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In the present paper, the approximate analytical solution of a nonlinear diffusion equation with 
fractional time derivative α  ( 10 << α ) and with the diffusion term as nu ( 0≠n ) are obtained with the help 
of analytical method of nonlinear problem called the Homotopy Analysis Method (HAM). By using initial 
value, the explicit solution of the equation for different particular cases have been derived which 
demonstrate the effectiveness, validity, potentiality and reliability of the method in reality. Numerical 
results of the fast and slow diffusion for different particular cases are presented graphically. The 
numerical solutions show that only a few iterations are needed to obtain accurate approximate 
solutions. 
 
Key words: Partial differential equation, nonlinear fractional diffusion equation, Brownian motion, homotopy 
analysis method. 

 
 
INTRODUCTION 
 
Ovsiannikov (1959) investigated the solution of the 
nonlinear diffusion equation, 
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by symmetry method, where ),( txu  represents mass 

concentration. This type of equation appears in plasma 
physics, kinetic theory of gases, transport in porous 
medium, etc. In many cases )(ug  is approximated as 

nuug =)( . Then, Equation 1 is called fast diffusion 

equation for 02 <<− n  and slow diffusion equation for 
0>n . In the first case, the spread of mass is faster than 

the linear case 0=n  and in the second case it is slower.  
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Gandarias (2001) investigated the fast diffusion equation 
for 1−=n . Later, Popovych et al. (2007) developed his 
idea and obtained new wider classes of potential non-
classical symmetries of the fast diffusion equation. 

Guo and Guo (2001) studied the large time behaviors 
of the global and non-global solutions of the Cauchy 
problem for a fast diffusion equation with source. 
Recently, Fa and Lenzi (2007) have used the Green 
function method to find the solution of the diffusion 
equation: 
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in a finite interval with diffusion coefficient 

θ−= ||)(),( xtDtxD  and initial condition )()0,( 0 xx ρρ =  

subject to absorbing boundaries. But to the best of the 
authors knowledge, the diffusion equation with fractional 
time derivative: 
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with the initial condition: 
 

)()0,( xfxu =                                                                  (4) 

 
The equation 4 condition has not yet been solved by any 
researcher. The aforementioned type of anomalous 
diffusion is a ubiquitous phenomenon in nature, and it 
appears in different branches of science and engineering. 
Most of the nonlinear problems do not have a precise 
analytical solution; specially, it is very hard to get it for the 
fractional nonlinear equations. So, these types of 
equations should be solved by approximate analytical 
methods. 

The approach used is based on homotopy analysis 
method (HAM) which is first proposed by Chinese 
Mathematician Shijun Liao (1992) in our Ph.D. 
dissertation. This extremely simple and highly powerful 
algorithm gives the numerical results compatible with 
those obtained by making use of Adomian’s polynomials 
which are too complex and lengthy to evaluate. In 2003, 
Liao claimed that HAM is a general analytical approach to 
get series solutions of various types of linear and 
nonlinear problem. In reality, it is seen that HAM provides 
a simple way to ensure the convergence of the series 
solution and therefore, it is valid for strongly nonlinear 
problems. HAM, which is based on homotopy and a 
fundamental concept of topology, has a freedom in 
choosing initial approximations and auxiliary linear 
operators which often helps to transfer the complicated 
nonlinear problem to its simpler form. This method has 
been successfully applied (Liao, 1998; Hayat et al., 
2004a, b, c; Liao, 2006; Wu and Liao, 2004) to solve the 
different nonlinear problems. The basic idea of the 
method and its applications in Science and Engineering 
for solving nonlinear problems and its comparison with 
the other analytical techniques can be found in the 
monograph of Liao (1992). 

In this article, HAM is used to solve the nonlinear 
diffusion equation with fractional time derivative, where 
the domain of the space variable is unbounded. The 
approximate analytical solution of probability density fun-
ction ),( txu for different fractional Brownian motions and 

also for the standard motions are derived successfully 
and presented graphically. 
 
 
PRELIMINARIES AND NOTATIONS 
 
Here, we give some definitions and properties of the 
fractional calculus and homotopy-derivative which are 
used further in this paper. 

 
 
 
 
Fractional calculus 
 
The following properties can found in Podlubny (1999): 
 
 
Definition 1 
 
A real function 0,)( >ttf , is said to be in the space 

ℜ∈µµ ,C , if there exists a real number µ>p , such that 

)()( 1 tfttf p= , where ),0()(1 ∞∈ Ctf , and it is said to be in 

the space nCµ  if and only if  NnCf n ∈∈ ,)(
µ . 

 
 
Definition 2  
 
The Riemann-Liouville fractional integral operator ( αJ ) of 
order 0≥α , of a function  1, −≥∈ µµCf , is defined as: 
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where )(αΓ  is the well-known gamma function. Some of 

the properties of the operator αJ , which we will need 
here, are as follows.  

For 0,,1, ≥−≥∈ βαµµCf and :1−≥γ  
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Definition 3 
 
The fractional derivative )( αD  of )(tf , in the Caputo 
sense is defined as: 
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for .,0,,1 1
nCftNnnn −∈>∈<<− α  

 
The following are two basic properties of the Caputo 
fractional derivative (Gorenflo and Mainardi, 1997): 
 

1. Let   NnCf n ∈∈ − ,1 ,   then   nfD ≤≤ αα 0,    is   well  
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2. Let Nnnn ∈≤≤− ,1 α and .1, −≥∈ µµ
nCf Then: 
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Homotopy-derivative 
 
The following properties can be found in Liao (2009). 
 
 
Definition 4 
 
Let φ  be a function of the homotopy parameter q , then: 
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is called the mth-order homotopy-derivative of φ , where 

0≥m  is an integer. 
Properties for homotopy-series: 
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it holds: 
 

1. .)( 1 mm uD =φ  

2. .)()( 111 φφ −= mm DqD  

3. .)(
0 ,2,121 ∑ = −= m

i imimD φφφφ  

4. If L  be a linear operator independent of the homotopy 
parameter q . For homotopy series, then 

)()( 11 φφ mm DLLD = . 

5. If f  and g  be functions independent of the homotopy 

parameter q , then .)()()( 2121 φφφφ mmm DgDfgfD ±=±  

 
 
SOLUTION OF THE PROBLEM BY HAM 
 
In the present paper, the nonlinear fractional diffusion 
equation: 
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is considered with the initial condition: 
 

)()0,( xfxu =                                                              (10) 
 
To solve Equation 9 by HAM, we choose the initial 
approximation: 
 

)(),(0 xftxu = ,                                                           (11) 

 
and the linear operator, 
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with the property: 
 

0][ =cL ,                                                                       (13) 

 
where c  is integral constant. Furthermore, Equation 9 
suggests that we define an equation of nonlinear operator 
as: 
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Now, we construct the zeroth-order deformation equation: 
 

]);,([)],();,([)1( 0 qtxNqtxuqtxLq φφ h=−− ,         (15) 

 
Obviously, when 0=q  and 1=q : 
 

),()0;,( 0 txutx =φ  and ),()1;,( txutx =φ .                 (16) 

 
Therefore, as the embedding parameter q  increases 
from zero to unity, );,( qtxφ varies from the initial guess 

),(0 txu  to the solution ),( txu . Expanding );,( qtxφ  in 

Taylor series with respect to q  one has: 
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If the auxiliary linear operator, the initial guess and the 
auxiliary parameter h  is properly chosen, the above series 
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is convergent at 1=q , then one has: 
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which must be one of the solution of the original nonlinear 
equation, as proved by Liao (2003). Now we define the 
vector: 
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So the mth-order deformation equation is: 
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with the initial condition: 
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Now, the solution of the mth-order deformation Equation 
20 for 1≥m  becomes: 
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where c  is the integration constant, which is determined 
by the initial condition of Equation 21. 
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Proceeding in this manner, the components 0, ≥kuk  of 

the HAM can be completely obtained and the series 
solutions are thus entirely obtained. 

Finally, we approximate the analytical solution ),( txu  
by truncated series: 
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The above series solutions generally converge very 
rapidly. A classical approach of convergence of this type 
of series is already presented by Abbaoui and Cherruault 
(1996). 
 
 
Particular cases 
 
Case 1 
 
For 1,1 == αn , Equation 3 reduces to the standard 
equation: 
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whose solution is: 
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Case 2 
 
For 1,2 == αn , Equation 3 becomes: 
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whose solution is: 
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Case 3   
 
For 1,1 =−= αn  Equation 3 becomes: 
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NUMERICAL RESULTS AND DISCUSSION 
 
Here, the numerical results of ),( txu for different 

fractional Brownian motions 
3

2
,

2

1
,

3

1=α  are also for the 

standard motion, 1=α  are calculated for various values 

of time t  with the various degree of the diffusion term at 
1=x  which are depicted through Figures 1 and 2 . 

It is seen from the figures that the rate of increase of 
),( txu  with time decreases with the increase of α  which 

conforms with the exponentially decay of regular 
Brownian motions. This result is in complete agreement 
with the results of Das (2009) and Giona and Roman 
(1992). 

For positive values of the power of diffusivity 
coefficient, that is, for 20 <<n  (Figure 3) anomalous 

diffusion has been observed where sub-diffusion occurs 
in the range of 6.00 <<n  (Figure 4) and super-diffusion 

in the range 24.1 << n  (Figure 5). This phenomenon can 

be demonstrated from the normal length scale analysis. 
As revealed by Figure 3, a threshold is being observed to 
exist in the region of 4.16.0 << n , that is, after the 
occurrence of sub-diffusion and before that of super 
diffusion, but in the range of 02 <<− n  (Figure 6), where 

no sub-diffusion or super-diffusion occurs, demarcation 
has been observed and ),( txu  describes the asymptotic 

behavior with t . 
 
 
Conclusion 
 
Homotopy analysis method is a powerful method of
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Figure 1. Plot of ),( txu  versus t  at: (a) 
2

1−=n  , (b) 1−=n ,  (c) 
2

3−=n  and (d) 2−=n  and 1=x  for 

different values of α .   
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Figure 2. Plot of ),( txu  versus t  at: (a) 
2

1=n ,  (b) 1=n ,  (c) 
2

3=n and (d) 2=n  and 1=x  for 

different values of α .  
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solving nonlinear equations since it ensures exact 
solution as an infinite series of the functions. Since this 
series is quickly convergent and truncated series can be 
calculated, as shown in the article, so it is easy to find the 
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approximate analytical solution of the nonlinear problem 
with a finite number of terms of the series solution. Here, 
we show that, even if a problem has a unique solution, 
there   may   be   present    unlimited    solutions    whose 
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convergence region and rate are dependent on an 
auxiliary parameter. Unlike all the previous analytic 
techniques, this method provides us with an easy way to 
manage and adjust the convergence region and rate of 
solution series of nonlinear problems. Thus, this method 
is very useful for nonlinear problems with strong 
nonlinearity. 
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