
International Journal of Physical Sciences Vol. 7(10), pp. 1641 - 1652, 2 March, 2012
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.1741
ISSN 1992 - 1950 ©2012 Academic Journals

Full Length Research Paper

Metaheuristics for scheduling on parallel machine to
minimize weighted number of early and tardy jobs

M. O. Adamu1 and A. O. Adewumi2*

1
Department of Mathematics, University of Lagos, Lagos, Nigeria.

2
School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa.

Accepted 26 January, 2012

This paper considers the scheduling of n jobs on m parallel machines to minimize the weighted number
of early and tardy jobs. The single machine case of this problem has been shown to be NP- complete in
the strong sense. This problem on m parallel machine is also NP complete in the strong sense and
finding an optimal solution appears unlikely. The problem is formulated as an integer linear
programming model. In this paper, we propose some meta-heuristics for solving this problem.
Extensive computational experiments were performed which gave promising results.

Key words: Scheduling, parallel machine, heuristics, metaheuristics, particle swarm optimization, genetic
algorithm, simulated annealing, hybrid.

INTRODUCTION

Scheduling jobs on the parallel machine to minimize the
weighted number of tardy jobs is one of the well known
problems in combinatorial optimization. In the last four
decades, many results have appeared in the scheduling
literatures that consider both earliness and tardiness
penalties (Chen and Powell, 1999; Baptiste et al., 2000;
Čepek and Sung, 2005). This problem is known to be
NP-hard in the strong sense in the general case (Hiraishi
et al., 2002). There is no efficient solution algorithm found
yet for solving to optimality in polynomial time. This has
led to recent interest in using meta-heuristic algorithms to
address it.

In this work, we are considering minimizing the
weighted number of early and tardy jobs on identical
parallel machines. The problem has practical applications
in real-world including in production and manufacturing
industries, rental agencies, among others. Rental
agencies (hotels, car rentals) must plan their reservations
schedule to meet exactly the time requests of all
customers. Customers require a room (car) within speci-
fic dates. If those dates cannot be met, the customers
look for an alternative accommodation/agency implying

*Corresponding author. E-mail: adewumia@ukzn.ac.za.

loss of income for the agency. Alternatively, the agency
can offer them a deal whereby; they will be scheduled on
a different date, with a significant (fixed) compensation
paid by the agency. The objective here is to maximize the
number of customers scheduled as requested.

This paper proposes some metaheuristics including
hybrids for solving the parallel machine scheduling
problem. We explore solutions using Genetic algorithm
(GA), Particle Swarm Optimization (PSO) and Simulated
Annealing (SA) with promising results for large instance.
These are further hybridized with four heuristics reported
in Adamu and Abass (2010).

LITERATURE REVIEW

Researchers have considered and developed various
heuristics for various aspects of machine scheduling
(Süer et al., 1993; Sevaux and Thomin, 2001; Adamu
and Abass, 2010). Ho and Chang (1995) focused on two
fundamental approaches namely, job-focused and
machine-focused, to minimize the number of tardy jobs
on the parallel processors. Three heuristics were
proposed (two heuristics for the job focused approach
and one for the machine-focused heuristic) for solving the
problem of P||∑Uj. Süer et al. (1993) proposed an integer

1642 Int. J. Phys. Sci.

programming formulation for the same problem aside
three heuristics procedures for solving it. Süer (1997)
considered the objective of minimizing the number of
tardy jobs in a multi period environment. The results of
his approaches were illustrated with a simple example.
Süer et al. (1997) also addressed the problem of
minimizing the number of late jobs on identical machine.
They provided the mathematical modeling formulation
and the result of simulation experiment. Van der Akker et
al. (1999) solved the P||∑wjCj problem and explained how
this can be extended to solve the identical and non-
identical parallel machine weighted number of tardy jobs
problems. They formulated the scheduling problem as a
set covering problem with an exponential number of
binary variables, n covering constraints, and a single side
constraint. The LP relaxation of this formulation was then
solved by column generation using a pseudo-polynomial
algorithm to generate columns with negative reduced
costs. Chen and Powell (1999) considered the problems
P||∑wjUj, Q||∑wjUj and R||∑wjUj. The problem was
formulated as an integer programming problem and
Dantzig-Wolfe decomposition was used to reformulate it
as a set partitioning problem. The lower bounds found by
solving the linear programming relaxation through column
generation were used to construct a branch and bound.
Their results gave an average time to solve 10 machine
100 jobs instances as 0.33 h for P||∑wjUj, 1.59 h for
Q||∑wjUj, and 0.91 h for R||∑wjUj. Liu and Wu (2003)
used evolutionary programming to solve the unweighted
case of the problem. They obtained a better result when
compared to that found in Süer et al. (1993).
Furthermore, M’Hallah and Bulfin (2005) considered the
three problems as defined by Chen and Powell (1999) to
minimize the weighted number of tardy jobs. They
provided a branch and bound algorithm that used bounds
from a surrogate relaxation resulting in a multiple-choice
knapsack. They conducted computational experiments
that indicate problems with 400 jobs and several
machines can be solved quickly. They obtained a wide
timing gap when compared with that of Chen and Powell
(1999). The longest branch and bound time in any of their
sets was 5.17 CPU seconds.

Similarly, Sevaux and Thomin (2001) addressed the
NP-hard problem to minimize the weighted number of
late jobs with release time. They presented several
approaches for the problem including two MILP
formulations for exact resolution and various heuristics
and meta-heuristics to solve large size instances. They
compared their results to that found in Baptiste et al.
(2000) which performed averagely better. Baptiste et al.
(2000) used a constraint based method to explore the
solution space and give good results on small problems
(n < 50). Dauzère-Pérès and Sevaux (2002) determined
conditions that must be satisfied by at least one optimal
sequence for the problem of minimizing the weighted
number of late jobs on a single machine. Sevaux and
Sörensen (2005) proposed a variable neighbourhood

search (VNS) algorithm in which a tabu search algorithm
is embedded as a local search operator. The approach
was compared to an exact method found in Baptiste et al.
(2000). Li (1995) addressed the P| agreeable due
dates|∑Uj problem. Where the due dates and release
times are assumed to be agreeable. A heuristic algorithm
is presented and a dynamic programming lower bounding
procedure developed.

For the case of due window considered in this paper,
Hiraishi et al. (2002) addressed the non-preemptive
scheduling of n jobs that are completed exactly at their
due dates. They showed that the problem is polynomially
solvable even if positive set-up is allowed. Sung and
Vlach (2001) showed that when the number of machines
is fixed, the weighted problem considered by Hiraishi et
al. (2002) is solvable in polynomial time (exponential in
the number of machines) regardless of whether the
parallel machines are identical, uniform or unrelated.
However, when the number of machines is part of the
input, the unrelated parallel machine case of the problem
becomes strongly NP-hard. Lann and Mosheiov (2003)
provided a simple greedy O(n log n) algorithm to solve
the problem defined by Hiraishi et al. (2002) with great
improvement in time complexity. Čepek and Sung (2005)
considered the same problem, gave a corrected form of
the greedy algorithm in Lann and Mosheiov (2003) and
presented a new quadratic time algorithm that solves the
problem. Adamu and Abass (2010) proposed four greedy
heuristics for the Pm|∑wj (Uj + Vj) problem and extensive
computational experiments was performed. Janiak et al.
(2009) gave an O(n

5
) complexity for solving the problem

(Pm|pj = 1 |∑wj(Uj + Vj). They also consider a special
case with agreeable earliness and tardiness weights
where they gave O(n

3
) complexity (Pm|pj = 1, rj,

agreeable ET weights|∑wj(Uj + Vj)).

PROBLEM FORMULATION

For n independent jobs, scheduled on m machines, which are
simultaneously available from time zero, each having an interval
rather than a point in time, called due window of the job, and the left
end and the right end of the window are called, respectively, the

earliest due date aj  0 (that is, the instant at which a job becomes

available for delivery), and the latest due date dj  0 (an instant by
which processing or delivery of a job must be completed). There is
no penalty when a job is completed within the job’s due window, but
earliness (tardiness) penalty is incurred if a job is completed before
the job’s earliest due date (after the job’s latest due date).

For any given schedule S, let pj, tij and Cij (S)= tij + pj represent the
processing time, actual start time on a given machine and
completion time of job j on machine i, respectively. Job j is said to

be early if Cij (S) < aj, tardy if Cij (S) > dj and on-time if aj  tij + pj 
dj. Furthermore, define Uj and Vj as follows:

 Uj =


 

otherwise,

a)S(Cif, jij

0

1

 (1)

 Vj =



 

otherwise,

d)S(Cif, jij

0

1
 (2)

Let wj ≥0 be the weights for scheduling job j (jN) early and tardy.
The objective is to find the feasible schedule S* which minimizes
the weighted number of early and tardy jobs on identical parallel
machine given as

P:)VU(wmin jj

n

j
j

m

i


 11

 (3)

Taking the dual of this objective function, let xij be one if job j is on-
time and zero otherwise and Cik the completion time of the last job
on machine i before job j. Then

P: {)VU(wmin jj

n

j
j

m

i


 11

} ij

n

j
j

m

i

xwmax 
 11

 (4)

Such that

aj  { max
j

k 1

 {Cik-1(S),aj – pj} + pj}xij i=1,. . . ,m; j = 1, . . . , n, (5)

{ max
j

k 1

 {Cik-1(S),aj – pj} + pj}xij  dj i=1,. . . ,m; j = 1, . . . , n, (6)

i=1,m xij  1 j = 1, . . . , (7)

 xij  { 0,1 } i = 1, . . . ,m ; j = 1, . . . , n (8)

Constraint (5) ensures job j is not finished before the job’s earliest
due date aj. Constraint (6) is the completion time of job j is not
greater than the latest due date dj. Constraint (7) ensures that a job
is assigned to at most one machine, and Constraint (8) forces a job
to be either on-time or early/tardy; one if on-time and zero
otherwise.

HEURISTICS AND META-HEURISTICS

Greedy heuristics

Adamu and Abass (2010) have proposed four greedy heuristics
which attempt to provide near optimal solutions to the parallel
machine scheduling problem. The first heuristic (W01) sorts jobs
(tasks) in ascending order according to earliest due date (that is,
the earliest time in which the task may be finished). If two jobs have
the same earliest due date, then the tie is broken by placing the job
with the highest processing time first. Jobs are then assigned onto
machines using this sorted order. The second heuristic (WO2) is
identical to the first except for using a different tie-breaking rule.
Instead of using the highest processing time, the highest weighted
processing time is used (that is, weight / processing time). The third
heuristic (DO1) is the same as the first except that instead of sorting
by earliest due date, jobs are sorted by latest due date (that is,
latest due time -processing time). The final heuristic (DO2)
combines the sorting method used in the third heuristic with the tie-
breaking rule used in the second heuristic.

Though the results of these greedy heuristics are promising, this
paper further investigates them and explores their hybridization with
some meta-heuristics in search of better results.

Adamu and Adewumi 1643

Genetic algorithm

Genetic algorithm (GA) (Goldberg, 1989) has been proved
successfully as a meta-heuristics for solving optimization problems.
Based on the biological inspiration of evolution, survival of the
fittest, crossover and mutation, this paper investigates GA’s
performance for the problem defined previously under Problem
Formulation for comparative study with that of the greedy heuristics.

We adopted a string data structure for our problem. Each job is
fixed to a gene in the chromosome implying that the chromosome
has length n (where n is the number of jobs). Each gene also has a
machine number (the number of the machine to which the job will
be assigned) and an order (a value between 1 and n representing
the order in which jobs assigned to the same machine will be
executed). The GA operators were designed to influence both the
machine number and the order. The fitness evaluation function was
designed to calculate the sum of the weights of jobs which could
not be assigned onto any of the machines so that they would finish
within the earliest due and latest due dates. For each machine, jobs
which are assigned to it are placed in a priority queue (with priority
based on their respective order). Each job is then removed from the
queue and placed on the machine. If the job was to finish early,
then it would be scheduled to begin later (at earliest due date -
processing time) in order to avoid the earliness penalty. However, if
the job was to finish past the end time, then it would not be
scheduled at all and instead would have its weight added to the
total penalty (fitness). The fitness range is such that a lower value
implies better performance.

In our simulation experiment, we used the single-point crossover
operator for machines, conventional mutation for machines (that is,
choose a random machine between 0 and m-1 inclusive), swap
mutation for the execution order (since naturally, this is permutation
based) and tournament selection. However, since there are no
guarantees that these operators allowed for the best performance,
further experiments with variations of these operators were
performed. The pseudocode of the GA used is presented in Figure
1.

Particle swarm optimization

Solution with PSO for the parallel machine scheduling problem was
investigated in this work. PSO is a population based technique
inspired by the flocking behavior of birds that is influenced by both a
particle’s best position as well as the global best position in the
overall population (Parsopoulos and Vrahatis, 2010). We explore
the possibility of PSO for obtaining local optima which can then
drive the search for the global optimum solution. The PSO algorithm
requires a solution representation or encoding such that each
particle is an instance of the chosen representation. A complication
is that PSO works in the continuous space whereas the scheduling
problem is a discrete problem. Thus, a method is needed to convert
from the continuous space to the discrete space. Our repre-
sentation is as follows: Each particle contains a number in [0,m),
where m is the number of machine. This number represents the
machine on which the particle is scheduled and is simply truncated
to convert to the discrete space. For the order of scheduling, each
particle contains a number in [0,1) which represents the order of
scheduling relative to other particles on the same machine. A job
with lower number will be scheduled before the jobs with higher
numbers. Finally, a method was devised to convert the encoding
into a valid schedule. This is done by separating the jobs into
groups based on the machine to which they are assigned. Within a
group, the jobs are sorted by their order parameter and organized
into a queue. The schedule for a particular machine is then formed
by removing jobs from the queue and scheduling them as early as
possible without breaking the earliness constraint. The weights of
jobs that cannot be scheduled are totaled as the fitness of the

1644 Int. J. Phys. Sci.

Generate a population of randomly initialized

individuals.

iterations ← 0

repeat

 for i = 1 → popSize do

 Perform crosssover with probability

crossoverRate.

 end for

 for i = 1 → popSize do

 for j = 1 → numJobs do

 Mutate machine with probability

mutationRate.

 end for

 end for

 for i = 1 → popSize do

 for j = 1 → numJobs do

 Mutate order with probability

mutationRate.

 end for

 end for

 Use selection to form a new population of

individuals.

 iterations ← iterations + 1

 until iterations ≥ numIterations

 Return the fitness of the best individual.

Figure 1. Pseudo code of GA for parallel machine scheduling.

solution (which should ideally be as small as possible). The pseudo
code of the PSO used is presented in Figure 2.

Simulated annealing

We further explore the single-solution SA metaheuristics
(Kirkpatrick et al., 1983) for the parallel machine scheduling
problem. Based on the principle of annealing in thermodynamics,
the exploration of single solution in SA requires fewer computations
in comparison with the population-based technique. We thus expect
the execution times for this technique to be quicker. Moreover, we
hope SA, in all likelihood, will achieve better results than a simple
hill-climbing technique. This is because SA can take downward
steps (that is, accept worse solutions) in order to obtain greater
exploration. Thus, it is less likely to become stuck in a local
minimum (a very real problem given the complex solution space).
For the SA algorithm, we use a similar representation as that in GA

The fitness evaluation is also done in similar manner. For the
neighbourhood selection, we allow an element to be given a new
randomly chosen machine and a new order (done by swapping with
the order of another randomly chosen element). By allowing for a
high level of randomness when selecting the neighbour, we ensure
that good exploration is achieved while seeking to escape from
local optimum solutions.

Improvements and hybrids

Aside the fundamental implementation of the basic heuristics and
meta-heuristics mentioned previously, a number of improvements
were experimented in search of better solution.

Aside the original GA which was tested using 1-point crossover,
random mutation for machines, swap mutation for order and
tournament selection, we tried other combinations of operators in
order to see if performance could be increased. For this reason,
roulette-wheel selection, uniform crossover and insert mutation

Adamu and Adewumi 1645

 for i = 1 → PopSize do

 Construct particle with randomly initialized machine number

and order.

 end for

 repeat

 pbest ← 231

 for i = 1 → PopSize do

 fitness ← calcfitness(pop[i])

 if fitness < pbest then

 pbest ← fitness

 end if

 if fitness< fitness(gbest) then

 gbest ← pop[i]

 end if

 end for

 for i = 1 → PopSize do

 v[i + 1] ← wv[i] + r1c1(pbest – pos[i]) + r2c2(gbest – pos[i])

 pos[i + 1] ← pos[i] + v[i] (ensuring to clamp the position

within range)

 end for

 iterations ← iterations + 1

 until iterations ≥ numIterations

Figure 2. Pseudo code of PSO for parallel machine scheduling.

(for order) were explored. User can decide on a combination of
operators to use.

The greedy heuristics reported in Adamu and Abass (2010) were
incorporated as local search for the GA, PSO and SA meta-
heuristics. Adamu and Abass (2010) reported that the performance
of the greedy heuristics hinge on the order of assigning jobs to
machines. We explored the same ordering mechanisms as in WO1,
WO2, DO1, DO2 (Adamu and Abass, 2010) and incorporated them
into GA, PSO, and SA to form hybrids. In our overall experiment,
any of the four greedy heuristics can be hybridized with GA, PSO or
SA. In this paper however, we only reported four new hybrids
namely, GAHybrid, PSOHybrid, PSOGA and SAHybrid. Past
research (Premalatha and Natarajan, 2009) has shown that PSO
can become stuck in local minimum and has proposed the
combination of PSO with some GA features to prevent premature
convergence. Premalatha and Natarajan (2009) suggested the
incorporation of mutation operator if particle’s local best remain
unchanged over a period of time. This motivated the PSOGA hybrid
for this research work. The PSOGA hybrid allows any pBest
position which was not updated (that is, the particle did not find

a new best) to be mutated by applying a random mutation to the
machine number and swap mutation to the order.

COMPUTATIONAL ANALYSIS

Simulation experiments were carried out using an open-source
eclipse® integrated development environment (IDE) for Java
developer, release 3.3 on Microsoft Windows XP platform running
on a Pentium dual 1.86 GHz, 782 MHz, and 2 GB of Ram The
system clock was used to track execution time in milliseconds.

Data generation

The heuristics were tested on problems generated with 500, 1000,
1500, 2000 and 2500 jobs similar to that used in previous studies
(Adamu and Abass, 2010; Baptiste et al., 2000; Ho and Chang,
1995; M’Hallah and Bulfin, 2005). The number of machines was set
at levels of 2, 5, 10, 15 and 20. For each job j, an integer

1646 Int. J. Phys. Sci.

processing time pj was randomly generated in the interval (1, 99).
Two parameters, k1 and k2 representing levels of traffic congestion
ratio were taken from the set {1, 5, 10, 20}. For the data to depend
on the number of jobs n, the integer earliest due date (aj) was
randomly generated in the interval (0, (5000/n)*k1), and the integer
latest due date (dj) was randomly generated in the interval (aj + pj, aj
+ pj + (5000/n)*k2). For each combination of n, k1 and k2, 10
instances were generated, that is, for each value of n, 160
instances were generated with a weight randomly chosen in interval
(1, 10) for 8000 problems of 50 replications.

Parameters

In the simulation experiment, parameters were combined to control
each meta-heuristic to determine an optimal parameter set for the
scheduling problem. This led to a set of parameter combination
used in obtaining the final results. For the GA and its hybrids, the
population size was set to 10, random mutation (for machines) with
a mutation rate of 0.01, swap mutation (for order) with a rate of
0.01, uniform crossover at a rate of 0.5, tournament selection with a
k value set at 40% of the population size and the number of
iterations set at 2000.

The optimal parameters combination for PSO are population size
of 50, a momentum value (w) of 0.3, c1 of 2, c2 of 2 and the
number of iterations set at 2000. Similarly, optimal parameter
combination for SA is initial temperature of 25, a final temperature
of 0.01 and a geometrical decreasing factor (β) of 0.999.

RESULTS AND DISCUSSION

The results for GA, PSO, SA, WO1, WO2, DO1, DO2,
GAHybrid, PSOHybrid, PSOGA and SAHybrid were
analyzed and presented in Appendix. In Appendix Tables
1 to 5, each cell consists of two numbers. The first
number is the average weight of the schedule produced
over 50 runs. The number in parenthesis is the average
time in milliseconds that the algorithm takes to complete.
The times for the greedy heuristics are not included since
the time is very small (averagely 0.115 µs). Also, the
graphs in Appendix Figures 3 to 8 show results obtained
with the algorithms for each value of n in [500, 2500]. The
graphs compared the relative performance (penalty) of
each of the 11 algorithms compared to the number of
machines used. Two graphs were used to show the
computational times of the meta-heuristics when N =
1000 and N = 2000.

Generally from these results, it is very clear that
majority of the meta-heuristics outperformed the greedy
heuristics. However, the greedy heuristics achieved
better results than GA in all of the categories except m is
2 for all N jobs. The results showed it to be in the region
of 16000 times slower than the greedy heuristics on the
overall. GA hybridized with DO2 (GAH) achieved better
results than traditional GA for all of the test cases
although the hybrid took an average of about 50% longer
to run than GA (averagely 2 to 3 s) (Appendix). GAH
performed better than WO1, WO2, DO1, and DO2
heuristics except when the number of machines was high
(that is, 20) and the number of jobs was low (e.g. 500,
1000 and 1500).

PSO and its hybrid (PSOH) produced lower weight than
all the greedy heuristics except when the number of
machines was generally small (that is, 2) (Furthermore,
they were far slower than the greedy heuristics (over
100000 times slower for PSO and 85000 for PSOH). This
is understandable since PSO is a population-based
algorithm with lots of parallel computations at each step.
Hybridizing PSO with the DO2 (PSOH) produced results
which were worst than PSO for almost all case except
when N = 500. PSOH was about 1.2 times faster than
PSO. Meanwhile, the PSO outperformed GA in several
cases considered.

SA produced far better results than those of the greedy
heuristics and in fact other meta-heuristics (Appendix
Tables 1 to 5). On the average, SA produced a weight of
about 100 less than what the best greedy heuristic
produces (Appendix Tables 1 to 5). The only setback
when compared with the greedy heuristic is that it was
slower (over 2000 times slower). However, it was more
than 4 times faster than the PSO with superior results
(Appendix Tables 1 to 5). Hybridizing SA with the DO2
greedy heuristic (SAH) produced results that were slightly
better than the SA solutions for a large number of
machines except majorly for number of machines equal
to two (Appendix: Table 1). It is, however, about 1.3 times
slower than the original SA algorithm.

Finally, the hybrid of PSO and GA (PSOGAH) had a
similar performance with that of PSO in both penalty
incurred and execution time (Appendix: Table 1). Thus,
one can conclude that adding the mutation operator to
the PSO algorithm had very little effect on its
performance. On the average for all test cases, PSOGAH
still achieved better results than the greedy heuristics
except when machines are 15 and 20 in number.

Conclusion

Adamu and Abass (2010) showed that greedy heuristics
could be used effectively to solve the parallel machine
scheduling problem. In this paper, we further investigated
the use of GA, PSO and SA with some hybrids in search
of better results. The three meta-heuristics (GA, PSO and
SA) showed an improved average performance over all
the greedy heuristics. Hybridizations of the meta-
heuristics with the greedy heuristics did not produce
much noticeable performance increase except in GA. In
the overall, SA proved to be the best performing meta-
heuristic with the lowest average weight (penalty) for
each of the test cases and lowest execution time
compared with other meta-heuristics.

There is little doubt that SA could be used to achieve
near optimal solutions to the parallel machine scheduling
problem in the real-world. However, considerations need
to be made as to whether the run time of the algorithm (1
to 3 s) may affect the overall outcome. For example, the
SA algorithm would be ideal for a large scale application
such as scheduling tasks on a building site where

wasting 2 to 3 s would not harm any overall outcomes.
On the other hand, if the SA algorithm was to be used on
a computer’s operating system for task scheduling, the 2
to 3 s wait would be extremely costly and it would instead
make sense to use a speedy greedy heuristic such as
DO2 (while taking a performance decrease). Further work
would seek better improvement as well as exact solution
to the problem.

REFERENCES

Adamu M, Abass O (2010). Parallel machine scheduling to maximize

the weighted number of just-in-time jobs. J. Appl. Sci. Tech., 15(1-2):
27–34.

Baptiste P, Jouglet A, Pape CL, Nuijten W (2000). A constraint based
approach to minimize the weighted number of late jobs on parallel
machines. Technical Report 2000/228, UMR, CNRS 6599,
Heudiasyc, France.

Čepek O, Sung SC (2005). A quadratic time algorithm to maximize the
number of just-in-time jobs on identical parallel machines. Comp. Op
Res., 32: 3265-3271.

Chen Z, Powel WB (1999). Solving parallel machine scheduling
problems by column generation. INFORMS J. Comp., 11(1): 78-94.

Dauzère-Pérès S, Sevaux M (2002). Using Lagrangean relaxation to
minimize the (weighted) number of late jobs on a single machine.
Nat. Res. Log., 50(3).

Goldberg DE (1989), Genetic Algorithms in Search, Optimization and
Machine Learning, Kluwer Academic Publishers, Boston, MA, p, 432.

Hiraishi K, Levner E, Vlach M (2002). Scheduling of parallel identical
machines to maximize the weighted number of just-in-time jobs.
Comp. Op. Res., 29: 841-848.

Ho JC, Chang YL (1995). Minimizing the number of tardy jobs for m
parallel machines. Eur. J. Oper. Res., 84: 343-355.

Janiak A, Janiak WA, Januszkiewicz R (2009). Algorithms for parallel
processor scheduling with distinct due windows and unit-time jobs.
Bulletin of the Polish Academy of Sci. Tech. Sci., 57(3): 209-215.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983). Optimization by simulated
annealing. Science, 220 (4598): 671–680.

Lann A, Mosheiov G (2003). A note on the maximum number of on-time
jobs on parallel identical machines. Comp. Oper. Res., 30: 1745-
1749.

Adamu and Adewumi 1647

Li CL (1995). A heuristic for parallel machine scheduling with agreeable

due dates to minimize the number of late jobs. Comp. Oper. Res.,
22(3): 277-283.

Liu M, Wu C (2003). Scheduling algorithm based on evolutionary
computing in identical parallel machine production line. Rob. Comp.
Int. Manuf., 19; 401-407.

M’Hallah R, Bulfin RL (2005). Minimizing the weighted number of tardy
jobs on parallel processors. Eur. J. Oper. Res., 160: 471-484.

Parsopoulos KE, Vrahatis MN (2010). Particle Swarm Optimization and
Intelligence: Advances and Applications. IGI Global, USA. ISBN:
978–1–61520–666–7.

Premalatha K, Natarajan A (2009). Hybrid PSO and GA for global
maximization. Int. J. Op. Prob. Comp. Sci. Math., 2(4): 597-608.

Sevaux M, Sörensen K (2005). VNS/TS for a parallel machine
scheduling problem. MEC-VNS: 18

th
 Mini Euro Conference on VNS.

Sevaux M, Thomin P (2001). Heuristics and metaheuristics for a parallel
machine scheduling problem: A computational evaluation.
Proceedings of 4

th
 International Conference on Metaheuristics, pp.

411-415.
Süer GA (1997). Minimizing the number of tardy jobs in multi-period cell

loading problems. Comp. Ind. Eng., 33(3-4): 721-724.
Süer GA, Czajkiewicz Z, Baez E (1993). Minimizing the number of tardy

jobs in identical machine scheduling. Comp. Ind. Eng., 25 (1-4): 243-
246.

Süer GA, Pico F, Santiago A (1997). Identical machine scheduling to
minimize the number of tardy jobs when lost-splitting is allowed.
Comp. Ind. Eng., 33(1-2): 271-280.

Sung SC, Vlach M (2001). Just-in-time scheduling on parallel machines.
Proceedings of the European Operational Research conference held
in Rotterdam, Netherlands.

Van den Akker JM, Hoogeveen JA, Van De Velde SL (1999). Parallel
machine scheduling by column generation. Oper. Res., 47(6): 862-
872.

1648 Int. J. Phys. Sci.

APPENDIX

Table 1. Performance of heuristics at N = 500.

 Job
 Number of machines

Heuristics: weight (time)
2 5 10 15 20

500

WO1 795.40(-) 683.04(-) 516.80(-) 374.30(-) 245.38(-)

WO2 795.78(-) 685.58(-) 520.54(-) 375.36(-) 247.12(-)

DO1 804.46(-) 697.90(-) 515.06(-) 314.90(-) 90.44(-)

DO2 804.30(-) 695.46 (-) 516.16 (-) 319.68 (-) 89.96(-)

GA 788.62 (1958.50) 713.94(1913.78) 618.72(1852.18) 549.26(1884.72) 487.66(1941.18)

GAH 727.38(2827.48) 553.88(2714.96) 390.10(2565.58) 287.48(2557.42) 207.24(2582.84)

PSO 698.02(15757.86) 625.76(13398.50) 543.84(13227.90) 486.10(14378.12) 439.26(14193.48)

PSOH 708.68(10298.82) 636.78(9932.50) 545.14(9635.26) 471.44(9609.66) 415.00(9787.86)

SA 694.58(271.20) 556.34(256.26) 402.90(248.14) 295.16(255.34) 220.02(248.14)

SAH 743.66(344.26) 552.72(309.86) 366.26(438.42) 251.48(664.40) 171.98(690.96)

PSO-GAH 709.72(13626.16) 641.38(13349.94) 546.12(13170.00) 487.04(13382.52) 447.80(13785.58)

Table 2. Performance of Heuristics at N = 1000

Job
 Number of machines

Heuristics: weight (time)
2 5 10 15 20

1000

WO1 826.58(-) 754.18(-) 639.00(-) 531.22(-) 434.94(-)

WO2 829.34(-) 758.58(-) 640.86(-) 536.50(-) 436.52(-)

DO1 835.64(-) 762.54(-) 634.12(-) 494.96(-) 340.82(-)

DO2 836.10(-) 762.34(-) 635.10(-) 494.60(-) 337.48(-)

GA 822.24(1947.78) 770.60 (1884.76) 695.70(1869.28) 631.14(1880.96) 586.18(1925.86)

GAH 785.82(2838.18) 660.16(2721.26) 528.22(2585.26) 429.96(2568.76) 357.32(2601.44)

PSO 757.00(13446.50) 705.10(13272.42) 638.74(13288.40) 585.24(13504.34) 544.26(14722.22)

PSOH 778.12(10281.94) 727.48(9850.92) 658.22(9648.12) 604.48(9663.82) 550.10(10050.04)

SA 763.12(269.36) 650.10(254.76) 524.02(254.96) 433.12(251.86) 357.96(265.08)

SAH 796.62(779.76) 664.28(713.16) 510.38(665.66) 406.48(658.48) 327.16(676.86)

PSO-GAH 763.08(13662.58) 717.12(13331.86) 640.94(13228.84) 589.72(13422.38) 549.56(13779.68)

Adamu and Adewumi 1649

Table 3. Performance of heuristics at N = 1500.

Job
 Number of machines

Heuristics: weight (time)
2 5 10 15 20

1500

WO1 832.74(-) 770.38(-) 682.24(-) 596.36(-) 514.22(-)

WO2 833.54(-) 777.80(-) 685.38(-) 597.02(-) 518.50(-)

DO1 835.92(-) 773.88(-) 663.82(-) 547.84(-) 423.98(-)

DO2 836.36(-) 774.42(-) 664.26(-) 548.90(-) 421.24(-)

GA 825.46(1956.92) 784.86 (1881.84) 720.70(1854.10) 672.06(1884.00) 629.20(1932.56)

GAH 798.32(2854..46) 702.94 (2738.16) 576.36(2582.48) 494.32(2593.44) 428.14(2638.40)

PSO 771.9(13981.86) 729.60 (14621.54) 665.90(17273.08) 627.66(18210.82) 591.30(18686.38)

PSOH 791.74(10406.98) 749.30 (9885.60) 695.40(9693.12) 646.58(9815.16) 608.48(9970.96)

SA 775.98(268.08) 685.58 (254.36) 575.36(257.22) 491.82(261.90) 424.28(268.22)

SAH 803.54(797.76) 699.36 (731.84) 569.88(676.20) 477. 78(669.78) 403.84 (675.04)

PSO-GAH 773.3(13619.38) 737.24 (13260.28) 679.38(13177.28) 628.66(13369.06) 592.54(13754.38)

Table 4. Performance of Heuristics at N = 2000

Jobs
 Number of machines

Heuristics: weight (time)
2 5 10 15 20

2000

WO1 829.54(-) 778.78(-) 700.12(-) 623.34(-) 546.74(-)

WO2 831.10(-) 784.10(-) 701.66(-) 625.12(-) 549.28(-)

DO1 831.22(-) 777.86(-) 688.18(-) 580.76(-) 462.50(-)

DO2 831.58(-) 778.66(-) 688.56(-) 581.26(-) 464.00(-)

GA 823.40(1946.54) 784.88(1881.54) 730.46(1849.72) 688.76(1879.64 643.24 (1934.02)

GAH 795.94(2867.00) 710.38(2754.36) 600.26(2612.18) 520.98(2605.06) 456.74(2650.28)

PSO 774.70(16126.26) 731.18(17478.18) 683.12(15811.24) 635.48(15822.74) 607.1413(635.64)

PSOH 793.14(10476.48) 755.82(10010.02) 707.60(10634.98) 664.06(9746.00) 624.82(9989.28)

SA 781.90(272.50) 698.56(254.64) 593.36 (247.84) 515.36(252.22) 447.76(263.78)

SAH 798.88(799.34) 705.24(737.86) 592.62(673.42) 506.26(668.84) 436.92(682.54)

PSO-GAH 773.66(13535.92) 740.60(13419.74) 685.40(13241.24) 644.08(13564.98) 608.58(13844.70)

1650 Int. J. Phys. Sci.

Table 5. Performance of Heuristics at N = 2500

 Jobs
 Number of machines

Heuristics: weight (time)
2 5 10 15 20

2500

WO1 844.44(-) 796.50(-) 721.06(-) 643.14(-) 570.76(-)

WO2 848.74(-) 798.46(-) 724.84(-) 649.88(-) 575.88(-)

DO1 845.44(-) 797.52(-) 712.12(-) 617.10(-) 506.22(-)

DO2 845.34(-) 798.38(-) 713.16(-) 616.50(-) 505.68(-)

GA 836.44(1943.10) 802.54(1880.40) 755.62(1858.68) 713.12(1886.82) 672.08(1925.92)

GAH 812.80(2911.78) 736.84(2780.00) 632.36(2621.30) 556.42(2639.40) 497.78(2665.02)

PSO 793.84(13425.94) 749.94(13254.42) 703.68(13208.10) 665.74(13338.98) 633.50(13641.84)

PSOH 813.40(10444.02) 776.76(10054.72) 728.60(9767.76) 689.74(10715.24) 656.34(9992.54)

SA 799.86(275.78) 719.24 (364.12) 624.30(584.68) 549.04(597.78) 487.60(618.42)

SAH 815.20(812.20) 729.84(737.62) 626.94(678.04) 545.30(673.46) 479.97(688.50)

PSO-GAH 791.64(13698.72) 761.04(13342.50) 709.70(13187.48) 667.20(13357.50) 633.06(13702.86

Figure 3. Comparison of heuristics and meta-hauristics for N = 500.

Adamu and Adewumi 1651

Figure 4. Comparison of heuristics and meta-heuristics for N = 1000.

Figure 5. Comparison of heuristics and meta-heuristics for N = 1500.

Figure 6. Comparison of heuristics and meta-heuristics for N = 2000.

1652 Int. J. Phys. Sci.

Figure 7 Comparison of heuristics and meta-heuristics for N = 2500.

 T

im
e
 (

µ
s
)

Figure 8. Comparison of meta-heuristics computational time for N = 1000.

