)i|
1 7
> 1<[—1n8 TR +e(0(1) - 01(1))}

! 0@ !
[gian o0]

It follows that B(A1,42) > K (¢ — 0%). Hence, K = B()A1, ;) is the best possible constant
factor of (46).

The constant factor B(Aj, A,) in (47) is still the best possible. Otherwise, we would reach
a contradiction by the reverse of (36) that the constant factor in (46) is not the best pos-
sible. O

Remark 2 For o = 8 =1, setting

1 In*2(1 + vy) 1
B(A1,22) A, [1 + W] In*2 U,

é‘()"27””)

1
- O(M) €(0,1) (6(m) € (0,1)),

p-1
U ) (In Um)p(l—kl)—l

Mm+1

@i.(m) = (1= 0(rp, m)) (

it is evident that (46) and (47) are extensions of the following equivalent inequalities:

o0 [o¢] a b
22 v > Bl Alalg, 16l (48)
n=2 m=2 n ( m n)
00 00 r 3
Z‘ Untl jppia-1yy Z‘ m ’ > B(A, A2)llall (49)
e VN 1, A2 D).
v, "=t (U Vi) P

where the constant factor B()A, A;) is still the best possible.

Theorem 4 If p <0, {(}oo, and {v,}°, are decreasing, Uy, = Voo = 00, |lallpe, € Ry,
and ||b|lgw, € R,, then we have the following equivalent inequalities with the best possible
constant factor B(Ay, 13):

oo oo
> B(A, A2)lla bl =, 50
ZZIHA aﬂum 75 > B2l b1, 50)

n= =1

1
Jy = i U INP271 BV, i - 717
2T & T 90V, | & 0 @U,Va)

> B(Ah1, A2)llallp,, - (51)
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Proof Using (16) and (19) in the reverses of (25) and (26), since

AT
S

(p<0),

(1- z?(kl,n))% (0<g<1),

(@0(ra,m))? > (B(A1, 22))

N
N

(w()"hn)) ( ()"lr )\2))

and

1 v 1 v 0)
[(B(kl,kz))p‘l(l - l’(kl,n))”‘l] g [(w(khn))p‘l] <0

we obtain equivalent inequalities (50) and (51).
For & € (0,gAy), we set A = A; + 2 (>0), Ay = Ay — § (€ (0,1)), and

~ Mm+1 Mm+l | aq-£-1

Ay = oy PSS lol, = 222 ™ all,,
U U

7 Up+l _ Up+l Ao—E€-1

b, = —=1n*"1BV, = =1n"2"a" BV,
n VVI

Then by (22), (23), and (16) we have

Mm+1

B o0
a bl, 5z, =
lallp,e, 161147, ( 0 1n8+1aum)
OO
_ Mm+1
u ln“1al,1m

Un+l
X —_—
[; V,In**' BV,

l
1 ﬁ )"1! ))Un+1
VI BV,

n=2

Q=

M

0 Un+l
Vn 1n1+(k1 +&) ‘3 Vn

n

Ti=N

1 1 o)
_g[lnsa(1+,u2)+8 :|

1

1 ~ q
X [m + 8(0(1) - Ol(l))j| ,

oo oo ~ 7

~ amb,
1:221 HaBU,V,)

_ d = lnh ocL[ Un+l 5\2—1 Mm+1
- Z x In BVn e+l
In*(a«BU,, V) Vi U, In*"al,
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If there exists a positive constant K > B(A1, A2) such that (50) is valid when replacing
B(A1,22) by K, then, in particular, we have &I > eK||allp,o, ”l;”qu namely

& ) 1
o=t o)
> I([m + 80(1)]

1

1 q
X [m + 8(0(1) - Ol(l))] .

It follows that B(A1,A2) > K (¢ — 0*). Hence, K = B(A1, A;) is the best possible constant
factor of (50).
Similarly to the reverse of (29), we still can find that

I=Dlblgr,- (52)

Hence, the constant factor B(Aq, 1) in (51) is still the best possible. Otherwise, we would
reach a contradiction by (52) that the constant factor in (50) is not the best possible. [J

Remark 3 For o = 8 =1, setting

s 1 In*1 (1 + o) 1
19()»1,”1) = BOu A ln(1+19(n)2/A2) A M
(A, 22) A [1 + Sy e It v,

1
= O(W) €(0,1) (9(n) €(0,1)),

~ - V. q-1
Jn(n) = (1-19@1,;4))( ) (In v, )02,

n+l

it is evident that (50) and (51) are extensions of the following equivalent inequalities:

SN s By ) [l 1B, 5, (53)
n=2 m=2 In (Um V") .
&0 Uor InP27 1y 00 a p %,
iz 1« ng(k p—ln |:Zl > L[m V, :| } > B(A1, A2)llall pgpy » (54)
n=2 \- 7 L)V | s 0" (U, Vi)

where the constant factor B(), A;) is still the best possible.
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