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1 Introduction

Supposethatp>1 —+l—1 Amsby = 0, a ={an)oe, € P, b =1{b,}02, € 19, |al, =

O ) P >0, ||bll; > 0. We have the following Hardy-Hilbert inequality:

Mg

I

lalllIbllg, @)
n=1 m=1 ( )
where the constant factor (n 7 is the best possible (cf [1]). We still have the following
Hilbert-type inequality:
[o¢] [o¢]
< lall, N5l )
; ; ax{ pqlialiplitllq

with the best possible constant factor pg (cf. [1]). Also the following Mulholland inequality

was given with the best possible constant factor -7 (cf. [1], Theorem 343, replacing °2

sin n/p
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00 anb, . 00 d;;n ,l, 00 bz %
ZZ nmn - Sin(%) <Z mlp) (Z nlq) : (3)

n=2

Inequalities (1)-(3) are important in analysis and its applications (cf. [1-5]).
If iyv; >0 (5, e N ={1,2,...}),

u, := Z Wiy V= Z vj (mneN), (4)
i=1 j=1

then we have the following Hardy-Hilbert-type inequality (¢f Theorem 321 of [1], replac-
. 1/q 1/p
ing (' a,, and v, b, by a,, and b,):

1 1
° X awb, 7 [ ad, \ [ b1
OB ee <mZ ) (Z ) : )
For u; = vj =1 (i,j € N), inequality (5) reduces to (1).

By introducing an independent parameter A € (0,1], in 1998, Yang [6] gave an extension
of the integral analogous of (1) with the kernel W for p = q = 2. Following [6], Yang [7]
gave extensions of (1) and (2) as follows.

If 11,22 € R, A1 + A = A, ky (x, ) is a finite non-negative homogeneous function of degree

—A, with
k() = f k(6 1P de € R,
0

1-21)-1
)

and k; (x, y)a*17 (ky(x,7)y*2 1) is decreasing with respect to x > 0 (y > 0), ¢(x) = &
¥ (x) = 21072271 then for a,,, b, > 0,

. ;
a= {“m}zloﬂ € lp,¢ = {a; ”a”p,qb = (Z ¢(m)|ﬂm|p) < OO],

m=1

b=1{b,}2, € lyys lallpgs 1]l 4y > 0, we have

YD klmmanb, < k(a)llallpp bl gy, ©6)

n=1 m=1

where the constant factor k(%;) is still the best possible. Clearly, for A =1, A; =
ki(x,y) = X (—21—), inequality (6) reduces to (1) ((2)).

x+y  max{x,y}
Some other new results including multidimensional Hilbert-type inequalities, Hardy-

1 1
ar )¥2: 1_7,

Hilbert-type inequalities and Hardy-Mulholland-type inequalities are provided by [8—30].
In this paper, by means of weight coefficients and the technique of real analysis, a new
Hardy-Mulholland-type inequality with the following kernel:

1

K, (m,n) =
A ) In* U, +In* V, + a|In* U, — In* V,|

7)
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(-1<a<1,0<A=<2; mneN\{1}) and a best possible constant factor is provided,
which is a relation between two simple Hardy-Mulholland-type inequalities similarly to
(2) and (3). The equivalent forms, the operator expressions with the norm and some partic-
ular inequalities are studied. The lemmas and theorems of this paper provide an extensive

account of this type of inequalities.

2 An example and some lemmas
Example1 For -1<a <1,0 <A, Ay <1, A + Ay = A, we set

1

= 3 ER2=R+ R+. 8
x* + Y+ alxt -y ((x M ER, x ) ®

ki (x,9) :

Then by (7), it follows that K (m, n) = k; (InU,,,In V,)). We find for -1 <o <1, A1,A3 >0,

0 < ka(hr) = / ki (L, 0)8*>7" dit = / ki (8, )£ dt

0 0
o0 t}q—l dt 1 t)ul—l + t}»z—l
= - = | ————dt
o P+l+altr-1 Jy l+a+1-a)t*
1 -1 Ap—1
T+ 2 1 1 1
5/ dt = — +— ) <00, 9)
0 l+a l+a\ M }\.2

namely, k, (A1) € R,.
(1) In the following, we express k, (A1) in a few cases.

(i) For @ = 0, we obtain

o0 tAI*1
ko(A1) = / dt
0

t+1
1 (o ytam-1 .
= —/ du = P (10)
Ao u+l Asin(%L)

(ii) For @ = 1, we obtain

0 11 © thi-l
k W) = - dt = _— dt
1(M1) fo 1+ |1 /0 2 max{t*,1}
1! A
_ _/ (t)”l_l + txz—l) dr = . (11)
2 Jo 2M1As

(iii) For0 < <1,0 < };—g <1, in view of (9) and the Lebesgue term by term integration
theorem (cf. [31]), we find

1 1 t)ulfl + t)\Q*l
ko (M) = / — dt
0

l+a 1+ kep
+o

1 ! M-l pho-l = rf1-«o kxk
T 2T E -1 — ) " dt
1+a/0( ’ ) ( )(1+°‘)
k=0
1 00 9
_ /(t*1‘1+t*2‘1)§ Lo\ (1= iy,
l+a Jy - l+a l+a
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[e’e] k 1
1 <1 - Ol) / (t“_l N txz—l)txk dt
l+a 0

1 1-a\’/ 1 1
= 1)k )
1+akz( ) (1+a> (A/<+A1+Ak+kz>

I
—_
+‘
Q
HM
o
|
—
=
=~

2
Z/ (171 4 2 LN 1mes)\ @iy,
1+oc 1+a l+a
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12)

(iv)For-1<ao <0,0< }ﬁ—g <1,by (9) and the Lebesgue term by term integration theorem

(cf [31]), we find

1 11, t)\z—l
koy(A1) = / dt
0

1+ 1+a

1

M1+ ) La v+1

s
l+a\?* - l+a * )
X vVE o+ vE |dv
l-« l-«
)\71 o0
3
= ; 1+—a / Lv(lf%)fldv
AMl+o)\1-« o v+1

A2
1 l+a\* [ 1 s
+— e / — =By
AMl+a)\1-«a o v+1

l+a

1 T« 1
AMl+a) )y v+1

s
(1) v (12) ]
X vV o+ vE |dv
l1-«o l-«o
_ 1 lv+a\*» &
N Ml+a)\1-« mn(%)
3
1 l+a)* T
+
AMl+a)\1-o sm(”’\‘)

1+a( [e’e)

ko k
A(l+oz)/ Z( D

A )
l+a\* -u l+a\* -
x| | — vE o+ [ —— vE |dv
l-«o l-«o

A1 2

_ 1 l+a\* l+a\* T
- )L(1+a)|:(m> +(1—a> ]sin(”Th)

1+Ot o0}

i 2
l+a\* -u l+a\* -
X vE o+ vE |dv
l-«o l-«o

>
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M Ao
1 1+a\7* 1+a\* b1
= — +
AMl+a)[\1-« -« sin(—”i‘l)

It o0
1

e 2k 2kl
_A(1+a)/o kXZO:(V i )

2

l+a T A l+a\* -
x v+ vE | dv
l-« -«

M

_ 1 l+a\* l+a )LTZ T
- k(1+a)[(1—a) +<1—a> i|sin(”kﬁ)

l+a
1

oo ita
e ok kel
- v —y
e IY MR
k=0
M 3
|:(1+a>A -y <1+a)k h}
X v+ v |dv
l-a l-a
el )
1 l+a\7* l+a\? b1
= — +
AMl+a)[\1-« 1-« sin(”T)‘l)

l+a
1

T
_ Z/ 1)
AMl+a) = Jo
1 3 1 2,
A
X il yTl T v ay
l1-«a l-«
ol )
1 1+O{ A 1+a A T
= — +
l+a|\l-«a l-« )»sin(”T“)

1

>

>

k

(v) For Ay =25 = 4 €(0,1], -1 < < 1, in view of (9), we find

A 2 1 tgfl
ke\ 5) = / ——dt
2 l+a Jo (L+52)

lew 3 2@y A )%
u=(Feth)? 4(12)2 /‘ Ta 1
)\.(1+0{) 0

4 (1—0{)7
= ———— arctan .
Al -a?)2 l+o

We still have k;(%) = limg—1- ko (%) = 2.

(2) For fixed x > 0, in view of -1 <@ <1, A > 0, we find that

1
k.(x,y) =
H®) &+ yh +alxt -y
1
o)+ (o))"’ O<y<x,
- 1
oty V2%

o k+1
1 1 1
S () (e
l+a— -« Ak + Ay Ak + X

)

Page 5 of 14
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is decreasing for y > 0 and strictly decreasing for y € [x,00). In the same way, for fixed
¥ >0, k. (x,y) is decreasing for x > 0 and strictly decreasing for x € [y, 00).

Lemma 1 (cf [29]) Suppose that g(t) (> 0) is decreasing in R, and strictly decreasing in
[10,00) (no € N), satisfying [, g(t)dt € R,. We have

/1 g(t)dt<§g(n)< /O g(o)dt. (14)

Lemma 2 Suppose that U, and V, are defined by (4) with p,v1 >1, -1<a <1,0<

AMyAg <1, A1+ Ap = A, K, (m, n), and ky(\1) are indicated by (7) and (9). Define the following

weight coefficients:
vy, In* U,
(ko m Zm(m n iy mEN, (15)
W In*2 V,
@ (A1, 1) Zm(m ") ”; ST neN\{1}. (16)

Then we have the following inequalities:

w(ha,m) <ky(M1)  (0<iy <1,A1>0;meN\(1}), 17)

@ (h,n) <ky(r1) (0<iy <LAy>0;meN\{1}). (18)

Proof We set u(t) := tyy, t € (m—1,m] (m € N); v(t) := vy, t € (n—1,n] (n € N), and

x y
Ux) ::fo w()dt (x>0), V() ::/O v()dt (y=>0). (19)

Then it follows that U(m) = U,,,, V(n) = V,, (m,n € N). U'(x) = u(x) = ty, forx € (m—1,m)
(m e N); V'(y) = v(y) = vy, for y € (n — 1,n) (n € N). Since V(y) is strictly increasing in
(m—1,n],0< Ay <1, A1 >0, in view of Example 1(2) and Lemma 1, we find

In* U, ,
w(Ay, m Z /q (InU,;,nV,)) ———— TANETEY V'(y)dy
n-1

In* U, ,
<Z/ k)L anm,an(y)mV(y)dy

In* U,

- /1 b (In L InVO) o 0

V'(y)dy.

Setting ¢ = lﬁ]‘zl(y), we obtain (y V'(y)dy = InU,, dt and

In V(o)

Tnlm o0
w(hy, m) < ﬁ o k(1,02 dt < / k(1,082 dt =k, (0). (20)
n 0

InUy

Hence, we have (17). In the same way, we have (18). O
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Note We do not need the condition A; <1 (A, <1) to obtain (17) ((18)).

Lemma 3 As regards the assumptions of Lemma 2, if U(co) = V(0c0) = oo, there exist
mg, ng € N\{1}, such that (4, > 1 (M € {mg, mg +1,...}), Uy > Uy (1 € {ng, o +1,...}),
then:

(i) For m,n e N\{1}, we have

kot()\l)(]- - 9()\2) m)) < a)()\‘2lm) (O < )‘2 = 1, )\fl > O)! (21)
ko(M) (L= (h1,m) <@ (hy,m)  (0< Ay <14y >0), (22)
where
1 T 2l dt
O(As, = -
(A2, m) ka(kl)fo 1+t +all -1
1
=0 € (0,1), 23
(mn u,,,> 0,1) (23)
S0 1 TV 2l
()= ka()q)_/o L+t +all-¢]
1
=0 —— ) €(0,1). 24
(ln"l V,,) (0,1) (24)

(i) Foranyb >0, we have

> m 1 1
m
- +50,(1) ), 25
;Umln“bum b(lnbumo : )) 2%
o0
Uy, 1 1 )
= +b0,(1) ). 26
;ann”b v, b(lnb Vi 2() (26)

Proof Since v, > vy (1> np), 0 < Xy <1, A >0, and V(oo) = oo, by Example 1(2),
Lemma 1, and (23), we find

n+ \ U
w(hy, m) ZK)‘ m,n U 1 In*

v

V 1 1—A2 V
n=ng
)»1 u
_ 2}/ Jo(In Uy, In V) —— 1”2\/ V'(y) dy
> Z/ k.(InlU,,nV(y) ————— In” Uy, V() d
=, )\. m» V(y)l 1-%y V(y) y
*© In* U
= ky,(In U, In V(y)) ———————V'(y) dy
«/no a ) V(y) In'2 V(y)
_InV() Ao—1
tilnL[ th2 dt
=" — = k(M) (1 - O0(hy, m)).
/;m 1+t +a|l -t ( 1)( ( Zm))
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We obtain

0< 9()\,2, )

namely, 6(Ay, m) = O(
For b > 0, we find

1
In*2 Uy, )-

o0 mo

InUm
2 e =
T ky ()»1)/

Z Hm
U, 1" U,

mo

o

B % U, " 1]

mo

Hom
< —_—+
; Uy 10" U,

_ Z Hm
=, 1" U,

Page 8 of 14

1 [(InV,\*
)"2/(01 ()\.1) In L[m ’

Hence we have (21). In the same way, we obtain (22).

00
Z Mm
~ U, u,
m=mg+1
s m U/
+ Z / —1(37) dx
M =g+l Y 1 Uy In7 Uy
00 m u/(x)
1+b x
sl -1 U(x)In ™ U (x)

dl(x)

mo
_ Z Hm
— U, " U

[e¢] o]

Hm

m ’ /mo U(x) In'*? U (x)

1 1
=— +b
b(lnb Uy

mo

Z Mm
= U, "1, |’

o]

Mm+1

WIZZ

U'(x) dx

o m+1
= mzzmo/r;l u ]n1+b u

< dU(x)

1+b
o u,In’u,,

z ).

m=mq

U, n**u,

U'(x)dx

o0 m+1
>mz /m U ™ U()

mo

1

" e U@ I UR)

bIn® U,

Hence we have (25). In the same way, we have (26). O

Lemma4 If-1<a <1,0<A,Ay <1, A1 + Xy = A, ky(Xq) is indicated in (9), then for 0 <

8 <min{Aq, Ay}, we have
ko(A1 £ 8) = ko (A1) + 0(1)
Proof We find for 0 < § < min{A;, A2},
|Ka (31 +8) = ko (M) |
oo gl _q

/1 (1 -8 dt
= —_—
o l+a+(1-a)

1 1 o]
< [/ t“‘l(l—t“)dm/
l+al )y 1

1 1 1 1
= —_— = +
l+a )\1 )\.1+8 )\2—8

(8 — 0+).

o0
/1 l-a+(1+a)th

(27)

1~ 1) dt
NG

1

Az) -0 (8—0").
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In the same way, we find

k(A1 = 8) — ko (A1)

1 1 Ootklfll_tfﬁ
<— / t*l‘l(t“s—l)dnf Gl 2
l+a 0 1 t*
1 1 1 1 1
< -——+— = -0 (§—0%),
l+a )\.1—5 )\1 )\2 )»2+6

and then we have (27). O

3 Main results

In the following, we agree that w1, v > 1, p;,v; > 0 (i,j € N\{1}), U, and V,, are defined by
(4),-1<a<1,0< A, Ap <1, A + Ay = A, K, (m, n), and ky(1;) are indicated by (7) and (9),
p>1, }9 + % =1, am, b, > 0 (m,n € N\{1}),

(o] 117 00 %
lallye, = (Z cm(m)af,,) o 1bllgw, = (Z \PA(n)bz) :
m=2

where

U, \""
®; (m) := (—"’) (In U, 001,
Hom

v\
W, (n) := <—> (InV,)10=271 (1, n € N\{1}).

n

Theorem 1 If0 < ||ally0,, I1bllgw, <00, then we have the following equivalent inequalities:

e olNe o]

1= " Ki(m, m)amby < ke (1) lalipo, [1Bllg, (28)
n=2 m=2
© 00 p }9
] := [Z - (I vy (Zlﬁ(m,n)am) } <ke(1)lallp,a; - (29)
n=2 " m=2

In particular, for A = Xy = % € (0,1], the constant factor ky(11) in the above inequalities is
expressed in the following form:

A 4 l-«o 2
ky| = | = ——— arctan .
2 A1 -a?)2 l+a

Proof By Holder’s inequality with weight (cf [32]) and (16), we have

00 r 00 1/q (1-21)/ (A-22)p Mg N\ 1P
U, (In )=Vl InV, P
<Z K, (m, ,,,)am> _ [Z K (m, n)(Lam) <(“)—W>}
m=2

P (In V,)=2)0p 1 UL (InU,,)0-41)/a

ufn‘l (InU,,) -+l )

a
(nV,)iup® "

[e¢]
<> Ki(mn)
m=2
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an)(l )0y, 1
Zlﬁ m, n) 1, (n 1,1

(MMWNVZK mmw%mwww
k

(In V,)P1u, V,(In V)12

Then by (18), we obtain

gk
2
=
3
3

_ 1
v, U (In U, 0@ g? |2
] < (ka(h) L) }

V,(In V)42

| n=2 m=2
e v,y (In U,,) 100Dl
= (k) 7| DY K(m,m) =
| m=2 n=2 Vn(ln Vn)l_)‘zﬂm
_ 1
& (In g, -1 72
= (ky(r1))® Zw()‘2r”")W‘lI:ﬂ .
| m=2 m m

Hence, by (17), we have (29).
By Holder’s inequality (cf [32]), we have

I= Z[( ) InV*Z“ZIan) }

m=2

Uy “Up 1y
x [(7) (In V)7~ 2bn:| <Jlbligw;

n

and then by (29), we have (28).
On the other hand, assuming that (29) is valid, setting

) r-1
by = U72(111 Vv, et (ZIQ(m, n)am> , meN\{1},

Page 10 of 14

(30)

(31

(32)

(33)

we find J? = ||b|| If] =0, then (29) is trivially valid; if ] = 0o, then by (31) and (17), it is

impossible; if 0 < ] < 00, then by (28), it follows that

1B115,5, =J¥ =1 < ke () allp0; 14,9,

IIbIIM =] <ke()lallp,

namely, (29) follows, which is equivalent to (28).

(34)
(35)

O

Theorem 2 With regards the assumptions of Theorem 1, if U(co) = V(00) = 00, there exist

mo, ng € N\{1}, such that p,, > pma (m € {mo,mg +1,...}), U, > Upy1 (n € {ng, mp +1,..

then the constant factor ky(r1) in (28) and (29) is the best possible.

}),

Proof Fore € (0,pA;), we sethy = 1— £ (e (0,1)), ho = A2+ (>0),a= {sz};’,f:z,io = {l;n};,";z,

where

Zlm:zlumlkllu IJ’WI

m m

M-£-1
In™ 2" Uy,

~ v, by v, _E_
b, = 7” Iy, = 7” a7y,

n n
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Then by (25), (26), and (22), we find

1
00 P e8] q
lallpo, 16llqw, = (Z m) <Z m)

1

o) (L om)’
I Uy " eV, )

1= "> Ki(m, )b,

n=2 m=2

ln’iz V,
ZKk(m,n) Hom " iril
U, "™ U, | Vilnl®™ V,

n=2

()‘17 ( 1 Uy
—§ > ko (2 § 1-0f —
V,In 8+1v ) w1 v, /) Vet v,
- ad Uy ad Uy
= ky (R SN o] (. —
(1)[,42:2: VT, 2 <vn(1nvn)<q*“)“>}

n=2

1 ~ 1
= gka()tl)[m + S(Oz(l) - 0(1))].

If there exists a positive constant K < k, (1), such that (28) is valid when replacing &, (A1)

by K, then, in particular, we have el < eKllallp,e, ||£||q,\p)h, namely

ke (xl - f) [ﬁ +e(0(1) - 0(1))]

p

1 i1 3
<K| ——— +£0:(1) +e0,(1) ) .
In® U, In® V,,,

By (27), it follows that k, (11) < K (¢ — 0%). Hence, K = k(1) is the best possible constant

factor of (28).
The constant factor k, (A1) in (29) is still the best possible. Otherwise, we would reach a
contradiction by (32) that the constant factor in (28) is not the best possible. O

For p > 1, we find \IJ)IL_p (n) = ¢ (In VP21 (n € N\{1}) and define the following normed

spaces:

by, =1{a={am}py s lale, <o},
lq,\Il)L = { = {b }y, 2’ ”b”q,\h < OO},

— p— e} .
L= {e=1lenlailiel, 10 < 00}

Assuming that a = {a,,} 7, € [0, , setting
o0
c={cu}3s Cpi= ZKA(m,n)am, neN,

we can rewrite (29) as ||C||p’wi—p < ko) llallp,0, <00, namely, c e lp,wi—p
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Definition 1 Define a Hardy-Mulholland-type operator T : [, 4, — l ol as follows: for
any a = {au},., € l,0,, there exists a unique representation 7z = c e lp 1-p. Define the

formal inner product of Tz and b = {b,};2, € [, v, as follows:

n=2 \m=2

(Ta,b) = Z(ZKA m,n am) e (37)

Then we can rewrite (28) and (29) as follows:

(Ta, b) < ke(M)llallp,o, 1611w, » (38)

ITall, y1-» < ke(A1)llallp.a, (39)

Define the norm of operator T as follows:

I17all,, o1
2T
IT|:= sup

a)elye, 14lpe;

Then by (39), it follows that || T|| < kx()1). In view of Theorem 2, the constant factor in
(39) is the best possible, we have

1 gl ol
1T =koton) = [ e (40)
Remark1 (i) For A =1, A —é Ay :}9 (28) reduces to
;;mu Vi +a|lnu’"| k”(&)(;ﬁ) (22: Z:> ' @

In particular, for o = 0, we have the following simple Hardy-Mulholland-type inequality:

N NPAYENTAY
22:2; Inl, V sm(n/p) (Z ) <Z ql) ’ (42)

n=2 “n

which is an extension of (3); for « = 1, we have another simple Hardy-Mulholland-type

inequality:

————<pq| ) 5 = - (43)
;ZZmax{anm,an} (; an1> (; vl 1)
Hence, inequality (28) is a relation between (42) and (43).

(ii) For @ = 1 in (28) and (29), in view of (9), we have the following equivalent Hardy-
Mulholland-type inequalities with parameters:

o0 o0
ZZ 2l 1Bl g, (44)
2max{ln le,ln Vil )»1)\2 * -

n=
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[ U [ a p Il,
n Ao—1 m
2 (In VP2
; Vy " ; max{In* U,,, In* V,,}
A
<—llallpo,- (45)

A1h

(iii) For o« = 0 in (28) and (29), in view of (11), we have another equivalent Hardy-
Mulholland-type inequalities with parameters:

oo o0
aub, p
< ———llallpe; 15l )
n Ao —1 "
—(In V,,)P*2 _ am
WX:; Vn ’ ; lnA Um + ll’l)L Vn
b4
< —— o lallpe; - )
Asin(%1) PP

In view of Theorem 2, the constant factors in the above inequalities are all the best possi-
ble. Inequality (28) is also a relation between the two Hardy-Mulholland-type inequalities
(46) and (44) with parameters.
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