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Abstract

For analytic functions f(z) in the open unit disk U with f (0) = 0 and f ’(0) = 1,
Nunokawa et al. (Turk J Math 34, 333-337, 2010)have shown some conditions for
starlikeness and convexity of f(z). The object of the present paper is to derive some
generalized conditions for starlikeness and convexity of functions f(z) with examples.
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1 Introduction
Let A denote the class of functions f(z) of the form

f (z) = z +
∞∑
n=2

anz
n (1:1)

which are analytic in the open unit disk U = {z ∈ C:|z| < 1}. Let S be the subclass of

A consisting of functions f(z) which are univalent in U. A function f (z) ∈ S is said to

be starlike with respect to the origin in U if f (U) is the starlike domain. We denote by

S∗ the class of all starlike functions f(z) with respect to the origin in U. Furthermore, if

a function f (z) ∈ S satisfies zf ′(z) ∈ S∗, then f(z) is said to be convex in U. We also

denote by K the class of all convex functions in U. Note that K ⊂ S∗ ⊂ S ⊂ A.

To discuss the univalency of f (z) ∈ A, Nunokawa [1] has given

Lemma 1.1 If f (z) ∈ Asatisfies
∣∣f ′′(z)

∣∣ < 1 (z ∈ U), then f (z) ∈ S. Also, Mocanu [2]

has shown that

Lemma 1.2 If f (z) ∈ Asatisfies

|f ′(z) − 1| <
2√
5

(z ∈ U),

then f (z) ∈ S∗.
In view of Lemmas 1.1 and 1.2, Nunokawa et al. [3] have proved the following

results.

Lemma 1.3 If f (z) ∈ Asatisfies

|f ′′(z)| � 2√
5
= 0.8944 . . . (z ∈ U), (1:2)

Then f (z) ∈ S∗.
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Lemma 1.4 If f (z) ∈ Asatisfies

|f ′′(z)| � 1√
5
= 0.4472 . . . |(z ∈ U), (1:3)

then f (z) ∈ K.
The object of the present paper is to consider some generalized conditions for func-

tions f(z) to be in the classes S∗ or K.

2 Generalized conditions for starlikeness
We begin with the statement and the proof of generalized conditions for starlikeness.

Theorem 2.1 If f (z) ∈ Asatisfies

|f (j)(z)| � 2√
5

− M (z ∈ U), (2:1)

for some j(j = 2, 3, 4, ...), then f (z) ∈ S∗, where

M =

⎧⎨
⎩
0 (j = 2)
j−1∑
n=2

|f (n)(0)| (j � 3).
(2:2)

Proof For j = 2, the inequality (2.1) becomes (1.2) of Lemma 1.2. Thus, the theorem

is hold true for j = 2. We need to prove the inequality for j ≧ 3. Note that

f ′′(z) =
z∫

0

f ′′′(t)dt + f ′′(0). (2:3)

We suppose that |f ′′′(z)| � N3(z ∈ U). Then, (2.3) gives us that

|f ′′(z)| �
|z|∫
0

|f ′′′(ρeiθ )dρ| + |f ′′(0)|

� N3|z| + |f ′′(0)|
< N3 + |f ′′(0)|.

(2:4)

Therefore, if f(z) satisfies

|f ′′(z)| < N3 + |f ′′(0)| � 2√
5

(z ∈ U) , (2:5)

then f (z) ∈ S∗ by Lemma 1.3. This means that if f(z) satisfies

|f ′′′(z)| � N3 � 2√
5

− |f ′′(0)| (z ∈ U), (2:6)

then f (z) ∈ S∗. Thus, the theorem is holds true for j = 3.

Next, we suppose that the theorem is true for j = 2, 3, 4, ..., (k - 1). Then, letting

|f (k)(z)| � Nk (z ∈ U), we have that
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|f (k−1)(z)| =
∣∣∣∣∣∣

z∫
0

f (k)(t)dt + f (k−1)(0)

∣∣∣∣∣∣
� Nk|z| + |f (k−1)(0)|
< Nk + |f (k−1)(0)|.

(2:7)

Thus, if f(z) satisfies

|f (k−1)(z)| < Nk + |f (k−1)(0)|

� 2√
5

−
k−2∑
n=2

|f (n)(0)|,
(2:8)

then f (z) ∈ S∗. This is equivalent to

|f (k)(z)| � Nk �
2√
5

−
k−1∑
n=2

|f (n)(0)|. (2:9)

Therefore, the theorem holds true for j = k. Thus, applying the mathematical induc-

tion, we complete the proof of the theorem.

Example 2.1 Let us consider a function

f (z) = z + a2z
2 + a3z

3 + a4z
4. (2:10)

Since

|f ′′′(z)| = 24|a4|,

if f(z) satisfies

24|a4| � 2√
5

− 2|a2| − 6|a3|,

then f (z) ∈ S∗. This is equivalent to
√
5|a2| + 3

√
5|a3| + 12

√
5|a4| � 1.

Therefore, we put

a2 =
eiθ1

2
√
5
, a3 =

eiθ2

9
√
5
, a4 =

eiθ3

72
√
5
.

Consequently, we see that the function

f (z) = z +
eiθ1

2
√
5
z2 +

eiθ2

9
√
5
z3 +

eiθ3

72
√
5
z4

is in the class S∗.

3 Generalized conditions for convexity
For the convexity of f(z), we derive

Theorem 3.1 If f (z) ∈ Asatisfies

|f (j)(z)| � 1
j!

(
4√
5

− P
)

(z ∈ U). (3:1)
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for some j(j = 3, 4, 5, ...), then f (z) ∈ K, where

P =
j−1∑
n=2

n · n!|f (n)(0)|. (3:2)

Proof We have to prove for j ≧ 3. Note that

(zf ′(z))′′ = 2f ′′(z) + zf ′′′(z) = 2

⎛
⎝ z∫

0

f ′′′(t)dt + f ′′(0)

⎞
⎠ + zf ′′′(z). (3:3)

If |f ′′′(z)| � N3 (z ∈ U), then we have that

|(zf ′(z))′′| � 2

∣∣∣∣∣∣
z∫

0

f ′′′(t)dt + f ′′(0)

∣∣∣∣∣∣ + |zf ′′′(z)|

� 2

|z|∫
0

|f ′′′(ρeiθ )dρ| + 2|f ′′(0)| +N3|z|

� 3N3|z| + 2|f ′′(0)|
< 3N3 + 2|f ′′(0)|.

(3:4)

We know that f (z) ∈ K if and only if zf ′(z) ∈ S∗. Therefore, if

3N3 + 2
∣∣f ′′(0)

∣∣ � 2√
5
, (3:5)

then zf ′(z) ∈ S∗ by means of Lemma 1.3. Thus, if

|f ′′′(z)| � N3 � 2
3

(
1√
5

− |f ′′(0)|
)

(z ∈ U), (3:6)

then f (z) ∈ K. This shows that the theorem is true for j = 3.

Next, we assume that theorem is true for j = 3, 4, 5, ..., (k - 1). Then, letting

|f (k)(z)| � Nk(z ∈ U), we obtain that∣∣∣(zf ′(z))(k−1)
∣∣∣ = |(k − 1)f (k−1)(z) + zf (k)(z)|

=

∣∣∣∣∣∣(k − 1)

⎛
⎝ z∫

0

f (k)(t)dt + f (k−1)(0)

⎞
⎠ + zf (k)(z)

∣∣∣∣∣∣
� (k − 1)

⎛
⎝ |z|∫

0

|f (k)(ρeiθ)dρ| + |f (k−1)(0)|
⎞
⎠ + |z|

∣∣∣f (k)(z)∣∣∣ .
(3:7)

Now, we consider |f (k)(z)| � Nk(z ∈ U),. Then, (3.7) implies that∣∣∣(zf ′(z))(k−1)
∣∣∣ � kNk|z| + (k − 1)

∣∣∣f (k−1)(0)
∣∣∣

< kNk + (k − 1)
∣∣∣f (k−1)(0)

∣∣∣ . (3:8)
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Since, if

∣∣∣(zf ′(z)
)(k−1)

∣∣∣ � 1
(k − 1)!

(
4√
5

−
k−2∑
n=2

n · n!
∣∣∣f (n)(0)∣∣∣

)
,

then f (z) ∈ K (or zf ′(z) ∈ S∗), if f(z) satisfies that

kNk + (k − 1)
∣∣∣f (k−1)(0)

∣∣∣ � 1
(k − 1)!

(
4√
5

−
k−2∑
n=2

n · n!
∣∣∣f (n)(0)∣∣∣

)
, (3:9)

that is, that

Nk �
1
k!

(
4√
5

−
k−1∑
n=2

n · n!
∣∣∣f (n)(0)∣∣∣

)
, (3:10)

then f (z) ∈ K. Thus, the result is true for j = k. Using the mathematical induction,

we complete the proof the theorem.

Example 3.1 We consider the function

f (z) = z + a2z
2 + a3z

3 + a4z
4.

Then, if f(z) satisfies

24|a4| � 1
24

(
4√
5

− 8|a2| − 108|a3|
)
,

then f (z) ∈ K. Since
2
√
5|a2| + 27

√
5|a3| + 144

√
5|a4| � 1,

we consider

a2 =
eiθ1

4
√
5
, a3 =

eiθ2

81
√
5
, a4 =

eiθ3

864
√
5
.

With this conditions, the function

f (z) = z +
eiθ1

4
√
5
z2 +

eiθ2

81
√
5
z3 +

eiθ3

864
√
5
z4

belongs to the class K.
If we use the same technique as in the proof of Theorem 2.1 applying Lemma 1.4,

then we have

Theorem 3.2 If f (z) ∈ Asatisfies

|f (j)(z)| � 1√
5

− M (z ∈ U) (3:11)

for some j (j = 2, 3, 4, ...), then f (z) ∈ K, where M is given by (2.2).
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