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1 Introduction
We consider the following hyper-singular integral with an interval variable ¢ € (a, b):

b
(1@)(®) = / 2" (v, 1) dx, @)

where g(x,t) = |x — £| (or x — £), and ¢ < -1 (or o < —1) is a real number. Equation (1.1)
denotes the Hadamard finite part [1, 2] of the hyper-singular integral. Hyper-singular in-
tegrals have been extensively used to elasticity problems [1, 3], for example, the calcula-
tion of stresses. Hyper-singular integral operators also attracted attention such as in [4]
on modulation spaces. Especially, in the boundary element method, the hyper-singular
integrals have attracted considerable attention such as in [1, 3, 5]. The authors of [6] ap-
ply boundary integral equations for the solution of the electrostatic field problem floating
potentials in industrial applications.

So far, many numerical methods have been proposed to evaluate the hyper-singular in-
tegral (1.1) for & = —2. According to the quadrature rules based on interpolation trigono-
metric polynomials, Kim and Choi gave two quadrature formulas for evaluating (1.1) with
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a = -2 in [7], in which the cosine transform of variables and trigonometric polynomial
interpolation at the practical abscissa were used, where a three-term recurrence relation
was used to evaluate the quadrature weights. In [8], Huang et al. got the Euler-Maclaurin
expansions of (1.1) with -2 < « < —1 by a modified trapezoidal formula. In [9], Kabir et al.
used the piecewise quadratic polynomial technique to solve integral equations with loga-
rithmic, Cauchy, and hyper-singular integrals. Hui and Shia presented a Gaussian quadra-
ture formula for (1.1) with g(x, ¢) = |x — t| for @ = —1, where the classical orthogonal poly-
nomials such as the Legendre and Chebyshev polynomials were used in [10]. In [11], the
hyper-singular integral equations were applied to solving the flat crack problem. On the
basis of Euler-Maclaurin expansions in [12], Sidi and Israeli got the quadrature formulas
and the error asymptotic expansions of the integral (1.1) with g(x,t) = x — ¢ for « = —1.
In 1998, Monegato and Lyness obtained the Euler-Maclaurin expansions of (1.1) by the
Mellin transform, as t = 0 and « < -1.

The quadrature formulas in [2] are not valid for solving hyper-singular integral equa-
tions and are only valid at the endpoint of the integrand interval. In this paper, by gen-
eralizing the results of Monegato and Lyness in 1998, we extend the formulas to any in-
terior point of the integrand interval, and we present high accuracy quadrature formulas
for hyper-singular integrals fab gx)g* (x,t) dx, where g(x,t) = |[x—t| (orx—t), t € (a,b), and
a <-1(ora <-1).Ifg(x) is 2m +1 times differentiable on [a, b], the asymptotic expansions
of the error show that: (i) when & < -1 (or « is a non-integer less than —1), the convergence
order is O(F?**1*) with q(x, t) = |x—t| (or x—¢), where w = 1,..., m; (ii) when « is an integer
less than —1, the error power is O(h") with g(x, t) = x —t, where n = min(2u, 24 + 2 + &) and
u =1,...,m. Since the derivatives of the density function g(x) in the quadrature formulas
can be removed by means of the extrapolation method, the formulas can easily be applied
to solving the corresponding hyper-singular boundary integral equations. Quadrature for-
mulas can also be used to solve singular integral equations in its corresponding forms.
The hybrid Gauss-trapezoidal quadrature rule [13] is one of many quadrature formulas.
There are also several methods to solve hyper-singular boundary integral equations beside
quadrature rules, such as potential theory [14], the Green function approach [15], and so
on. As far as this paper is concerned, we only deal with hyper-singular integrals. Moreover,
numerical results display the significance of these formulas proposed, finally.

This paper is organized as follows: in Section 2, we introduce the Euler-Maclaurin ex-
pansions for hyper-singular integrals of (2.1) at the end points of the integrand interval; in
Section 3, we present high accuracy quadrature formulas for hyper-singular integrals (1.1)
with an interval variable, and also we get their Euler-Maclaurin expansions; in Section 4,

some numerical examples are tested. A few conclusions are drawn in Section 5.

2 Euler-Maclaurin expansions for integrals of (2.1) at end points

In this section, we will recall some notations and extend the results of [2]. In [2], Monegato
and Lyness presented the expansion of integrals whose integrand function is singular or
hyper-singular at the end points of the integrand interval [0,1]. We extend the results to
any interior point of the integrand interval [a, b].

We discuss the following integrals:

b
/ Pt d f (3, 8) = (- @) (b — %) gl), @.1)
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where g(x) € C"[a, b] and w = min(¢, y) < —1. Note that

b b
f.p./ flx,t)dx :f.p./ (x—a)* (b —x)" g(x) dx, (2.2)

where f.p. denotes the Hadamard finite part [2] of the integral. When o = -1, (2.2) is a
singular integral. When o < -1, (2.2) is a hyper-singular integral. By using the results of
[2], we derive the Euler-Maclaurin expansion of (2.1).

Lemma 2.1 Assume that g(x) is m times differentiable on [a,b] and f(x) = (x — a)*(b —
%) g(x), with @ = min(a, y) < —1. n is the number of nodes in the rules, and h = b%“. Then
the following expansions hold.

(i) If o and y are non-integer, we have

n-1 m g k+l+a

hZf(a+h(,B+k))—Zh/‘

k=0 k=0

t(~k - a, B)g(a)

m (_l)khk+1+y

D T (S AR )
k=0 ’

b 1 ' +ioo 5 B
o [ s dse o [ H o)+ Fao) e ) 3)

(i) Ifa =-1-1,1=1,2,..., and y is non-integer, the formula is

n-1 m k+l+a

By flavh(B+R)= Y ——t(k-op)g @)

k=0 k=0,k#1

khk+1+y

—Z ¢(~k=y,1-B)g" ()

)
go ( )W(ﬂ) go (ﬂ)

1_
I h

~f» / fwrds s [ B B (.4

(iil) Wheny =-1-1,1=1,2,..., and « is a non-integer, the expansion can be written

n-1 m

hZf(a+h(,3+k))—Z

k=0 k=0

k+l+a

t(~k—a, B)g ()

khk+1+y

- Z (k- y,1- B)g(b)

k=0,k+

&) d'w 1
+ (—1)11T1P(,3) - (—1)111—! In 7

 +ico

~fp. f fwdrr —— [ B(Fol) + Bro)) ¢ 0, B) dp. 2.5)

i d—ioco
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(iv) When o = -1 -1, y = —s — 1, l and s are integers, we have the form

n-1 m k+1+a

Y flavh(B+R) = 3 ——tlk-apl @

k=0 k=0,k#1

l)khk+1+y

(@)

Ttk -y, 1- Bl + & :

——v(B)

!

k=0,k+#s
1
h

(s) (s)
w@, 1 R H R O
I h s! s!

b 1 ' +ico 5 B
o [ fodre o [ (E) B0 ) 26

where 0 < B <1, ¢(p,B) =Y roolk + B)P (Re(p) > 1) is the Riemann zeta function, E, (p) =
fo ()P Ldx (i = 0,2) is the Mellin transform, and the other functions are defined by
Vv (B) =T"(B)IT(B), go(x) = (b -x)"g(x), g1(x) = (x —a)"g(x), ¢ € [-m~w~2,-m-w-1],
Jfo(x) = f(x)v(x;1/3,2/3), filx) = f(x)(1 — v(x;1/3,2/3)), and fo(x) = fi(1 — x). We also define
v(x, ki, ko) (ki < ko) such that v(x, ky, kz) belongs to C*°(—00, 00) and

1 forx <k,

0 forx=>ks.

V(x, kl, k2) = {

Proof Considering the hyper-singular integrals (2.1) and taking y =1 — (b — x)/(b — a), we
obtain

b 1 1
/ (x— ) (b — )" glx) dx = f Y (=)0 dy = / 7o) dy,
a 0 0

where g(y) = (b—a)***g(a+(b-a)y) and f(y) = y*(1-5)"§(y) = f(a+ (b - a)y). According
to the conclusions of [2], we obtain the results of Lemma 2.1. O

Obviously, the quadrature formulas can be derived by Lemma 2.1. To get the conver-
gence order of the quadrature rules, we estimate the value of

1 ' +ico

P W (Eo(p) + F2(p))¢ (p, B) dp

270 J o —ino
as Corollary 2.2.

Corollary 2.2 Under the assumptions of Lemma 2.1,

1 d +ico B B
R(E.p) = 5 / 12 (Fop) + Ex(0)) ¢ (0, ) dlp

/—ico

= o(hl’c/) = o(hRe(")*m”), n— 00, (2.7)

where —Re(a) — m — 1 < ¢’ < —Re(a) — m. Furthermore ¢’ belongs to (-Re(a) — 2m —
2,—Re(w) — 2m — 1) as g(x) is 2m + 1 times differentiable on [a, b] and satisfies the con-
ditions of Lemma 2.1.
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Proof Letp = ¢’ +is, thus

REp) =5 [ SR i)+ Eae i) (€ 5 s

1-¢  poo
= k / K (130 (c’ + is) +F (c/ + is))§ (c/ + is, /3) ds.

2 J_s

Based on the definition of F;(p), i = 0,2, we have

’/ h5(Fo(c +is) + By (' +is))¢ (¢ +is, B) ds| < c,

(o]

then R(¢/,p) = o(h'=¢') as n — 0o, where ¢ is a constant number. O

3 Quadrature formulas of hyper-singular integrals and their Euler-Maclaurin
expansions
In this section, we study the following integrals:

b b
1(G) :f‘p./ G(x, t)dx :f.p./ q“ (%, t)g(x) dx, (3.1)

b b
L(G) :f.p./ Gi(x, t)dx :f.p./ |x — t|°‘(ln lx — t|)pg(x) dx, o<-1, (3.2)

where q(x,t) = |[x—t| (or x — t) for @ < -1 (or & < —1), and p is a nonnegative integer, g(x) is
a smooth function on [4, b]. G(x, t) and G (x, ) are hyper-singular functions about interval
variable ¢ as a < —1.

We divide the interval [a, b] into n equal parts, that is, 1 = (b — a)/n. Let xj = a + jh (j =
0,1,...,n) and the singular point ¢ satisfies t € {x;:1 < j < n —1}, and we also take g =1/2.
In terms of Lemma 2.1 and the classic Euler-Maclaurin expansions on modified trapezoidal
formulas, we derive the following formulas of the integral (3.1) with g(x,¢) = |x — .

Theorem 3.1 Suppose g(x) is 2m + 1 times differentiable on [a, b], G(x, t) = g(x)|x—t|* with
a<-l,andt e {x;:1<j<n-1}. Then the modified rule is

n-1

1 1
Q(h) = ;hG(g + <j + E>h> 2K <—a, 5) g(t), (3.3)

at the same time the following assertions hold.
(i) If o is a non-integer, the error expansion can be written

Eu(h) = 1(G) - Q(h)

CA R By(})

_ Z 20 [G(Zk_l)(ll) _ G(Zk—l)(b)]
k=1 ’
m 2k+1+a
- Z 2}1(27)'§ <-2k —a, %) g @) + O(h?m+e?), (3.4)
k=1 ’

where By, is for the Bernoulli numbers.
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(i) When o = =21 —1with |l € N, the error expansion is given by

m+1
E,(h) = Z h_y(BZk(l) [G(Zk—l)(a) _ G(Zkfl)(b)]
py (2k)! 2

m o p2k=D
(2k)!

¢ (2(1 -k +1, %)gm‘)(t)

k=Lk#l

g(zl)(t) 1 g(2l)(t) 1 2m+2+a
" 1”(5)'2 20)! I+ O(>%). (35)

(ili) As o =2l with € N*, we obtain the error expansion of the form

m+1 hzk
Z G(zk—n(a) _ G(Zk‘l)(b)]
(2k
min(m,l-1) hz(kfl)+1

W; (2(1 —k), %) g@) + O(h*m+*e), (3.6)

k=1
where E,(h) = [(G) — Q(h) and ¥(1/2) = —0.577215 - 21In 2.
Proof Take t = x;, then ¢ is an interior point of division of the interval (a, b). The integral
of (3.1) can be decomposed into two parts
b

b
f.p./ Glx, t)dx fp/ (x)|x — t|* dx

b
=f.p. / gx)(t —x) dx +f.p./ g(x)(x —1)* dx. (3.7)

We consider the first item of the theorem at first. By equations (2.3) of Lemma 2.1 and
(2.7) of Corollary 2.2, we have

i-1 1 t
ZhG<a+ <j+ E)h) :f.p./ G(x,t) dx
j=0 “

Z(zk i ( 2k +1, 1>G2kl(a)

2m+1 (=1)kpk+iee

+y — ¢ (—k ~a, %) g9 + o(H*e)  (3.8)

k=0

m+1 h2k

-3 T <-2/< +1, %) GV (p)
k=1 ’

2m+1 g ilva
1
£y T c(—k - a, E)g‘k)(t) + O(¥m2), (3.9)
k=0 !
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Combining (3.8) with (3.9), we obtain

n-1 1 b
ZhG(a+ <j+ §)h> :f.p./ G(x,t)dx
j=0 “

m+1 2%k
1 Qk=1)( .\ _ ~(2k=1)
Z(Zk i ( 2k +1, )[G (@) - G*V(p)]
m 2h2k+1+a§ —2/(—0{,1 g(Zk)(t)+O(h2m+2+a)' (3'10)
— " (2h)! 2
Since
1 BZk+2(%)
;( 2%k, )_ , g(—Zk—l,E)-— ira k=012,

we have the forms of (3.3) and (3.4).
Next, we will derive the conclusions of (ii) and (iii). Using the rules of (2.4), (2.5), and
(2.7), we get the corresponding formulas:

-1 1 t m+1 hzk 1
ZhG(a+ <j+ §)h> :f.p./ G(x,t)dx - Z o sz< >G<2/<_1)( )
j=0 a

(l)alg ()w(l) (l)algal(t)nl

(o -1)! (ca=1)!  h
2m+l (=1)kpk+iee 1
D SN
k=0,k#—a-1 k! 2
+ (K2 (3.11)

and

n-1 m+1 2%
ZhG<a+<]'+%)h) =f.P./ G(x,t)dx+z(zk <1> G D(p)
=i

gD 1\ g V@) 1

(o - 1)! W(§> ’ (~a -1)! In h

2m+1 Jk+lva 1 ®
+ Z X §<—k—0l;§)g (®)

k=0,ks—a—1

+ O(HPm+2e). (312)
Combining (3.11) with (3.12), we have
n-1 1 b
ZhG<a+ <j+ §)h> =f.p./ G(x,t)dx
j=0 “

m+1 hzk

Z (Zk)' < > 2k 1) (b) Zk l)(ﬂ)]
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(~a-1) (~a-1)
- (Dt +1) [g RU w(l) _e0, 3]

(~a-1)!"\2/) (-a-1)! h
* MZI ((-1*+1) - ¢ (—k -a, l>g(k>(z:)
k=0,k#-a—1 k! 2
+ O3, (3.13)

It is easy to obtain the formula of the form

\- 1 ’ g (1
FZOhG(a+ (]+ §)h> =f.p./a G(x,t)dx -2 20 w(i)

(21) m+l  op
g(2) In l + Z h_B (%) [G(Zk—l)(b) _ G(Zk—l)(a)]

+2

2k
@) T h T (2K)!
m 2(k1)§<2(l K41 1> (2k)(t) (3.14)
— + 1, = g ’
k=0,k#1 (2k)! g

from (3.13) for « = -2/ — 1. Hence, equations (3.3) and (3.5) hold.
As o =-2[(I>1), we have

n-1 1 b
ZhG<a+ <j+ E)h> =f.p./ G(x, t) dx
j=0 “

+ mzﬂ h_zkg <l> [G(Zkfl)(b) _ G(Zkfl)(a)]
i)\ 2

k=1

min(m,i=1) 3 o (k1)1

¥2 ) —c(z(Z—k), %)g@“(n

pary (2k)!
+ (K24 (3.15)
from the rules of (3.13).
This completes the proof of theorem. 0

Clearly, the convergence order of the quadrature form of (3.3) is O(h***1**) (u =
1,2,...,m).

Corollary 3.2 Under the assumption of Theorem 3.1 and letting o = -1, the quadrature
rule is given by

n-1
1 1 1
h) = hG i+ = |h 2g(¢ - ) -2g(t)In—, 3.16
Q) 120: (a+(;+2))+g<>w(2) g(t)In (3.16)
and the form of the asymptotic error expansion is

ki 1 (2k-1) (2k-1)
B =Y b5 )64 7@ - 64w

m 2k

(2k)!

c (1 2k, %)g(Zk)(t) + O(h2m+1). (3.17)
k=1
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Proof Let =0 of (3.3) and (3.5), then the results hold. O

We have discussed the case of the kernel function g(x,t) = |x — £| above, while some
modelings of the phenomena naturally require numerical schemes of the hyper-singular
integral (3.1) with g(x,¢) = x — t. In Theorem 3.3, we will lay out the quadrature formulas
of (3.1) with g(x, t) = x — t and demonstrate them.

Theorem 3.3 Let g(x) be C*"*! function on [a,b] and G(x,t) = g(x)(x — t)* for a < —1. At
the same time, we take t = x;, 1 <i < n—1, then the following assertions hold.
(i) When o = =211 for [ € N*, the expansion is

n-1
Q(h) = ZhG(a + <j+ %)h)

=0

~.

b e n* 1 (2k-1) (2k-1)
=f.p. / G(x, t) dx + ; @B%(i) [G**V(b) - GH*(a)]

min(rm,l-1) 2(k=1)+1

L2 Z mg (2(l _ k)’ %)g(2k+l)(t) + O(h2m+2+oz). (318)

k=0

(i) When a = =21 -1 with [ = 0, the form of the rule can be written
< 1 o 1 (2k-1) (2k-1)
hG i+=)h)=> ——Bul|=||G"V(b) -G
,ZO (‘”(”2) ) 2 o0 “(2)[ ® “

b
+f.p./ G(x,t)dx + O(hzm"z“’). (3.19)

(ili) If o is a negative even (or non-integer), the results are the same as the formulas of
Theorem 3.1(iii) (or (i)).

Proof Setting t = x;, we divide the integral into two parts, as in the following forms:
b b
f.p./ G(x,t)dx =f.p.f g)x—10)*dx
a a

t b
=f.p./ (-1)%g(x)(t —x)* dx +f.p./t gx)(x - 1)* dx.

The proof of the theorem is similar to Theorem 3.1. The only one difference of the proof
is that (-1)*g(x) in the above formulas can be regarded as g(x). Therefore, by using (2.5),
(2.4) of Lemma 2.1, and (2.7) of Corollary 2.2, respectively, we obtain

i1
ZhG(ﬂ + <]+ l)h)
=0 2
t m+1 hzk
:f~P«f; G(x,t)dx — kX_; @32k<%>GQk—1)(a)

[t 1y (g 1

(~a —1)! 2 (~a —1)! I
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2m+1 (_l)khk+1+a

oy Tf(—k—aé>((—1)“g(t))(k’

k=0,k#-a—1

+ 01+ (3.20)

and

n-1 1 b m+1 2k 1
> hG <a + <1‘ + 5)h) =f.p. / Gl t)dx+ ) mng<E>G(2k‘l)(b)
t k=1 :

j=i

g (1Y £ 1
(Ca—1) (z)ﬁ‘h

2m+l hk+1+01 1 @
oy 5 {(—k—a,i)g @

k=0,k#—a-1

+ O(HPm2+e). (3.21)

Adding the rules of (3.20) and (3.21), we have the following form:
n-1 1 b
ZhG<a+ <j+ E)h) :f.p./ G(x,t)dx
j=0 “

‘ mif Ll (l) (G2 D(b) - GV (a)]
i)\ 2

k=1
(-a-1) (-a-1)
- g (1Y g @) 1
(=D =D+ ———y ()= 1n=
(D7 D7+ )[(—a—l)!w(Z) Ca-1)!
2m+1 . ket 1\
+ Z (-1 +1) k! {(—k—a,i)g ()
k=0,k#-a~1
+ O(HPm+2+e). (3.22)
We complete the proof of Theorem 3.3 from (3.22). d

The quadrature formulas and error expansions of (3.1) have been given in the front part
of this section. While we study some boundary integral equations arising in many prob-
lems, we notice that these are not only required for calculating the integrals of (3.1), but
we also need to discuss the integrals with logarithmic functions just like (3.2) to solve the
equations. From equations (2.4), (2.5), and (2.6), one can obtain the Euler-Maclaurin ex-
pansions for hyper-singular integrals with logarithmic functions. We deal with them in
another paper.

Remark (i) We note the terms

min(rm,/-1) h2(k—l)+1

- _ l (2k+1)
(2k+1)!C<2(l k)’z)g ®

k=0

of equations (3.6) and (3.18) depending on #2*-9+1 and gi**1(¢), where 2(k — 1) + 1 < —1.
The accuracy order of quadrature formulas can be improved by utilizing the Richardson
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extrapolation method to take the terms away. Letting Q(/) = Q;, [ = _12_ ¢ [l e N7, the mod-

ified quadrature rule is

22(1—/()—1 i h) — i h
Q) =Qh),  Qh)= 2(22(,7;(71)_ IQ G (3.23)

where k=0,1,...,/-1,i=1,...,1, and the order of error of Q;(k) is O(h?).

(ii) Considering equations (3.4), (3.5), (3.17), and (3.19), we can obtain better numerical
results by the Richardson extrapolation or the Romberg extrapolation method just like the
above item (i).

Now, taking Example 4.3 for example with / = 1, we will obtain the quadrature formula
and its error expansion. The quadrature rule of (3.18) is Q(k) = Z;:ol hG(a + (j + 1/2)h).
Then the kth extrapolation is given by

Q%) =2Qn) - (%),

— k- ke (3.24)
Q) =2 (- me* -1, 1sk=m+1,
and the corresponding asymptotic expansion of error is
m+1
EQ(h)= > O + O(R>), (3.25)
n=k+1

—(k Ly—o-2m)[Gr-1) (4)—G2r-1)
where E;k)(h) - I(g) - Q( )(h), cf?) _ Bu(3)2-2 )[((92“)! (a)-G (b)] (w=1,...,m+1), and

b = %cﬂ(‘l). Clearly, Q" (h) has a high convergence order of O(/***V), where k =
L...m+1

Asis seen from (3.4), (3.5), (3.6), (3.17), (3.18), and (3.19), their error expansions contain
the term [G*D(b) — G®*V(a)]. If G(x) is a periodic function, those related terms will
vanish. Then the quadrature formulas with higher orders of accuracy can be achieved by

a Romberg extrapolation. Furthermore, if G(x, t) is not a periodic function, we can obtain
better numerical results by using a Richardson extrapolation or a Romberg extrapolation
method in a different way just like in our remark.

4 Numerical experiments

In this section, we will display several numerical experiments which are associated with
the implementation of the quadrature formulas proposed in this paper. The numerical
results for non-periodic hyper-singular integrals are given. Let /1 = b%“ be the step length

used in the quadrature, where # is the number of nodes. #*f — ex (k = 0,1,2,3) are the
. k) _ n*k_ex
absolute errors of the kth extrapolation, and r;, = Ten

Example 4.1 Calculate the hyper-singular integral

1
(@) - | (ng"zy &y, g =@x-1% te(01), (1)

where the exact solution is

(I(2))(8) =8(2t - 1) + 6(2¢ = 1)* In[ (1 - £)/¢] — (2t = 1)?/(¢(1 - ).

Page 11 of 16
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Table 1 The numerical results for t = 0.25

ex\e\n 23 24 25 26 27 28

hO —ex 2331e-2  6.077e-3 1573e-3  3.854e-4  9.643e-5 2411e-5
,570) 2 1.9395 21 9833 21 9957 2 1.9989 21 9997

h? - ex 33294 2363e-5 1.533e-6 9.696e-8  6.065e-9
,571) 23,81 63 23,9463 239859 23,9964

h* —ex 3014e-6  5972e-8 1.004e-9  1.597e-11
r;Z) 256571 25.8942 259745

ho — ex 1284e-8 7213e-11  2.800e-13

Table 2 The numerical results for t = 0.984375

ex\e\n 28 2° 210 2"
hO—ex  689%e-3 1737e-3  4352e-4  1088e—4
,;]0) 1989 21997 91.999

h? —ex 1832e-5 1.178e-6  7.430e-8
,(nW) 23.959 23.987

h* - ex 3611e-8  6.577e-10
,(nZ) 95779

ho —ex 9495e-11

Since g(x) = (2x —1)> and (I(g))(¢) are non-periodic functions on (0,1), we use equations
(3.3). The errors of approximation solution are listed in Table 1 for ¢ = 0.25 by (3.3) and
(3.6). The numerical results in the table show that

r a2 k= 0,1,2,
which accord with the error expansion of (3.6) perfectly. Furthermore, the numerical re-

sults in the table also display the fact that a higher convergence order can be got by the
extrapolation method.

Example 4.2 Calculate the hyper-singular integral

1
(1@)(® - / A 4.2)

-1 |x—t|

where the exact solution is
=1
(@)@ =¢ Z —[(-1-8f+ @A -0*] + 2¢'(In |1 + £| + In |1 - 2]).

The numerical results are listed in Table 2 based on the quadrature formulas (3.16) and
the Romberg extrapolation at ¢ = 0.984375.

Note that the convergence order of numerical solutions can be improved by an extrapo-
lation method. From the numerical results in Table 2, we have rk &~ 2%+2 (k = 0,1, 2), which
agrees with the rules of (3.16) and (3.17).

Example 4.3 Calculate the hyper-singular integral

1
)0~ [ %dx, o) = 25, (43)
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Table 3 The numerical results for t = 0.25

h 23 24 25 26 27 28

ah) 13382 18031 27290 45797 82808 15.6830
2% 087321 087726 087827 087852 087859
@7 -1 53987e-3  13502e-3 33757e-4 843%4e-5  2.109%-5
fﬁj) 2T.9995 21 9999 22.0000 220000 22.0000
2"n 0878607 0878608 0878608  0.878608
2" - 65498e-7 38287e-8 23688e-0  14785e-10
/,(nz) 240965 24.01 46 240020 23.9961

Table 4 The numerical results for t =0.25

ex\e\n 23 24 25 26 27 28 2°

hO—ex  3600e-2 1240e-2 4.286e-3 1490e-3  5202e-4 1823e-4  6.405e-5
rE]O) 21.5379 21 5326 2].5246 21.5178 21.5]28 21 5091

h? - ex 5107e-4  1514e-4 3955e-5 9998e-6 2506e-6  6.271e-7
fﬁ,” 21 7538 2 1.9368 2 1.9840 2 1.9960 21 .9990

h* - ex 3168e-5 2262e-6  1469%e-7 9272e-9  5810e-10
rg) 23.8081 23.9447 239855 23.9963

where the exact solution is

602" —90¢* + 20> + 56> + 2t + 1

(@) = -1 +15¢* ln<1—;t), t€(0,1).

We get the quadrature formulas Q, = & Zz;ég((% + k)h)/((% + k)l —t)® from rules (3.18)
and extrapolations (3.23) for this example. We have the numerical results listed in Table 3
for (4.3) by using the rules (3.18) and (3.23) at t = 0.25 with « = -3 and [ is the Hadamard
part of the example.

Clearly, the numerical results in Table 3 imply that

O~ k=12,
which meet equation (3.25).
Example 4.4 Calculate the hyper-singular integral with the fractional order singularity

gl

o Ix—t?

where the exact solution is

(@)@ = dx,  glx)=(2x-1), (4.4)

128y —160y? + 60y — 5 . 128y3 — 224y% + 124y — 23)
vy I-y

The numerical results for (4.4) at ¢ = 0.25 are listed in Table 4 by (3.3) and a Richardson
extrapolation. Since g (x) = 0 for i = 4,5,..., the error analysis of equation (3.4) is

(@)@ = —0.4(

m+1
Eu(l) =Y aih™ + by + O(h*"7), (4.5)
k=1
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NonLinear regression

error
S
T

Figure 1 Nonlinear regression analysis at t = 0.25. Note that the order of convergence matches the error
analysis and the order is clearly improved by using an extrapolation.

Table 5 The numerical results of QF, EQF, and RR with t = 0.25

ex\e\n 23 24 25 26 27 28
RR h0—ex 35318e-3  88306e-4 22077e-4  55193e-5  1.3798e-5
QF  h0-ex  78652e-2 20782e-2 52765e-3  13244e-3 33144e-4  82880e-5
EQF  h?-ex 14922e-3  107%e-4  7.0429e-6  44520e-7  2.7905e-8
h* —ex 15657e-5  3.1634e-7  53531e-9  85167e-11
rE]O) 2 1.9201 2 19777 2 1.9942 2 1.9985 21 .9996
,;]1) 237891 23.9379 23.9836 23,9959
r512) 25 6292 25.8849 259740

where ay and b, are constants, which are independent of /. The numerical results of Ta-
ble 4 also indicate that

rO~ots g2 @) ot

which coincide with (4.5) perfectly.
The nonlinear regression analysis shows that efqo) = 0.834/4%! after the fractional order
extrapolation, while e = 012719 and ) = 31.2/13%8 are after the integer order extrap-

olation. We show this nonlinear regression analysis result graphically on Figure 1.

Example 4.5 Calculate the hyper-singular integral of Example 4.1 with g(x) = x* + 1 and
the exact value of this finite-part integral is

4 1-¢
1(9))(t) = 4t* + 2t + — 4¢3 In —.
(@)@ + +3+t(t—1)+ n—
We use equations (QF), (3.3), and (3.6) and the corresponding extrapolation of the quadra-
ture equation (EQF) to evaluate the hyper-singular integral, and obtain the numerical re-
sults in Table 5. The rectangle rules (RR) in [16] and the quadrature formula (QF) both
have the second order accuracy.
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The numerical results in the table display the fact that EQF has a high accuracy com-
pared with the method of RR and QF. Furthermore,

r0x2%2 k= 0,1,2,

which accord with the error expansion of (3.6) perfectly. The rate logz(r’,j) shows that EQF
has fourth and sixth order accuracy as k = 1 and k = 2, respectively.

In a consideration of the non-periodic functions g(x) of all the numerical examples
above, we can periodize the functions by a sin’ transformation [12] to take away some
terms of the error expansions. By utilizing the extrapolation method, we can get numeri-
cal solutions with higher convergence order from (3.3), (3.16), and (3.23), respectively.

5 Conclusion

From the above results in this paper, we draw conclusions as follows: According to the
quadrature formulas to calculate hyper-singular integrals, the algorithms of modified
trapezoidal formulas have a low cost for real world problems compared with some other
methods, such as the Gaussian method [10, 17, 18] and the Newton-Cotes method [19—
22]. The rules can be calculated in a fairly straightforward way, without the need to calcu-
late any weight. The accuracy order of the algorithms is very high. Finally, the numerical
experiments match with the error analyses. These excellent numerical results show the
significance of the quadrature formulas proposed in this paper.
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