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This paper considers the scheduling of n jobs on m parallel machines to minimize the weighted number 
of early and tardy jobs. The single machine case of this problem has been shown to be NP- complete in 
the strong sense. This problem on m parallel machine is also NP complete in the strong sense and 
finding an optimal solution appears unlikely. The problem is formulated as an integer linear 
programming model. In this paper, we propose some meta-heuristics for solving this problem. 
Extensive computational experiments were performed which gave promising results. 
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INTRODUCTION 
 
Scheduling jobs on the parallel machine to minimize the 
weighted number of tardy jobs is one of the well known 
problems in combinatorial optimization. In the last four 
decades, many results have appeared in the scheduling 
literatures that consider both earliness and tardiness 
penalties (Chen and Powell, 1999; Baptiste et al., 2000; 
Čepek and Sung, 2005). This problem is known to be 
NP-hard in the strong sense in the general case (Hiraishi 
et al., 2002). There is no efficient solution algorithm found 
yet for solving to optimality in polynomial time. This has 
led to recent interest in using meta-heuristic algorithms to 
address it. 

In this work, we are considering minimizing the 
weighted number of early and tardy jobs on identical 
parallel machines. The problem has practical applications 
in real-world including in production and manufacturing 
industries, rental agencies, among others. Rental 
agencies (hotels, car rentals) must plan their reservations 
schedule to meet exactly the time requests of all 
customers. Customers require a room (car) within speci-
fic dates. If those dates cannot be met, the customers 
look for  an  alternative  accommodation/agency  implying 
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loss of income for the agency. Alternatively, the agency 
can offer them a deal whereby; they will be scheduled on 
a different date, with a significant (fixed) compensation 
paid by the agency. The objective here is to maximize the 
number of customers scheduled as requested. 

This paper proposes some metaheuristics including 
hybrids for solving the parallel machine scheduling 
problem. We explore solutions using Genetic algorithm 
(GA), Particle Swarm Optimization (PSO) and Simulated 
Annealing (SA) with promising results for large instance. 
These are further hybridized with four heuristics reported 
in Adamu and Abass (2010).  
 
 
LITERATURE REVIEW 
 
Researchers have considered and developed various 
heuristics for various aspects of machine scheduling 
(Süer et al., 1993; Sevaux and Thomin, 2001; Adamu 
and Abass, 2010). Ho and Chang (1995) focused on two 
fundamental approaches namely, job-focused and 
machine-focused, to minimize the number of tardy jobs 
on the parallel processors. Three heuristics were 
proposed (two heuristics for the job focused approach 
and one for the machine-focused heuristic) for solving the 
problem of P||∑Uj. Süer et al. (1993) proposed an  integer 
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programming formulation for the same problem aside 
three heuristics procedures for solving it. Süer (1997) 
considered the objective of minimizing the number of 
tardy jobs in a multi period environment. The results of 
his approaches were illustrated with a simple example. 
Süer et al. (1997) also addressed the problem of 
minimizing the number of late jobs on identical machine. 
They provided the mathematical modeling formulation 
and the result of simulation experiment. Van der Akker et 
al. (1999) solved the P||∑wjCj problem and explained how 
this can be extended to solve the identical and non-
identical parallel machine weighted number of tardy jobs 
problems. They formulated the scheduling problem as a 
set covering problem with an exponential number of 
binary variables, n covering constraints, and a single side 
constraint. The LP relaxation of this formulation was then 
solved by column generation using a pseudo-polynomial 
algorithm to generate columns with negative reduced 
costs. Chen and Powell (1999) considered the problems 
P||∑wjUj, Q||∑wjUj and R||∑wjUj. The problem was 
formulated as an integer programming problem and 
Dantzig-Wolfe decomposition was used to reformulate it 
as a set partitioning problem. The lower bounds found by 
solving the linear programming relaxation through column 
generation were used to construct a branch and bound. 
Their results gave an average time to solve 10 machine 
100 jobs instances as 0.33 h for P||∑wjUj, 1.59 h for 
Q||∑wjUj, and 0.91 h for R||∑wjUj. Liu and Wu (2003) 
used evolutionary programming to solve the unweighted 
case of the problem. They obtained a better result when 
compared to that found in Süer et al. (1993). 
Furthermore, M’Hallah and Bulfin (2005) considered the 
three problems as defined by Chen and Powell (1999) to 
minimize the weighted number of tardy jobs. They 
provided a branch and bound algorithm that used bounds 
from a surrogate relaxation resulting in a multiple-choice 
knapsack. They conducted computational experiments 
that indicate problems with 400 jobs and several 
machines can be solved quickly. They obtained a wide 
timing gap when compared with that of Chen and Powell 
(1999). The longest branch and bound time in any of their 
sets was 5.17 CPU seconds. 

Similarly, Sevaux and Thomin (2001) addressed the 
NP-hard problem to minimize the weighted number of 
late jobs with release time. They presented several 
approaches for the problem including two MILP 
formulations for exact resolution and various heuristics 
and meta-heuristics to solve large size instances. They 
compared their results to that found in Baptiste et al. 
(2000) which performed averagely better. Baptiste et al. 
(2000) used a constraint based method to explore the 
solution space and give good results on small problems 
(n < 50). Dauzère-Pérès and Sevaux (2002) determined 
conditions that must be satisfied by at least one optimal 
sequence for the problem of minimizing the weighted 
number of late jobs on a single machine. Sevaux and 
Sörensen   (2005)   proposed  a  variable  neighbourhood 

 
 
 
 
search (VNS) algorithm in which a tabu search algorithm 
is embedded as a local search operator. The approach 
was compared to an exact method found in Baptiste et al. 
(2000). Li (1995) addressed the P| agreeable due 
dates|∑Uj problem. Where the due dates and release 
times are assumed to be agreeable. A heuristic algorithm 
is presented and a dynamic programming lower bounding 
procedure developed. 

For the case of due window considered in this paper, 
Hiraishi et al. (2002) addressed the non-preemptive 
scheduling of n jobs that are completed exactly at their 
due dates. They showed that the problem is polynomially 
solvable even if positive set-up is allowed. Sung and 
Vlach (2001) showed that when the number of machines 
is fixed, the weighted problem considered by Hiraishi et 
al. (2002) is solvable in polynomial time (exponential in 
the number of machines) regardless of whether the 
parallel machines are identical, uniform or unrelated. 
However, when the number of machines is part of the 
input, the unrelated parallel machine case of the problem 
becomes strongly NP-hard. Lann and Mosheiov (2003) 
provided a simple greedy O(n log n) algorithm to solve 
the problem defined by Hiraishi et al. (2002) with great 
improvement in time complexity. Čepek and Sung (2005) 
considered the same problem, gave a corrected form of 
the greedy algorithm in Lann and Mosheiov (2003) and 
presented a new quadratic time algorithm that solves the 
problem. Adamu and Abass (2010) proposed four greedy 
heuristics for the Pm|∑wj (Uj + Vj) problem and extensive 
computational experiments was performed. Janiak et al. 
(2009) gave an O(n

5
) complexity for solving the problem 

(Pm|pj = 1 |∑wj(Uj + Vj). They also consider a special 
case with agreeable earliness and tardiness weights 
where they gave O(n

3
) complexity (Pm|pj = 1, rj, 

agreeable ET weights|∑wj(Uj + Vj)). 

 
 
PROBLEM FORMULATION 

 
For n independent jobs, scheduled on m machines, which are 
simultaneously available from time zero, each having an interval 
rather than a point in time, called due window of the job, and the left 
end and the right end of the window are called, respectively, the 

earliest due date aj  0 (that is, the instant at which a job becomes 

available for delivery), and the latest due date dj  0 (an instant by 
which processing or delivery of a job must be completed). There is 
no penalty when a job is completed within the job’s due window, but 
earliness (tardiness) penalty is incurred if a job is completed before 
the job’s earliest due date (after the job’s latest due date). 

For any given schedule S, let pj, tij and Cij (S)= tij + pj represent the 
processing time, actual start time on a given machine and 
completion time of job j on machine i, respectively. Job j is said to 

be early if Cij (S) < aj, tardy if Cij (S) > dj and on-time if aj  tij + pj  
dj. Furthermore, define Uj and Vj as follows: 
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Let wj ≥0 be the weights for scheduling job j (jN) early and tardy. 
The objective is to find the feasible schedule S* which minimizes 
the weighted number of early and tardy jobs on identical parallel 
machine given as  
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Taking the dual of this objective function, let xij be one if job j is on-
time and zero otherwise and Cik the completion time of the last job 
on machine i before job j. Then  
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Such that  

  

aj  { max
j

k 1

 {Cik-1(S),aj – pj} + pj}xij i=1,. . . ,m; j = 1, . . . , n,            (5) 

 

{ max
j

k 1

 {Cik-1(S),aj – pj} + pj}xij  dj i=1,. . . ,m; j = 1, . . . , n,            (6)  

  
i=1,m xij  1 j = 1, . . . , (7) 

  
 xij  { 0,1 } i = 1, . . . ,m ; j = 1, . . . , n                                            (8)  

 
Constraint (5) ensures job j is not finished before the job’s earliest 
due date aj. Constraint (6) is the completion time of job j is not 
greater than the latest due date dj. Constraint (7) ensures that a job 
is assigned to at most one machine, and Constraint (8) forces a job 
to be either on-time or early/tardy; one if on-time and zero 
otherwise. 

 
 
HEURISTICS AND META-HEURISTICS 

 
Greedy heuristics  

 
Adamu and Abass (2010) have proposed four greedy heuristics 
which attempt to provide near optimal solutions to the parallel 
machine scheduling problem. The first heuristic (W01) sorts jobs 
(tasks) in ascending order according to earliest due date (that is, 
the earliest time in which the task may be finished). If two jobs have 
the same earliest due date, then the tie is broken by placing the job 
with the highest processing time first. Jobs are then assigned onto 
machines using this sorted order. The second heuristic (WO2) is 
identical to the first except for using a different tie-breaking rule. 
Instead of using the highest processing time, the highest weighted 
processing time is used (that is, weight / processing time). The third 
heuristic (DO1) is the same as the first except that instead of sorting 
by earliest due date, jobs are sorted by latest due date (that is, 
latest due time -processing time). The final heuristic (DO2) 
combines the sorting method used in the third heuristic with the tie-
breaking rule used in the second heuristic.  

Though the results of these greedy heuristics are promising, this 
paper further investigates them and explores their hybridization with 
some meta-heuristics in search of better results. 
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Genetic algorithm 
 
Genetic algorithm (GA) (Goldberg, 1989) has been proved 
successfully as a meta-heuristics for solving optimization problems. 
Based on the biological inspiration of evolution, survival of the 
fittest, crossover and mutation, this paper investigates GA’s 
performance for the problem defined previously under Problem 
Formulation for comparative study with that of the greedy heuristics.  

We adopted a string data structure for our problem. Each job is 
fixed to a gene in the chromosome implying that the chromosome 
has length n (where n is the number of jobs). Each gene also has a 
machine number (the number of the machine to which the job will 
be assigned) and an order (a value between 1 and n representing 
the order in which jobs assigned to the same machine will be 
executed). The GA operators were designed to influence both the 
machine number and the order. The fitness evaluation function was 
designed to calculate the sum of the weights of jobs which could 
not be assigned onto any of the machines so that they would finish 
within the earliest due and latest due dates. For each machine, jobs 
which are assigned to it are placed in a priority queue (with priority 
based on their respective order). Each job is then removed from the 
queue and placed on the machine. If the job was to finish early, 
then it would be scheduled to begin later (at earliest due date -
processing time) in order to avoid the earliness penalty. However, if 
the job was to finish past the end time, then it would not be 
scheduled at all and instead would have its weight added to the 
total penalty (fitness). The fitness range is such that a lower value 
implies better performance.  

In our simulation experiment, we used the single-point crossover 
operator for machines, conventional mutation for machines (that is, 
choose a random machine between 0 and m-1 inclusive), swap 
mutation for the execution order (since naturally, this is permutation 
based) and tournament selection. However, since there are no 
guarantees that these operators allowed for the best performance, 
further experiments with variations of these operators were 
performed. The pseudocode of the GA used is presented in Figure 
1.  
 
 
Particle swarm optimization 
 
Solution with PSO for the parallel machine scheduling problem was 
investigated in this work. PSO is a population based technique 
inspired by the flocking behavior of birds that is influenced by both a 
particle’s best position as well as the global best position in the 
overall population (Parsopoulos and Vrahatis, 2010). We explore 
the possibility of PSO for obtaining local optima which can then 
drive the search for the global optimum solution. The PSO algorithm 
requires a solution representation or encoding such that each 
particle is an instance of the chosen representation. A complication 
is that PSO works in the continuous space whereas the scheduling 
problem is a discrete problem. Thus, a method is needed to convert 
from the continuous space to the discrete space. Our repre-
sentation is as follows: Each particle contains a number in [0,m), 
where m is the number of machine. This number represents the 
machine on which the particle is scheduled and is simply truncated 
to convert to the discrete space. For the order of scheduling, each 
particle contains a number in [0,1) which represents the order of 
scheduling relative to other particles on the same machine. A job 
with lower number will be scheduled before the jobs with higher 
numbers. Finally, a method was devised to convert the encoding 
into a valid schedule. This is done by separating the jobs into 
groups based on the machine to which they are assigned. Within a 
group, the jobs are sorted by their order parameter and organized 
into a queue. The schedule for a particular machine is then formed 
by removing jobs from the queue and scheduling them as early as 
possible without breaking the earliness constraint. The weights of 
jobs that  cannot  be  scheduled  are  totaled  as  the  fitness  of  the 
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Generate a population of randomly initialized 

individuals.  

iterations ← 0 

repeat 

    for  i = 1 → popSize do 

       Perform crosssover with probability 

crossoverRate.  

    end for 

    for  i = 1 → popSize do 

           for  j = 1 → numJobs do 

                Mutate machine with probability 

mutationRate.  

           end for 

     end for 

    for  i = 1 → popSize do 

            for  j = 1 → numJobs do 

               Mutate order with probability 

mutationRate.  

     end for 

            end for 

     Use selection to form a new population of 

individuals.  

     iterations ← iterations + 1 

     until iterations ≥ numIterations  

     Return the fitness of the best individual. 

 
 

 

Figure 1. Pseudo code of GA for parallel machine scheduling. 
 
 
 
solution (which should ideally be as small as possible). The pseudo 
code of the PSO used is presented in Figure 2. 

 
 
Simulated annealing 

 
We further explore the single-solution SA metaheuristics 
(Kirkpatrick et al., 1983) for the parallel machine scheduling 
problem. Based on the principle of annealing in thermodynamics, 
the exploration of single solution in SA requires fewer computations 
in comparison with the population-based technique. We thus expect 
the execution times for this technique to be quicker. Moreover, we 
hope SA, in all likelihood, will achieve better results than a simple 
hill-climbing technique. This is because SA can take downward 
steps (that is, accept worse solutions) in order to obtain greater 
exploration. Thus, it is less likely to become stuck in a local 
minimum (a very real problem given the complex solution space). 
For the SA algorithm, we use a similar representation as that in  GA 

The fitness evaluation is also done in similar manner. For the 
neighbourhood selection, we allow an element to be given a new 
randomly chosen machine and a new order (done by swapping with  
the order of another randomly chosen element). By allowing for a 
high level of randomness when selecting the neighbour, we ensure 
that good exploration is achieved while seeking to escape from 
local optimum solutions.  
 
 

Improvements and hybrids 
 

Aside the fundamental implementation of the basic heuristics and 
meta-heuristics mentioned previously, a number of improvements 
were experimented in search of better solution.  

Aside the original GA which was tested using 1-point crossover, 
random mutation for machines, swap mutation for order and 
tournament selection, we tried other combinations of operators in 
order to see if performance could be increased. For this reason, 
roulette-wheel   selection,  uniform   crossover  and  insert  mutation 
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            for i = 1 → PopSize do  

                Construct particle with randomly initialized machine number 

and order.  

             end for 

             repeat 

               pbest ← 231  

              for i = 1 → PopSize do  

                fitness ← calcfitness(pop[i]) 

                if fitness < pbest then 

                   pbest ← fitness 

                end if  

                if fitness< fitness(gbest) then 

                    gbest ← pop[i] 

                end if  

              end for        

              for  i = 1 → PopSize do 

                     v[i + 1] ← wv[i] + r1c1(pbest – pos[i]) + r2c2(gbest – pos[i])  

                     pos[i + 1] ← pos[i] + v[i] (ensuring to clamp the position 

within range) 

              end for 

               iterations ← iterations + 1 

            until iterations ≥ numIterations       

 
 

 

Figure 2. Pseudo code of PSO for parallel machine scheduling. 
 
 
 
(for order) were explored. User can decide on a combination of 
operators to use. 

The greedy heuristics reported in Adamu and Abass (2010) were 
incorporated as local search for the GA, PSO and SA meta-
heuristics. Adamu and Abass (2010) reported that the performance 
of the greedy heuristics hinge on the order of assigning jobs to 
machines. We explored the same ordering mechanisms as in WO1, 
WO2, DO1, DO2 (Adamu and Abass, 2010) and incorporated them 
into GA, PSO, and SA to form hybrids. In our overall experiment, 
any of the four greedy heuristics can be hybridized with GA, PSO or 
SA. In this paper however, we only reported four new hybrids 
namely, GAHybrid, PSOHybrid, PSOGA and SAHybrid. Past 
research (Premalatha and Natarajan, 2009) has shown that PSO 
can become stuck in local minimum and has proposed the 
combination of PSO with some GA features to prevent premature 
convergence. Premalatha and Natarajan (2009) suggested the 
incorporation of mutation operator if particle’s local best remain 
unchanged over a period of time. This motivated the PSOGA hybrid 
for this research work. The PSOGA hybrid allows any pBest 
position which was not  updated  (that  is,  the  particle  did  not  find  

a new best) to be mutated by applying a random mutation to the 
machine number and swap mutation to the order.  
 
 
COMPUTATIONAL ANALYSIS  
 
Simulation experiments were carried out using an open-source 
eclipse® integrated development environment (IDE) for Java 
developer, release 3.3 on Microsoft Windows XP platform running 
on a Pentium dual 1.86 GHz, 782 MHz, and 2 GB of Ram The 
system clock was used to track execution time in milliseconds. 
 
 
Data generation 
 
The heuristics were tested on problems generated with 500, 1000, 
1500, 2000 and 2500 jobs similar to that used in previous studies 
(Adamu and Abass, 2010; Baptiste et al., 2000; Ho and Chang, 
1995; M’Hallah and Bulfin, 2005). The number of machines was set 
at   levels   of  2,  5,  10,  15  and  20.  For  each  job  j,   an   integer  
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processing time pj was randomly generated in the interval (1, 99). 
Two parameters, k1 and k2 representing levels of traffic congestion 
ratio were taken from the set {1, 5, 10, 20}. For the data to depend 
on the number of jobs n, the integer earliest due date (aj) was 
randomly generated in the interval (0, (5000/n)*k1), and the integer 
latest due date (dj) was randomly generated in the interval (aj + pj, aj 
+ pj + (5000/n)*k2). For each combination of n, k1 and k2, 10 
instances were generated, that is, for each value of n, 160 
instances were generated with a weight randomly chosen in interval 
(1, 10) for 8000 problems of 50 replications.  
 
 
Parameters 
 
In the simulation experiment, parameters were combined to control 
each meta-heuristic to determine an optimal parameter set for the 
scheduling problem. This led to a set of parameter combination 
used in obtaining the final results. For the GA and its hybrids, the 
population size was set to 10, random mutation (for machines) with 
a mutation rate of 0.01, swap mutation (for order) with a rate of 
0.01, uniform crossover at a rate of 0.5, tournament selection with a 
k value set at 40% of the population size and the number of 
iterations set at 2000.  

The optimal parameters combination for PSO are population size 
of 50, a momentum value (w) of 0.3, c1 of 2, c2 of 2 and the 
number of iterations set at 2000. Similarly, optimal parameter 
combination for SA is initial temperature of 25, a final temperature 
of 0.01 and a geometrical decreasing factor (β) of 0.999.  

 
 
RESULTS AND DISCUSSION 
 
The results for GA, PSO, SA, WO1, WO2, DO1, DO2, 
GAHybrid, PSOHybrid, PSOGA and SAHybrid were 
analyzed and presented in Appendix. In Appendix Tables 
1 to 5, each cell consists of two numbers. The first 
number is the average weight of the schedule produced 
over 50 runs. The number in parenthesis is the average 
time in milliseconds that the algorithm takes to complete. 
The times for the greedy heuristics are not included since 
the time is very small (averagely 0.115 µs). Also, the 
graphs in Appendix Figures 3 to 8 show results obtained 
with the algorithms for each value of n in [500, 2500]. The 
graphs compared the relative performance (penalty) of 
each of the 11 algorithms compared to the number of 
machines used. Two graphs were used to show the 
computational times of the meta-heuristics when N = 
1000 and N = 2000. 

Generally from these results, it is very clear that 
majority of the meta-heuristics outperformed the greedy 
heuristics. However, the greedy heuristics achieved 
better results than GA in all of the categories except m is 
2 for all N jobs. The results showed it to be in the region 
of 16000 times slower than the greedy heuristics on the 
overall. GA hybridized with DO2 (GAH) achieved better 
results than traditional GA for all of the test cases 
although the hybrid took an average of about 50% longer 
to run than GA (averagely 2 to 3 s) (Appendix). GAH 
performed better than WO1, WO2, DO1, and DO2 
heuristics except when the number of machines was high 
(that is, 20) and the number of jobs was low (e.g. 500, 
1000 and 1500).  

 
 
 
 
PSO and its hybrid (PSOH) produced lower weight than 
all   the  greedy  heuristics  except  when  the  number  of 
machines was generally small (that is, 2) (Furthermore, 
they were far slower than the greedy heuristics (over 
100000 times slower for PSO and 85000 for PSOH). This 
is understandable since PSO is a population-based 
algorithm with lots of parallel computations at each step. 
Hybridizing PSO with the DO2 (PSOH) produced results 
which were worst than PSO for almost all case except 
when N = 500. PSOH was about 1.2 times faster than 
PSO. Meanwhile, the PSO outperformed GA in several 
cases considered. 

SA produced far better results than those of the greedy 
heuristics and in fact other meta-heuristics (Appendix 
Tables 1 to 5). On the average, SA produced a weight of 
about 100 less than what the best greedy heuristic 
produces (Appendix Tables 1 to 5). The only setback 
when compared with the greedy heuristic is that it was 
slower (over 2000 times slower). However, it was more 
than 4 times faster than the PSO with superior results 
(Appendix Tables 1 to 5). Hybridizing SA with the DO2 
greedy heuristic (SAH) produced results that were slightly 
better than the SA solutions for a large number of 
machines except majorly for number of machines equal 
to two (Appendix: Table 1). It is, however, about 1.3 times 
slower than the original SA algorithm.  

Finally, the hybrid of PSO and GA (PSOGAH) had a 
similar performance with that of PSO in both penalty 
incurred and execution time (Appendix: Table 1). Thus, 
one can conclude that adding the mutation operator to 
the PSO algorithm had very little effect on its 
performance. On the average for all test cases, PSOGAH 
still achieved better results than the greedy heuristics 
except when machines are 15 and 20 in number.  
 
 
Conclusion 
 

Adamu and Abass (2010) showed that greedy heuristics 
could be used effectively to solve the parallel machine 
scheduling problem. In this paper, we further investigated 
the use of GA, PSO and SA with some hybrids in search 
of better results. The three meta-heuristics (GA, PSO and 
SA) showed an improved average performance over all 
the greedy heuristics. Hybridizations of the meta-
heuristics with the greedy heuristics did not produce 
much noticeable performance increase except in GA. In 
the overall, SA proved to be the best performing meta-
heuristic with the lowest average weight (penalty) for 
each of the test cases and lowest execution time 
compared with other meta-heuristics. 

There is little doubt that SA could be used to achieve 
near optimal solutions to the parallel machine scheduling 
problem in the real-world. However, considerations need 
to be made as to whether the run time of the algorithm (1 
to 3 s) may affect the overall outcome. For example, the 
SA algorithm would be ideal for a large scale application 
such  as  scheduling  tasks   on   a   building   site   where  



 
 
 
 
wasting 2 to 3 s would not harm any overall outcomes. 
On the other hand, if the SA algorithm was to be used on 
a computer’s operating system for task scheduling, the 2 
to 3 s wait would be extremely costly and it would instead 
make sense to use a speedy greedy heuristic such as 
DO2 (while taking a performance decrease). Further work 
would seek better improvement as well as exact solution 
to the problem. 
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APPENDIX 
 

Table 1. Performance of heuristics at N = 500. 
 

 Job 
                     Number of machines 

Heuristics: weight (time) 
2 5 10 15 20 

500 

WO1 795.40(-) 683.04(-) 516.80(-) 374.30(-) 245.38(-) 

WO2 795.78(-) 685.58(-) 520.54(-) 375.36(-) 247.12(-) 

DO1 804.46(-) 697.90(-) 515.06(-) 314.90(-) 90.44(-) 

DO2 804.30(-) 695.46 (-) 516.16 (-) 319.68 (-) 89.96(-) 

GA 788.62 (1958.50) 713.94(1913.78) 618.72(1852.18) 549.26(1884.72) 487.66(1941.18) 

GAH 727.38(2827.48) 553.88(2714.96) 390.10(2565.58) 287.48(2557.42) 207.24(2582.84) 

PSO 698.02(15757.86) 625.76(13398.50) 543.84(13227.90) 486.10(14378.12) 439.26(14193.48) 

PSOH 708.68(10298.82) 636.78(9932.50) 545.14(9635.26) 471.44(9609.66) 415.00(9787.86) 

SA 694.58(271.20) 556.34(256.26) 402.90(248.14) 295.16(255.34) 220.02(248.14) 

SAH 743.66(344.26) 552.72(309.86) 366.26(438.42) 251.48(664.40) 171.98(690.96) 

PSO-GAH 709.72(13626.16) 641.38(13349.94) 546.12(13170.00) 487.04(13382.52) 447.80(13785.58) 

 
 
 

Table 2. Performance of Heuristics at N = 1000 
 

Job  
                          Number of machines 

Heuristics: weight (time) 
2 5 10 15 20 

  

  

  

  

  

1000 

  

  

  

 

WO1 826.58(-) 754.18(-) 639.00(-) 531.22(-) 434.94(-) 

WO2 829.34(-) 758.58(-) 640.86(-) 536.50(-) 436.52(-) 

DO1 835.64(-) 762.54(-) 634.12(-) 494.96(-) 340.82(-) 

DO2 836.10(-) 762.34(-) 635.10(-) 494.60(-) 337.48(-) 

GA 822.24(1947.78) 770.60 (1884.76) 695.70(1869.28) 631.14(1880.96) 586.18(1925.86) 

GAH 785.82(2838.18) 660.16(2721.26) 528.22(2585.26) 429.96(2568.76) 357.32(2601.44) 

PSO 757.00(13446.50) 705.10(13272.42) 638.74(13288.40) 585.24(13504.34) 544.26(14722.22) 

PSOH 778.12(10281.94) 727.48(9850.92) 658.22(9648.12) 604.48(9663.82) 550.10(10050.04) 

SA 763.12(269.36) 650.10(254.76) 524.02(254.96) 433.12(251.86) 357.96(265.08) 

SAH 796.62(779.76) 664.28(713.16) 510.38(665.66) 406.48(658.48) 327.16(676.86) 

PSO-GAH 763.08(13662.58) 717.12(13331.86) 640.94(13228.84) 589.72(13422.38) 549.56(13779.68) 
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Table 3. Performance of heuristics at N = 1500. 
 

Job 
                      Number of machines 

Heuristics: weight (time) 
2 5 10 15 20 

1500 

 

WO1 832.74(-) 770.38(-) 682.24(-) 596.36(-) 514.22(-) 

WO2 833.54(-) 777.80(-) 685.38(-) 597.02(-) 518.50(-) 

DO1 835.92(-) 773.88(-) 663.82(-) 547.84(-) 423.98(-) 

DO2 836.36(-) 774.42(-) 664.26(-) 548.90(-) 421.24(-) 

GA 825.46(1956.92) 784.86 (1881.84) 720.70(1854.10) 672.06(1884.00) 629.20(1932.56) 

GAH 798.32(2854..46) 702.94 (2738.16) 576.36(2582.48) 494.32(2593.44) 428.14(2638.40) 

PSO 771.9(13981.86) 729.60 (14621.54) 665.90(17273.08) 627.66(18210.82) 591.30(18686.38) 

PSOH 791.74(10406.98) 749.30 (9885.60) 695.40(9693.12) 646.58(9815.16) 608.48(9970.96) 

SA 775.98(268.08) 685.58 (254.36) 575.36(257.22) 491.82(261.90) 424.28(268.22) 

SAH 803.54(797.76) 699.36 (731.84) 569.88(676.20) 477. 78(669.78) 403.84 (675.04) 

PSO-GAH 773.3(13619.38) 737.24 (13260.28) 679.38(13177.28) 628.66(13369.06) 592.54(13754.38) 

 
 
 

Table 4. Performance of Heuristics at N = 2000 
 

Jobs  
                          Number of machines 

Heuristics: weight (time) 
2 5 10 15 20 

  

  

  

  

  

2000 

  

  

  

  

WO1 829.54(-)  778.78(-) 700.12(-) 623.34(-) 546.74(-) 

WO2 831.10(-) 784.10(-) 701.66(-) 625.12(-) 549.28(-) 

DO1 831.22(-) 777.86(-) 688.18(-) 580.76(-) 462.50(-) 

DO2 831.58(-) 778.66(-) 688.56(-) 581.26(-) 464.00(-) 

GA 823.40(1946.54)  784.88(1881.54)  730.46(1849.72)  688.76(1879.64  643.24 (1934.02)  

GAH 795.94(2867.00)  710.38(2754.36)  600.26(2612.18)  520.98(2605.06) 456.74(2650.28)  

PSO 774.70(16126.26)  731.18(17478.18)  683.12(15811.24)  635.48(15822.74)  607.1413(635.64) 

PSOH 793.14(10476.48)  755.82(10010.02)  707.60(10634.98)  664.06(9746.00)  624.82(9989.28)  

SA 781.90(272.50)  698.56(254.64)  593.36 (247.84)  515.36(252.22)  447.76(263.78)  

SAH 798.88(799.34)  705.24(737.86)  592.62(673.42) 506.26(668.84)  436.92(682.54)  

PSO-GAH 773.66(13535.92)  740.60(13419.74)  685.40(13241.24)  644.08(13564.98)  608.58(13844.70)  
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Table 5. Performance of Heuristics at N = 2500 
 

 Jobs 
                          Number of machines 

Heuristics: weight (time) 
2 5 10 15 20 

2500 

  

WO1 844.44(-) 796.50(-) 721.06(-) 643.14(-) 570.76(-) 

WO2 848.74(-) 798.46(-) 724.84(-) 649.88(-) 575.88(-) 

DO1 845.44(-) 797.52(-) 712.12(-) 617.10(-) 506.22(-) 

DO2 845.34(-) 798.38(-) 713.16(-) 616.50(-) 505.68(-) 

GA 836.44(1943.10) 802.54(1880.40) 755.62(1858.68) 713.12(1886.82) 672.08(1925.92)  

GAH 812.80(2911.78) 736.84(2780.00) 632.36(2621.30) 556.42(2639.40) 497.78(2665.02)  

PSO 793.84(13425.94) 749.94(13254.42) 703.68(13208.10) 665.74(13338.98) 633.50(13641.84) 

PSOH 813.40(10444.02) 776.76(10054.72) 728.60(9767.76) 689.74(10715.24) 656.34(9992.54)  

SA 799.86(275.78) 719.24 (364.12) 624.30(584.68) 549.04(597.78) 487.60(618.42)  

SAH 815.20(812.20) 729.84(737.62) 626.94(678.04) 545.30(673.46) 479.97(688.50)  

PSO-GAH 791.64(13698.72) 761.04(13342.50) 709.70(13187.48) 667.20(13357.50) 633.06(13702.86 

 
 
 

 
 

Figure 3. Comparison of heuristics and meta-hauristics for N = 500. 
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Figure 4. Comparison of heuristics and meta-heuristics for N = 1000. 

 
 
 

 
 

Figure 5. Comparison of heuristics and meta-heuristics for N = 1500. 

 
 
 

 
 

Figure 6. Comparison of heuristics and meta-heuristics for N = 2000. 
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Figure 7 Comparison of heuristics and meta-heuristics for N = 2500. 
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Figure 8. Comparison of meta-heuristics computational time for N = 1000. 


