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1 Introduction

Assuming that p > 1, }7 + é =1, amb, >0, a={aul, €, b={b,}2 €l ||al, =
1

O ah)? >0, ||bll; > 0, we have the following Hardy-Hilbert inequality with the best

possible constant factor —*— (cf [1], Theorem 315):
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The more accurate inequality of (1) is given as follows (cf [2] and Theorem 323 of [1]):

lalliblly (0<a=<1), (2)
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which is an extension of (1). We still have the following Mulholland inequality similar to (1)
with the same best possible constant factor —=— (cf. [3] or Theorem 343 of [1], replacing

% by a,, by):

sin ﬂ/p
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Inequalities (1)-(3) are important in analysis and applications (c¢f. [2, 4-9]).
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If i v >0 (5,j e N={1,2,...}),

u, = Xm: Wiy V, = 2": vj (m,neN), (4)
i=1 j=1

then we have the following Hardy-Hilbert-type inequality (¢f Theorem 321 of [1], replac-
. 1q 1p
ing (' a, and v,* b, by a,, and b,):

1

00 ay, apm 11’7 00 bZ 7
ZZU +V, sm( )<Z ) (Z q—l) ’ (%)

m=1 n=1 n=1 Yn

For u; = v; =1 (i,j € N), (5) reduces to (1).

In 2015, Yang [10] gave an extension of (5) as follows: For 0 < A, Ay <1, A1 + Ap = A,
{tm}ony, and {v,}52, are decreasing, and Uy, = Vo, = 00, we have the following inequality
with the best possible constant factor B(A1, A;):

1 1
[ IS) o) uﬁl(l—)q)—laian p [ oo VZ(I_M—I)bZ q
>3 i cnan| S HE b S

m=1 n=1 m=1 Hom n=1 Un

where B(u, v) is the beta function defined by (cf [11])

00 tu—l
B(u,v) := /0 W dt  (u,v>0). (7)

In a similar way, Huang and Yang [12] gave a more accurate inequality of (6) and Yang
and Chen [13] obtained a Hardy-Hilbert-type inequality with another kernel and a best
possible constant factor.

In this paper, using the way of weight coefficients and applying Hermite-Hadamard’s
inequality, a Hardy-Mulholland-type inequality with a best possible constant factor simi-
lar to (6) is proved, which is an extension of (3). Furthermore, the more accurate Hardy-
Mulholland-type inequality is built by introducing a few parameters. We also consider the

equivalent forms, the operator expressions and some particular inequalities.

2 Some lemmas and an example

In the following of this paper, we assume that p > 1, }17 +1 =1, uyv >0 (i,j € N), with

u1 =v =1, U, and V, are indicated by (4), ¢ < %, B =< ”— 0< Al,kz <L AM+A =2,
1

Ay by > 0, ||allpo, = (X owy Pi(m)at,)?, and ||b]l 4w, = (ZM ‘I’A(n)bn)q, where

1 (u _a)]p(l—h)—l
(U —a)l-mm‘31 ’

[In(V,, — B)]40-
(V= B\ qu‘”

n+l

;. (m) :=

W, (n) := (m,n € N\{1}). (8)

Lemma 1 Suppose that a € R, f(x) in continuous in [a — %,a + %], f'(x) is strictly increas-
ing in (a — %,zz) and (a,a + %), and f'(a — 0) < f'(a + 0). We have the following Hermite-
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Hadamard inequality (cf Lemma 1 of [14]):

fla) < / 12 f(x)dx. )

Example1 Assuming that {u,,}5; and {v,}$2; are decreasing, we set u(t) := piy, t € (1 -
1L,m](meN);v(t):=v,, te(n-1,n] (neN),

x y
Ux) := / ut)dt (x>0), V(y):= / v()dt (y=>0). (10)
0 0

Then we have U(m) = U,,,, V(n) = V,,, U(00) = Uy, V(0) = Vi, and

u/(x) = M(x) =Mmy XE (Wl - l’m)!

V') =v(@)=v,, ye€m-1n)(mneN).

For fixed m, n € N\{1}, we define the function /4(x) as follows:

Aa-1 _
) : ™ (V@) - B) xe[n ; ;]

x) = (V(x) - B)[In(U,, — &) + In(V(x) — B)]*’ -+ =

Then /(x) in continuous in [# — %,n + %], and, forx € (n — %,n) (n € N\{1}),
W2 (V@ =) A (VE) - p)

(V(x)-B) In[(Uy, — a)(V(x) - B)]
+ 1- )\2 } Uy

(V) = B2 | (V(x) = B) In*[(Uy, — o) (V (%) - B)]

H(x) = -{

In view of 1 — Ay > 0, /'(x) (< 0) is strictly increasing in (n — %, n) and

lim 4 (x) = W'(n-0)=-

X—>Hn—

{IHAZ"I(Vn—ﬂ) . An*27Y(V, - )
(Vu=B) In[(Uyy —)(Vy, = B)]
1-2X, Uy

Vi = B)>2 } (Vo= B0 (U, — @)(Vy, = B)]

1

In the same way, for x € (1,1 + %), we find

"7 (V(x) - B) ot In*27(V(x) - B)
(V(x) - B) In[(Un - a)(V(x) - B)]
1- )\2 Up+l

Vi(x) - B)>*2 } (V(x) = B)In* (U — ) (V (%) = B)]

W (x) = —{

:
(
i (x) (< 0) is strictly increasing in (1,1 + %) and

27V, = p) IV, - B)
(Vu=B)  In[(Un-a)(Vy—B)]
. 1-2, } Unil
(V= 8272 ) (Vi = B)In* (U — ) (Vi = B)]

lim #'(x) = W' (n+0) = —{
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Since v,41 < vy, we have #/(n — 0) < K'(n + 0). Then by (9), for m, n € N\{1}, it follows that

n+% ~ n+% lnkz—l(v(x) _ ’3)
o< [ [ it~ e Ve BT w

2 2

Lemma 2 For m,n € N\{1}, we define the following weight coefficients:

L = 1 Un+l In™ Uy - )
@)= 22: In* (U = 0)(Vis = B)] (Vi = B) I0'2(V,, = B) 12
-\ 1 Wi I02(V,, = B)
o Gn)i= ; I (U — @)(Vyy = B)] (U — ) I (U — ) 13)
If {umloe, and {v,}32, are decreasing, and U(co0) = V(o0) = oo, then
w(ha,m) < B(A,h2)  (m € N\{1}), (14)
@ (h,n) <B(A,h2) (1€ N\{1}). (15)

Proof Forx € (n— %,n + %)\{n}, Ups1 < V'(x), by (11), we obtain
w(Ay, m) < i v /mé In* (U, — ) 27 (V (x) - B) dx
IS L (V@) - AU — o) + In(V(x) - B)]F

2

—

oo

dx

<

"3 It (U, — o) 2N (Vx) = B) V/(x)
/ L [In(U, — ) + In(V(x) = B)]* V(x) - B

n=2 T2

Y In* (U, — o) In*2 (V) - B)  V'(x)
B /3 (In(Uy, — ) + In(V(x) - B)I* V(x) - B

2

. In(V(x)— . /
Setting ¢t = %, since V(%) -B=1+3F -p=>1land v‘(/xi)ﬂ dx = In(U,, — «) dt, we find

o0
1
A2, 271 dt = B(hy, Aa).
w<2m)</0 T (1, 22)

Hence, we obtain (14). In the same way, we obtain (15). O

Lemma 3 Suppose that {{i,,}e, and {v,}32, are decreasing, and U(oo) = V(00) = 0.
(i) For m,n € N\{1}, we have

B()\y, kz)(l -0\, m)) < w(Ag, m), (16)
B(Al,kz)(l - 1?()\1,;1)) <w (A, n), 17)
where
1 In*27(1 + v, — 1
O(ha,m) = - 1£<1:J;2<m>—§)) 12
B, A2) dy[1 + RERCA ] 2 (U, — )

_ 1 B
= O(lnM(um —a)) €(0,1) (G(m) € (U2,1)>, (18)
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1 I (1 + g — ) 1
¥ (A1, 1) = BOw, ) in(L+ 1129 (=) 1 [ (Y, —
1, A2 )\1[1+ W] n ( ’3)

1 o

(ii) for any ¢ > 0, we have

Mm+1 _ 1 1
(U — o) (U, —a) ¢ <1nc(1 fa—a) CO(D)’ 20

M 10

Un+l

1 1 ~
Vo ANV, B) Z(lnca o p) co(”)' o

Il
-]

n

Proof In view of 0 < 8 < 2 < vy, it follows that L 1 and S +1< 2. By Example 1,
h(x) is strictly decreasing in [n, n + 1], then for m € N\{l} we obtaln

n+l lnxl(L[ — ) I Y (V (%) = B dx
(o, m Z/ A)In(L, — ) + In(V() - )T

) /00 I (U, — ) In2 NV (x) - 8) V(%) .
2 [In(Uy, —a) +In(V(x) - B)I* V(x)-pB
) f"o I (U, — ) I (V(x) - ) V()
La (In(Uy, — ) + In(V(x) - B)I* Vix)-B
2 MU, - ) I Y (Vx) - 8) V(x)dx
_fﬁ o Uy —a) +In(V(x) - B)I* Vx)- B

dx

Setting ¢ = %, since

ln<V<£ + 1) —,3> =ln(1 + Ugﬁ —ﬁ) =
Uy )

we find

w(ho, m) > /0 (1+1t))\t

= B(A1, A2) (1 = O(ra, m)),

bt gy /2 I Uy ) (V) - B) Vi)
£ (U, —a) +In(V () - B V(@) - B

where

(U, -a) [ V(%) In*2 Y (V(x) — B) dx
B(,r)  JEa (V(x)-B) In*[(Uyn — &) (V(x) - B)]

O (ry, m) := €(0,1).

In view of the integral mid value theorem, there exists a 6(m) € ( ,1), satisfying

1 I (U, — &) In*2 7V (%) - B)
B(A1,A2) [In(Uy, — ) + In(V (L + 6 (m)) - B)]*

2 ~ V/( )
X /Uﬁu In’2 I(V(x) - ,3) V(x)ji 5 dx

0()"2”/”) =
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~ 1 In* (U, — ) In*2711 + vy — B)
 B(Ai,A2) [In(Uyy — @) +In(1 + 120 (m) — B)]*
~ 1 711 + v, - B) 1
B(A1, 1) hp[1 + MUE200B o 102 (U — )
Since we find
In*271(1 - 1
0 < (ko m) < — A+ v =) . ,
Ao In*2(U,, — &)

namely, 6 (Ay, m) = O( ) we have (16) and (18). In the same way, we obtain (17) and
(19).

For any ¢ > 0, it follows that

In*2 (u

S
Z Mm1
—a)In"* (U, - @)

m:2

= [
Z (U — o) In** (U, - @)

m=2
~ = o
C(lh-a )ln“C(Ug +; i — o) In"* (U, — )
> U'(x)dx
" Uh—o )1nl+C(u2 a)+2/ Uy —a) I (U, — )
< j7%) . > f”’ U'(x)dx
(U — o) In"** (U — ) m-1 (U(x) — o) In" (U (x) - )

m=3

_ M2 +/w U'(x)dx

(U —a) iUy —a) Sy (U) - @) InU ) - )
B M2 . 1

S (Uy - o) I Uy — ) cIn®(1+ pg — )

1[ 1 92%) ]
=7 c + 1+c ’
c[In°Q+ py—a) (Uy—a)In**(Uy — a)

o0
Z Mm+1
= (Up ~ o) Int*(U, - @)
~ i/”’*l U'(x)dx
- =2 VM Uy - a)1n1+c(um -a)
0

/m+1 u/( )
dx
m (Ux) —a) I (Ux) - )

m=2

_/Oo U'(x)dx ~ 1
L UG ) In(UK) —a)  cIn(L+py —a)

Hence we obtain (20). In the same way, we obtain (21). O
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3 Main results

We define the following functions:

[In(U,, — o)1)
(Un —eyi2ully
(In(V;, — g)Jatd-*2)-1

(V= B0

®, (m) := w(hy, m)

W, (1) := @ (b, 1)

(m,n e N\{1}). (22)

Theorem 1 We have the following equivalent inequalities:

[ o) ambn ) )
DI Wim o R G ALY (23)
= S U"‘*llnp)\z_l(‘/n_ﬂ) > Am ! P%< ~
]'_LZ_;(w(xl,n))P—l(Vn—ﬁ)[glnk[(um—a)(vn_ﬁ)]}} <lalpz, @4

Proof By Holder’s inequality (cf [15]) and (13), we find

oo bp
Am
[% 0 (U - @) (Vs —ﬂ)]]

1

i [Z 0 (U — @) (Ve — P)]
(*

m Ol)l/q 1n(17)\1)/q(um - Ol)a > ( /’L}«r/fr ln(17k2)/p(vn - :3) ) ’
W )

' — o)V ln(l—h)/q(um —a

x /g . (1-x2)/p
M1 In (Vu-58)
o0

- Z 1 (u,, —a)P! 1n<1*"1>1’/‘1(um —a)
T (U - ) (Va- B @ 02 (V, - )

> e ey
g [% 0 (U — ) (Vi = B)] (U — o) I (U, a)}
(@) (Vi )
Uyt P2V, B)
i Uit (Upy — )PP In=00D (1), — )
W V= B (U = )V = AN 2(V,, - B)

al

ab,. (25)

Then by (12) we obtain

1

_ X v, -a)yld, I o) F
]—[ZZW[( =) (V= B)] 121 (V= B)In' 22 (V, — 5)]

1

. 0 00 Vet (U, —Ot)p_lﬂlfn Int-20@-D (U, —a) p
T |

=) (V= B)] pb (V= B) I 2V, — B)

1
~ o 1
1 p(1-211)-1 Um _ V4
= |:Zw(kz,m) . (7 p_(lx)a’,’n , (26)
m=2 m
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namely, (24) follows. By Hélder’s inequality (cf: [15]), we find

00 Ul/p ln)\,2—é (V _ ﬂ) 00 a
I = n+l n m
;[(w()\l,n))é (V,, - B)P ; n* (U, — a)(Vy, = B)]

1a
)
qmbn §]||b||q’¢,k' o)

X [(w(kl,n))

Then by (24), (23) follows.
On the other hand, suppose that (23) is valid. We set

— Un+l lnp)h271(vn - ,B) - am r
m’wmmwm%ﬁizmmw—WW—m}’ e N 29

m=2

Then we have J? = ||b||Z ¥, If ] = 0, then (24) is trivially valid; if ] = oo, then in view of (26),
(24) takes the form of an equality. Suppose that 0 < J < co. By (23), we obtain

IIbIIZ@A =] =1<|all,s,1bll,3, (29)
16125, =T < lall,3,, (30)
namely, (24) follows, which is equivalent to (23). O

Theorem 2 Assuming that {1}, and {v,}2; are decreasing, U(oco) = V(00) = 00, 0 <

lallp,®, 5 16]lgw, <00, we have the following equivalent inequalities:

00 00 ambn
; % W (U, —a)(V,—F)] B(h, 2a)llallpe; 161lgw, s 31)
o] U llnpxz I(V _ﬁ)
Ji:=
00 4 Py :
) [; ln)”[(um_a)(\/n_ﬂ)]i| } <B()‘1’)¥2)”ﬂ”p,¢k, (32)

where the constant factor B(Ay, Ay) is the best possible.

Proof Applying (14) and (15) in (23) and (24), we have the equivalent inequalities (31) and
(32).
For ¢ € (0, p);), we set A=A —;; (€(0,1)), gy = Ay + ;7 (>0), and

~ Mm+1 X ~ Un+l
= 2 ), by

_ 127.971 _
U e =V _g In (V- B). (33)
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Then by (20), (21), and (17), we obtain

@Iy, 1611w,

_ = Mm+1 P& Un+l a
) [Z (U — @) I (U, —a)} [Z (Vo= B)In'**(V,, — ﬁ)]

m=2 n=2

1 o o o)
|:ln€(1+u2—a) e i| [1H8(1+U2—ﬂ) e i|

q
)

n=2 m=2
C&[& 1 Pt 102V, - B)
- ; glnl[(um_a)(vn - B)] (Um—a)lnl‘xl(um—a)j|
Un+l _ > ~ Up+l
W IV, - B) ;w(kl’")(w—mlnm(w )
N Unsl
B\, A
=B 2)[;(vn—ﬁ)ln“1(vn—ﬁ)

N o( sl )}
22: (V= B)In" " (v, - B)

1 ~ ~
e ey

+6(0Q) - 0(1))].

If there exists a positive constant K < B(A1, X3), such that (31) is valid when replacing

B(A1,X2) by K, then in particular, we have el < eK|a| po, ||Z||q,\yw namely

e 13 1 ~
B()Ll - ;,)\2 + 1;) [m + S(O(l) - O(l))]

1 7 -
< K[4lng(l Pp— + 50(1):| |:—ln8(1 Pp— + 80(1):| .

It follows that B(Aj,13) < K(e — 0%). Hence, K = B(A, ;) is the best possible constant
factor of (31).
Similarly, we can obtain

I <1hlibllgw,- (34)

Hence, we can prove that the constant factor B(A1, 1;) in (32) is the best possible. Other-
wise, we would reach a contradiction by (34) that the constant factor in (31) is not the best

possible. d

We find \Ilifp (n) = ‘;’:—1}3 I¥*27Y(V,, - B), and we define the following weighted normed

spaces:

lp,<I>~A = {a = {am}yonozz; ”a”p,du < OO},
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lgw, = {b = (ba}y2as Ibllgw, <00},

.— —_ oo .
Lyir = (o= (ndiliell, yiov < o0},

Assuming that a = {a,, )75, € [0, , setting

IS L - Am
R e e ) R

m=2
we can rewrite (32) as follows:
||C||p,q,;—p < B(Ay, M)l allp,e, < 00,
namely, c € lpwifp.
Definition 1 Define a Hardy-Mulholland-type operator T :/, ¢, — lp y1-» as follows: For
A

any a = {a,,}5,_, € lye,, there exists a unique representation 7z = c € lp,wi—p. We set the

formal inner product of Tz and b = {b,};2, € [y, as follows:

o0 oo am
)= Z[Z W (U - a)(V, —ﬂ)]}bn' )

n=2 Lm=2
Then we can rewrite (31) and (32) as follows:
(Ta, b) < B(h1, A2)llallpo, 1611, (36)
1Tall, 10 < BO1,22) [l (37)
We set the norm of operator T as follows:

I Tall,, y1-»
T
IT|l:= sup ————

a#0)ely0,  N1alpe;

By (37), we find || T|| < B(A1, ). Since the constant factor in (37) is the best possible, it
follows that | T'|| = B(A1, Az).

Remark1 (i) For « = 8 =0 in (31) and (32), setting

(In U,,)P-*)-1 (In V,,)40-2)-1
@i.(m) := %» Y (n) := ﬁ (Wl;ﬂ € N\{l}),
Um M1 VVI Uyl

we have the following equivalent Hardy-Mulholland-type inequalities:

o0 [o¢] a b
mtn
>3 iy < B0l 1l (38)

n=2 m=2

00 v 00 a r }7
n+1 Ao —1 m
— "7V, _— <B(A,\0)||a . 39
{}: > [} :hﬁ(umvn)] } (hr, 22 |l (39)

n=2 n m=2
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ForA=1,A1=2,Ay = }7 in (38) and (39), we have the following equivalent inequality:

1
q’

o0 0 p 00 Um p-1 11_7 00 V,, q-1 %
ZZ1n(u V,) sin(%) %<—> @ Z( ) bl s (40)

‘12 m=2 Mm+1 s \Un+l
oo 00 V4 i o0 1 »
p p— p
Un+l Am s um ) p
PR < a . (41)
n2=2: Vi ; ln(um Vn) Sll’l(%) ;(I’LWHl "

Hence, (38) is an extension of (40), and (31) is a more accurate inequality of (38) (for
O<a§%,0<ﬁ§%).

(ii) For jt; = v =1 (i j e N), A =1, 4 =
lowing inequality: For o, 8 < %,

%, Ay = 117 in (31), we reduce our case to the fol-

Z Z In[(m — oz)(n Bl

m=2 n=2

”a
S
Q=

i | 42
< ) Z - T 2 pa 42)
Hence, (42) is a more accurate inequality of (3) (for 0 <, 8 < %),
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