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Abstract

The ground-state properties of a two-dimensional quantum-dot are studied. We have used the shifted
1/N expansion method to solve the relative part Hamiltonian of two electrons confined in a quantum in
the presence of an applied uniform magnetic field. The spin singlet-triplet transition in the ground state
of the QD is shown. We have also displayed the singlet-triplet energy gap, J = A = Er — Eg, against the
strength of the magnetic field for two electron quantum dot. Based on comparisons, the eigenenergies
obtained by the shifted method are in excellent agreement with exact, variational, Hartree-Fock (HF)
and Full-Configuration Interaction (FCI) methods.
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1. Introduction

Quantum dots (QDs), or artificial atoms, have been the subject of intense research studies over the
last years for their potential applications in quantum information in which the spin is used as a qubit.
These man-made quantum dots, fabricated in semiconductor quantum materials have attracted a great
attention as a laboratory for investigations of few-body systems with high controllable parameters such as
the electron number, confinement strength, and interaction repulsion. Different methods [1-3] have been
used to investigate the energy spectrum and the correlation effects of the interacting electrons confined in a
quantum dot under the effect of an applied magnetic field [4]. One of the most interesting features of electron
correlation is the change of the spin and angular momenta structure in the ground state of the QD system
in the presence of the magnetic field. The QD has the potential to serve as a qubit of a quantum computer
since the magnetic field can be used to tune the transition in the spin of the ground state of the quantum
dot from singlet (S = 0) to triplet (S = 1) state. Motivated by the accuracy of 1/N expansion method, we
shall use in this work the shifted technique to compute the eigenenergies of the relative part Hamiltonian
of two interacting electron quantum dot in zero and non-zero applied magnetic field. The singlet-triplet
energy splitting J is also calculated. We have compared our computed results with the corresponding ones
obtained by various techniques like: exact diagonalization method, variational method, Full-Configuration
Interaction method, Hartree-Fock method and Laughlin-type variational wavefunction method [5-10].
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Method of Solution

The effective-mass Hamiltonian for an interacting pair of electrons confined in a quantum-dot by a
parabolic potential in a uniform magnetic field of strength B is given as,
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where wq is the confinement frequency, pup is the Bohr magneton and k is the dielectric constant. The
energy E is measured in units of Aiwp - A is the dimensionless parameter defined as the ratio of the coulomb
strength to the confining energy, A = eQa/th, where o = \/@ has the dimension of inverse length and
v = &=. Upon introducing the standard coordinates and momenta transformation the Hamiltonian (H)
can be decoupled to center-of-mass (Hpg) and relative H, parts. The Hamiltonian Hp is of a harmonic

oscillator type with a well-known eigenenergies E, = (2nem + |Mmem| + 1) hwg, nem = 0,1,2, ..., and
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by using the shifted 1/N expansion method. The steps to produce the eigenenergies by the shifted method
are clearly presented in references [11-14] and will not be repeated here. Only the necessary expressions to
compute the energies will be given. The energy eigenvalues in powers of 1/];, ( up to third order ) read as:
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Parameters «; and «s are expressed in terms of @), w and quantum numbers n, and m, given in reference
[11); K = N + 2|m| — a, where N is the spatial dimension, shift parameter a = 2 — (2n, + 1)@ and

7 /
w = [3 + ‘(/,((5 ;ﬂ 2. The roots pg (where the effective potential has a minimum) are determined for

particular quantum state |n,m), wp and w. through the relation
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After obtaining the roots,pg, the eigenenergies can be computed using equation (3). n,. is the radial quantum
number related to the principle (n) one by the standard relation: n, =n — |m| — 1.

Results and Discussion

Our computed results for quantum dot in zero and non-zero applied magnetic fields are presented in
Tables 1 to 3 and Figures 1 and 2. We have listed, in Table 1, the ground state energies, in units of
hwy, calculated by exact, variation, Laughlin-type variational wavefunction and shifted methods for various
values of magnetic field strength (y = 0, 1, ..., 5) and ratio parameter (A = 0,1, ...,5). The angular momentum
quantum number (m)m, is also mentioned. The energy results produced by 1/N method are given against
various methods: exact, variational and Laughlin-type variation wavefunction. The calculated results show
that the ground state energy of the system for v = 0 and A = 0 has, as usual, zero angular momentum,
m, = 0. As we sweep the parameters v and/or A\ the angular momentum changes from m, = 0 to higher
values indicating a spin singlet-triplet transition in the ground state of the quantum dot. An example, is
forA = 1, the angular momentum changes from m, = 0 to m, = 1 as v changes from 1 to 2. For high
magnetic field range the angular momentum of the ground state jumps to higher values : |m,| = 6 at
A =~ = 5. To make a comparison between our produced results and the recent ones given by Ciftja and
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Table 1. The ground eigenenergies, in units of Awg, of the 2D quantum-dot helium as a function of a magnetic field
strength v and various coulomb to confining ratio parameter Acalculated by shifted 1/N methods against: exact,

variational and Laughlin-type trial wave function [§].

m,=0A=1y=0 | m,=1A=2y=1 | m,=1A=3y=1
Exact 3.00097 4.06684 4.60594
Var. 3.00174 4.06704 4.60635
1/N 2.9562 4.0626 4.6002
Laughlin | 3.25331 4.17932 4.84193
m,=1A=1y=2 | m,=1A=2y=2 | m,=2\=4y=2
Exact 3.95732 4.61879 5.73642
Var. 3.95737 4.61899 5.73655
1/N 3.9549 4.6138 5.7349
Laughlin | 3.98787 4.73309 5.89253
m,=1A=1y=3 | m,=2A=2y=3 | m,=3A=4y=3 | m, =4 =6y =3
Exact 4.71894 5.43123 6.53522 7.46782
Var. 4.71899 5.43127 6.53525 7.46785
1/N 4.7162 5.4305 6.5350 7.4901
Laughlin | 4.74972 5.47320 6.61737 7.57749
my,=1A=1y=4 | m,=2A=2v=4 | m,=3\=3vy=4 | m, =4\ =4y=14
Exact 5.61430 6.30766 6.89002 7.41600
Var. 5.61435 6.30769 6.89004 7.41601
1/N 5.6122 6.3068 6.8898 7.4159
Laughlin | 5.64527 6.34988 6.93735 7.46625
my, =0A=6y=4 | m,=0A=0y=5 | m,=2\=1y=5 | m,=3\A=2y=5
Exact 8.34530 5.38516 6.53067 7.22681
Var. 8.34532 5.38516 6.53068 7.22683
1/N 8.3833 5.3852 6.5303 7.2267
Laughlin | 8.41976 5.38516 6.54155 7.24827
m, =4A=3y=5 | m, =5 A=4vy=5 | m,=6A=5y=5
Exact 7.81384 8.33874 8.82281
Var. 7.81385 8.33875 8.82282
1/N 7.8139 8.3387 8.8828
Laughlin | 7.84253 8.37252 8.86033

Faruk in reference [8], we have displayed in Figure 1 the roots (pg) of the QD-ground states as a function
of A for v = 0 and 1. The authors in reference [8] have plotted the mean square distance between the
electrons in the QD against A for the same values of . In fact both figures have shown the same crossing
behaviour. This type of crossing between v = 0 and 7 = 1 curves can be attributed to the transitions in
the QD ground state and thus to the jump in the corresponding angular momentum quantum number. For
example, at the overlapping value A\ ~2 in our curve, the transition occurs and the angular momentum of
the QD-ground state jumps from m, = 0 at v+ = 0 to m, = 1 at v = 1. The exact values of the roots
are 1.9720 at v = 0 and 2.1610 at v = 1. Thus, the roots in our calculations give information a bout the
transitions in the angular momentum of the QD ground state like the mean-square values in reference [8].
In Figure 2, we have also plotted the singlet-triplet splitting J =A = Ep — Eg as a function of magnetic
field strength B for quantum dot system and for confinement energy Awy = 3meV. We can obviously see the
changes in the sign of J at different values of B. The sign change of J from positive to negative value at some
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magnetic field is an essential feature for the quantum dot to serve as a quantum-gate in quantum computing.
To check further the accuracy of 1/N shifted method, we have compared in Tables 2 and 3 our calculated
results against the results computed by various methods. The results produced by exact, variational and
Full-Configuration interaction methods are in very good agreement with the corresponding ones obtained
by the shifted technique. On the other hand, the results produced by Hartree-Fock show a little deviation
from the rest of all given methods [7-10].

Table 2. The ground state energies (in units of Hartree, 1H = hwo = 11.857 meV) for four different methods:

Perturbation Ef, analytical (variation) E§', numerical EY and shifted Eé/ N methods. The confining energy strength

hwe = hwo = 3.32 meV (see reference [9]).

B(T) | E? E{ EY | EUN
0.0 | 1.22319 | 1.03223 | 1.02214 | 1.0354
0.5 | 1.23071 | 1.03930 | 1.02928 | 1.0417
1.0 | 1.25281 | 1.06012 | 1.05029 | 1.0605
1.5 | 1.28831 | 1.09361 | 1.08408 | 1.0909
2.0 | 1.33551 | 1.13821 | 1.12909 | 1.1310
2.5 | 1.39252 | 1.19223 | 1.18360 | 1.1791
3.0 | 1.45753 | 1.25396 | 1.24589 | 1.2341
3.5 | 1.52890 | 1.32193 | 1.31446 | 1.2937
40 | 1.60526 | 1.39485 | 1.38800 | 1.3576
45 | 1.68551 | 1.47168 | 1.46547 | 1.4245
5.0 | 1.76876 | 1.55158 | 1.54601 | 1.4934

3 T T T T T T T T T
5
.*.
* D
* O
O
2.5 Q ® 0 -
O
0 *
O *
@
o 7 * 1
O
o
_*.
O
1.5 .
3
D
1 1 1 1 1 1 1 1 1

5
A

Figure 1. The roots (po) of the ground state energies against the coulomb ratio A and field strength
v, (=0, %y =1).
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Figure 2. The triplet-singlet energy splitting (J in meV) for two electron quantum dot against the magnetic field
(B in Tesla) for confinement strength hwg = 3 meV. [Material parameters for GaAs are: m* = 0.067 me, k = 12.4,
R* =5.93 meV, a* = 9.8 nm, g* = -0.44].

Table 3. The ground state energies |00;00) of the quantum-dot helium system are calculated for various range
of ratio parameter A. The results are computed by: perturbation theory, variational, exact diagonalization, full

configuration interaction [10], Hartree-Fock [7] and 1/N methods.

r|E (A) | E(var.3) | E(diag.) | E(FCI) | E(HF) | E(1/N)
0 | 2.00000 | 2.00000 | 2.00000 2.0000
1 | 3.25331 | 3.00174 | 3.00097 2.9556
2 | 4.50663 | 3.72565 | 3.72143 | 3.7205 | 4.034 | 3.6706
3 | 5.75994 | 4.32576 | 4.31872 4.2739
4 | 7.01326 | 4.85637 | 4.84780 | 4.8502 | 5.182 | 4.8114
5 | 8.26657 | 5.34141 | 5.33224 5.3016
6 | 9.51988 | 5.79354 | 5.78429 | 5.7850 | 6.107 | 5.7580
7 [ 10.7732 | 6.22032 | 6.21129 6.2069
8 | 12.0265 | 6.62674 | 6.61804 | 6.6185 | 6.930 | 6.6000
9 | 13.2798 | 7.01626 | 7.00795 7.0084
10 | 14.5331 | 7.39141 | 7.38351 | 7.3840 | 7.686 | 7.3700

Conclusions

In conclusion, we have studied the spectral properties of 2e QD-system in presence of an applied uniform
magnetic field using the shifted 1/N expansion method. The ground state energies of the QD-helium are
calculated for various values of magnetic field v, and the wide range of ratio parameter A. The spin singlet-
triplet transition in the ground state of the QD system is also investigated. We have also computed the
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singlet-triplet energy as a function of magnetic field strength. Based on comparisons with exact, numerical,
variational and full-configuration interaction methods, the shifted 1/N expansion method gives excellent
results for all ranges of magnetic field strength + and ratio parameter A of the QD system.
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