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Abstract

The paper deals with the existence of positive solutions for Neumann boundary
value problems of nonlinear second-order integro-differential equations

−u′′(t) +Mu(t) = f (t, u(t), (Su)(t)), 0 < t < 1, u′(0) = u′(1) = θ

and

u′′(t) +Mu(t) = f (t, u(t), (Su)(t)), 0 < t < 1, u′(0) = u′(1) = θ

in an ordered Banach space E with positive cone K, where M >0 is a constant, f : [0,
1] × K × K ® K is continuous, S : C([0, 1], K) ® C([0, 1], K) is a Fredholm integral
operator with positive kernel. Under more general order conditions and measure of
noncompactness conditions on the nonlinear term f, criteria on existence of positive
solutions are obtained. The argument is based on the fixed point index theory of
condensing mapping in cones.
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1 Introduction
Let E be an ordered Banach space, whose positive cone K is normal with a normal

constant N0, that is, if θ ≤ x ≤ y, then ||x|| ≤ N0||y||, where θ is the zero element in E.

We consider the existence of positive solutions for nonlinear second-order integro-dif-

ferential equations

−u′′(t) +Mu(t) = f (t, u(t), (Su)(t)), 0 < t < 1 (1)

and

u′′(t) +Mu(t) = f (t, u(t), (Su)(t)), 0 < t < 1 (2)

satisfying Neumann boundary conditions

u′(0) = u′(1) = θ , (3)
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where M >0 is a constant, f : I × K × K ® K is continuous, I = [0, 1], and

(Su)(t) =
1∫
0
D(t, s)u(s)ds

is a Fredholm integral operator with integral kernel D Î C(I × I, ℝ+). For conveni-

ence, we denote by D := max
(t, s)∈I×I

D(t, s) , and by D := min
(t, s)∈I×I

D(t, s) . In the following

discussions, we always assume that D > 0 .

The existence of positive solutions for ordinary differential equations with certain

boundary conditions has been studied by many authors, see [1-5] and the references

therein. At first, Guo and Lakshmikantham in [1] discussed the existence of positive

solutions for two-point boundary value problem(BVP){
−u′′(t) = f (t, u(t)), t ∈ I,

u(0) = u(1) = 0
(4)

in a Banach space E, where f : I × K ® K is continuous. By using cone expansion

and compression fixed point theorem of condensing mapping, they proved that, if the

nonlinear term f satisfies the measure of noncompactness condition

(P0) For any R >0, f is uniformly continuous on I × KR, and there exists a constant

L ∈ (
0, 12

)
such that

α(f (t, B)) ≤ Lα(B),

for any t Î I and B Î KR, where KR = K ∩ B(θ , R)

and one of the following increasing conditions:

(P2) lim
x∈K, ||x||→0

max
t∈I

||f (t, x)||
||x|| = 0, and there exist 0 < b < g <1, j Î K* such that j(x)

>0 for any x > θ and lim
x∈K,||x||→+∞

min
β≤t≤γ

φ(f (t, x))
φ(x) = +∞,

(P2) (P2) lim
x∈K,||x||→+∞

max
t∈I

||f (t,x)||
||x|| = 0, and there exist 0 < b < g <1, j Î K* such that

j(x) >0 for any x > θ and lim
x∈K,||x||→0

min
β≤t≤γ

φ(f (t, x))
φ(x) = +∞ ,

then, the BVP(4) has at least one positive solution. Later, the same technique is

employed successfully in [2] in proving the existence of positive solutions for two-

point boundary value problems of ordinary differential equations in ℝ. Recently, this

technique is used in [3-5] to investigate the existence of positive solutions for second-

order ordinary differential equations

−u′′(t) +Mu(t) = f (t, u(t)), 0 < t < 1 (5)

and

u′′(t) +Mu(t) = f (t, u(t)), 0 < t < 1 (6)

with Neumann boundary conditions (3) in ℝ. Obviously, the conditions (P1) and (P2)

are an extension of sup-linear condition

(P1)* f 0 := lim
x→0+

max
t∈I

f (t, x)
x

= 0 , f∞ := lim
x→+∞min

t∈I
f (t, x)
x

= +∞
and sub-linear condition
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(P2)* f0 := lim
x→0+

min
t∈I

f (t, x)
x

= +∞ , f∞ := lim
x→+∞max

t∈I
f (t, x)
x

= 0

in [2-4] in E. On the other hand, the limits conditions (P1)* and (P2)* are equivalent

to the inequality conditions (P1)** and (P2)** in ℝ:

(P1)** For any ε >0, there exists δ >0 such that f(t, x) ≤ εx for any 0 ≤ x < δ; For any

C >0, there exists h Î C+(I) such that f(t, x) ≥ Cx - h(t),

(P2)** For any C >0, there exists δ >0 such that f(t, x) ≥ Cx for any 0 ≤ x < δ; For any

ε >0, there exists h Î C+(I) such that f(t, x) ≤ εx + h(t).

Clearly, the inequality conditions (P1)** and (P2)** are more convenient to verify and

apply in applications than the limits conditions (P1)* and (P2)* do.

In this paper, we will improve and extend the results in [1-4]. At first, by applying a

new estimate of measure of noncompactness, we will delete the condition that f is uni-

formly continuous on I × KR in the assumption (P0), see the conditions (H0) or (H0)*.

Then, more general order conditions (see conditions (H1) and (H2)) are also presented

in this paper to guarantee the existence of positive solutions for the Neumann bound-

ary value problem (1) and (3) or (2) and (3) of nonlinear second-order integro-differen-

tial equations. These order conditions are a natural extension of the inequality

conditions (P1)** and (P2)** in ordered Banach spaces. The argument of the paper is

based on the fixed point index theory of condensing mapping in cones.

2 Preliminaries
First, we consider the boundary value problem (1) and (3) with M >0.

To obtain a solution of the boundary value problem (1) and (3), we require a map-

ping whose kernel G(t, s) is the Green’s function of the boundary value problem{
−u′′(t) +Mu(t) = θ , 0 < t < 1,

u′(0) = u′(1) = θ .

It is known in [3-5] that

G(t, s) =

⎧⎪⎨
⎪⎩

cosh(m(1 − t)) · cosh(ms)
m sinhm

, 0 ≤ s ≤ t ≤ 1,

cosh(m(1 − s)) · cosh(mt)
m sinhm

, 0 ≤ t ≤ s ≤ 1,

where m =
√
M , cosh x = ex+e−x

2
, sinh x = ex−e−x

2
. Furthermore, a direct calculation

shows that

0 <
1

m sinhm
≤ G(t, s) ≤ cosh2m

m sinhm
(7)

and
∫ 1
0 G(t, s)ds = 1

M
.

Let (X, || · ||) be a Banach space, C(I, X) denote the Banach space of all continuous

X-valued functions on interval I with the norm ||u||C = max{||u(t)||: t Î I}. Let a(·)
denote the Kuratowski measure of noncompactness of the bounded set in X and C(I,

X). For the details of definition and properties of the measure of noncompactness, see

[6]. For any B ⊂ C(I, X) and t Î I, let B(t):= {u(t): u Î B} ⊂ X. If B is bounded in C(I,

X), then B(t) is bounded in X, and a(B(t)) ≤ a(B). Some results of a (·) are given in the

following lemma.
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Lemma 1 [7-11]Let × be a Banach space. Then, we have the following results:

(1) If B ⊂ C(I, X) is a bounded and equicontinuous set, then a(B(t)) is continuous on
I, and

α(B) = max
t∈I

α(B(t)) = α(B(I)),

(2) If B ⊂ X is a bounded set, T : X ® X is a linear bounded operator, then

α(T(B)) ≤ ||T|| · α(B),

(3) If B = {un} ⊂ C(I, X) is a bounded and countable set, then a(B(t)) is Lebesgue
integrable on I, and

α

⎛
⎝

⎧⎨
⎩

∫
I

un(t)dt

⎫⎬
⎭

⎞
⎠ ≤ 2

∫
I

α(B(t))dt,

(4) If B ⊂ X is a bounded set, then there exists a countable subset B0 ⊂ B such that

α(B) ≤ 2α(B0),

(5) If J = [a, b], u Î C(J, X), � Î C(J, ℝ+), then

b∫
a

ϕ(s)u(s)ds ∈
⎛
⎝ b∫

a

ϕ(s)ds

⎞
⎠ · CoU(J),

where U(J):= {u(t): t Î J}.

Let E be an ordered Banach space, whose positive cone K is normal with a normal

constant N0. We define an operator Q : C(I, K) ® C(I, K) by

(Qu)(t) =

1∫
0

G(t, s)f (s, u(s), (Su)(s))ds, t ∈ I. (8)

Since G(t, s) >0 and f : I × K × K ® K is continuous, Q : C(I, K) ® C(I, K) is contin-

uous. Obviously, a positive solution of the boundary value problem (1) and (3) is

equivalent to a nonzero fixed point of the operator Q. Next, we will use fixed point

index theorem of condensing mapping in cone to seek the nonzero fixed point of Q.

For this purpose, we first prove that Q : C(I, K) ® C(I, K) is a condensing mapping. A

mapping Q : C(I, K) ® C(I, K) is said to be a condensing mapping if for any bounded

set B ⊂ C(I, K), we have a(Q(B)) < a(B).
Lemma 2 Assume that f Î C(I × K × K, K) satisfies the following condition (H0) For

any R >0, f (I × KR × KR) is bounded, and there exist two constants L1, L2 >0 with

L1 + L2D < M
4 such that

α(f (t,B1,B2)) ≤ L1α(B1) + L2α(B2),

for any t Î I and B1, B2 ⊂ KR, where KR is defined as in condition (P0).

Then Q : C(I, K) ® C(I, K) defined by (8) is a condensing mapping.

Proof. From (8) and assumption (H0), it follows that Q maps bounded sets of C(I, K)

into bounded and equicontinuous sets. Let B ⊂ C(I, K) be a bounded set, we show that

a(Q(B)) < a(B). Let R := sup{||u||C + ||Su||C : u Î B}, then for any t Î I, we have B(t)
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⊂ KR, (SB)(t) ⊂ KR. From Lemma 1(4), there exists a countable subset B0 = {un} ⊂ B

such that a(Q(B)) ≤ 2a(Q(B0)). For any t Î I, from Lemma 1(3) and assumption (H0),

we have

α(Q(B0)(t)) = α

⎛
⎝

⎧⎨
⎩

1∫
0

G(t, s)f (s, un(s), (Sun)(s))ds : n ∈ N

⎫⎬
⎭

⎞
⎠

≤ 2

1∫
0

G(t, s)α({f (s, un(s), (Sun)(s)) : n ∈ N})ds

= 2

1∫
0

G(t, s)α(f (s,B0(s), (SB0)(s)))ds

≤ 2

1∫
0

G(t, s)(L1α(B0(s)) + L2α((SB0)(s)))ds.

Since SB0 is bounded and equicontinuous, by Lemma 1(1) and Lemma 1(2), we have

α((SB0)(s)) ≤ max
s∈I

α((SB0)(s)) = α(SB0) ≤ ||S|| · α(B0) ≤ D · α(B0).

Hence, by the properties of measure of noncompactness, we have

α(Q(B0)(t)) ≤ 2(L1 + L2D)

1∫
0

G(t, s)ds · α(B0) ≤ 2(L1 + L2D)
M

α(B).

Since Q(B0) is bounded and equicontinuous, from Lemma 1(1) and assumption (H0),

we have

α(Q(B)) ≤ 2α(Q(B0)) = 2max
t∈I

α(Q(B0)(t)) ≤ 4(L1 + L2D)
M

α(B) < α(B).

This implies that Q : C(I, K) ® C(I, K) is a condensing mapping. The proof is com-

pleted. □
Remark 1 Comparing with assumption (P0), assumption (H0) does not require that f

is uniformly continuous on I × KR. Hence assumption (H0) is weaker than assumption

(P0).

Define a cone in C(I, K) by

P := {u ∈ C(I,K) : u(t) ≥ σu(τ ), ∀t, τ ∈ I},

where σ = 1
cosh2m

. Before starting our main results, we give the following lemma.

Lemma 3 Q(C(I, K)) ⊂ P.

Proof. For any u Î C(I, K), from (7) and (8), for any τ Î I, we have

(Qu)(τ ) ≤ cosh2m
m sinhm

1∫
0

f (s, u(s), (Su)(s))ds.
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On the other hand, for any t Î I, we have

(Qu)(t) ≥ 1
m sinhm

1∫
0

f (s, u(s), (Su)(s))ds ≥ σ (Qu)(τ ),

i. e. Qu Î P. This implies that Q(C(I, K)) ⊂ P. The proof is completed. □
In order to use fixed point index theorem of condensing mapping in cones to seek

nonzero fixed point of Q, we also need the following lemmas.

Lemma 4 [12]Let × be a Banach space, P ⊂ X be a cone, Ω ⊂ X be a bounded open

set, θ Î Ω, A : P ∩ 
 → P be a condensing mapping. If u ≠ μAu for any u Î ∂Ω ∩ P

and 0 < μ ≤ 1, then i(A, P ∩ Ω, P) = 1.

Lemma 5 [13]Let × be a Banach space, P ⊂ X be a cone, Ω ⊂ X be a bounded open

set, A : P ∩ 
 → P be a condensing mapping. If there exists a ν0 Î P\{θ } such that u -

Au ≠ τν0 for any u Î ∂Ω ∩ P and τ ≥ 0, then i(A, P ∩ Ω, P ) = 0.

3 Main results
For convenience, for any r >0, let Pr := {u Î P : ||u||C < r}. Then, ∂Pr = {u Î P : ||u||C
= r}. Now, we are in the position to state and prove our main results.

Theorem 1 Let E be an ordered Banach space, whose positive cone K is normal. If M

>0 and f Î C(I × K × K, K) satisfies the assumption (H0) and one of the following

conditions

(H1) (1) There exist two constants a, b >0 with a + bD < M and δ >0 such that

f (t, u, v) ≤ au + bv,

for any t Î I and u, v Î Kδ, where Kδ = K ∩ B(θ , δ) ,

(2) There exist two constants c, d >0 with c + dD > M and h0 Î C(I, K) such that

f (t, u, v) ≥ cu + dv − h0(t),

for any t Î I and u, v Î K,

(H2) (1) There exist two constants c, d >0 with c + dD > M and δ >0 such that

f (t, u, v) ≥ cu + dv,

for any t Î I and u, v Î Kδ,

(2) There exist two constants a, b >0 with a + bD < M and h0 Î C(I, K) such that

f (t, u, v) ≤ au + bv + h0(t),

for any t Î I and u, v Î K,

then the boundary value problem (1) and (3) has at least one positive solution.

Proof. Since f Î C(I × K × K, K) satisfies assumption (H0), from Lemmas 2 and 3, we

know that Q : P ® P is a condensing mapping. Next, we will show that the opertor Q

defined by (8) has at least one nonzero fixed point when f satisfies assumption (H1) or

(H2).

If (H1) holds, let 0 < r < min{δ, δ

D
} , then for any t Î I and u Î ∂Pr, we have ||u(t)||

≤ ||u||C = r < δ, ||(Su)(t)|| ≤ ||Su||C ≤ D||u||C = Dr < δ . Hence from assumption

(H1)(1), we have
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f (t, u(t), (Su)(t)) ≤ au(t) + b(Su)(t). (9)

We now prove that u ≠ μQu for any u Î ∂Pr and 0 < μ ≤ 1. In fact, if there exist u0
Î ∂Pr and 0 < μ0 ≤ 1 such that u0 = μ0Qu0, then by the definition of operator Q, u0(t)

satisfies the equation

−u′′
0(t) +Mu0(t) = μ0f (t, u0(t), (Su0)(t)), 0 < t < 1 (10)

and Neumann boundary condition (3). Integrating on both sides of Equation (10)

from 0 to 1, by (9), we have

M

1∫
0

u0(t)dt ≤
1∫

0

f (t, u0(t), (Su0)(t))dt ≤
1∫

0

(au0(t) + b(Su0)(t))dt

≤ (a + bD)

1∫
0

u0(t)dt.

Combining this inequality with, a + bD < M , it follows that
∫ 1
0 u0(t)dt ≤ θ . But

from u0 Î C(I, K), we have that u0(t) ≥ θ for any t Î I, and from u0 Î ∂Pr, we have

that ||u0||C = r. Thus, u0(t) ≥ θ and u0(t) ≢ θ. Therefore,
∫ 1
0 u0(t)dt > θ . This is a con-

tradiction. Hence Q satisfies the hypotheses of Lemma 4 in Pr. From Lemma 4, we

have

i(Q,Pr ,P) = 1. (11)

On the other hand, let ν0 ≡ e, where e Î K and ||e|| = 1, then ν0 is a solution of the

boundary value problem (1) and (3) when f(t, u, Su) = Me. This implies that ν0 Î P .

Next, we show that if R >0 large enough, then u - Qu ≠ τν0 for any u Î ∂PR and τ ≥ 0.

In fact, if there exist u0 Î ∂PR and τ0 ≥ 0 such that u0 - Qu0 = τ0ν0, then by the defini-

tion of operator Q, u0(t) satisfies the equation

−u′′
0(t) +Mu0(t) = f (t, u0(t), (Su0)(t)) +Mτ0ν0, 0 < t < 1 (12)

and Neumann boundary condition (3). Integrating on both sides of Equation (12)

from 0 to 1, by assumption (H1)(2), we have

M

1∫
0

u0(t)dt =

1∫
0

f (t, u0(t), (Su0)(t))dt +Mτ0ν0

≥
1∫

0

(cu0(t) + d(Su0)(t) − h0(t))dt

≥ (c + dD)

1∫
0

u0(t)dt −
1∫

0

h0(t)dt.
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Consequently, we obtain that

1∫
0

u0(t)dt ≤ 1
c + dD − M

1∫
0

h0(t)dt. (13)

On the other hand, from u0 Î P , we have

1∫
0

u0(t)dt ≥
1∫

0

σu0(τ )dt = σu0(τ ) ≥ θ .

Combining this inequality with (13), and by the normality of cone K in E, we obtain

that

||u0||C ≤ N0||h0||C
σ (c + dD − M)

� R. (14)

Let R > max{δ, δ

D
,R} . Then, for any u Î ∂PR and τ ≥ 0, u - Qu ≠ τν0. Hence hypoth-

eses of Lemma 5 hold. By Lemma 5, we have

i(Q,PR,P) = 0. (15)

Now, by the additivity of fixed point index, (11) and (15), we have

i(Q,PR\Pr ,P) = i(Q,PR,P) − i(Q,Pr,P) = −1.

Therefore, Q has a fixed point u* in PR\Pr , which satisfies u*(t) ≥ su*(τ) ≥ θ for any

t, τ Î I. By the normality of cone K in E, we see that

||u∗(t)|| ≥ σ
N0

||u∗(τ )|| > σ r
N0

> 0 , which implies that u* is a positive solution of the

boundary value problem (1) and (3).

Next, we suppose that (H2) holds. Let 0 < r < min{δ, δ

D
} , then for any t Î I and u Î

∂Pr, we have

f (t, u(t), (Su)(t)) ≥ cu(t) + d(Su)(t). (16)

Let ν0 ≡ e, where e Î K and ||e|| = 1. We now prove that u - Qu ≠ τν0 for any u Î
∂Pr and τ ≥ 0. In fact, if there exist u0 Î ∂Pr and τ0 ≥ 0 such that u0 - Qu0 = τ0ν0, then

u0(t) satisfies Equation (12) and Neumann boundary condition (3). From (12) and (16),

it follows that

(c + dD − M)

1∫
0

u0(t)dt ≤ −Mτ0ν0 ≤ θ .

Since
1∫
0
u0(t)dt > θ , we see that c + dD ≤ M , which is a contradiction. Hence by

Lemma 5, we have

i(Q,Pr ,P) = 0. (17)

On the other hand, we show that if R >0 large enough, then u ≠ μQu for any u Î
∂PR and 0 < μ ≤ 1. In fact, if there exist u0 Î ∂PR and 0 < μ0 ≤ 1 such that u0 =
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μ0Qu0, then u0(t) satisfies Equation (10) and Neumann boundary condition (3). From

(10) and assumption (H2)(2), it follows that

M

1∫
0

u0(t)dt ≤ (a + bD)

1∫
0

u0(t)dt +

1∫
0

h0(t)dt.

By the proof of (14), we see that ||u0||C ≤ N0||h0||C
σ (M−a−bD)

� R . Let R > max{δ, δ

D
,R} ,

then u ≠ μQu for any u Î ∂PR and 0 < μ ≤ 1. therefore, by Lemma 4, we have

i(Q,PR,P) = 1. (18)

From (17) and (18), it follows that

i(Q,PR\Pr ,P) = i(Q,PR,P) − i(Q,Pr ,P) = 1.

Therefore, Q has a fixed point u* in PR\Pr , which is the positive solution of the

boundary value problem (1) and (3). The proof is completed. □
Theorem 2 Let E be an ordered Banach space, whose positive cone K is normal. If M

>0 and f Î C(I × K × K, K) satisfies the assumption

(H0)* For any R >0, f(I × KR × KR) is bounded, and there exist two constants L1, L2
>0 with 2L1 + L2D < M such that

α(f (I × B1 × B2)) ≤ L1α(B1) + L2α(B2),

for any B1, B2 ⊂ KR, where KR is defined as in (P0) and the condition (H1) or (H2),

then the boundary value problem (1) and (3) has at least one positive solution.

Proof. We only need to prove that Q : C(I, K) ® C(I, K) is a condensing mapping.

For any bounded set B ⊂ C(I, K), let R := sup{||u||C + ||Su||C : u Î B}, then B(t) ⊂ KR,

(SB)(t) ⊂ KR for any t Î I. For any u Î B and t Î I, from Lemma 1(5), we have

(Qu)(t) =

1∫
0

G(t, s)f (s, u(s), (Su)(s))ds

∈
⎛
⎝ 1∫

0

G(t, s)ds

⎞
⎠ · Co({f (s, u(s), (Su)(s)) : s ∈ I})

⊂
⎛
⎝ 1∫

0

G(t, s)ds

⎞
⎠ · Co(f (I × B(I) × (SB)(I))).

Consequently, we obtain that

Q(B)(t) ⊂
⎛
⎝ 1∫

0

G(t, s)ds

⎞
⎠ · Co(f (I × B(I) × (SB)(I))).

From the properties of measure of noncompactness, Lemma 1(2) and assumption

(H0)*, we have
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α(Q(B)(t)) ≤
⎛
⎝ 1∫

0

G(t, s)ds

⎞
⎠ · α(f (I × B(I) × (SB)(I)))

≤ 1
M

(L1α(B(I)) + L2α((SB)(I)))

≤ 2L1 + L2D

M
α(B).

From Lemma 1(1) and assumption (H0)*, we have

α(Q(B)) = max
t∈I

α(Q(B)(t)) ≤ 2L1 + L2D
M

α(B) < α(B).

This implies that Q : C(I, K) ® C(I, K) is a condensing mapping. The proof is com-

pleted. □

Remark 2 In assumption (H0)*, we replace L1 + L2D < M
4 by 2L1 + L2D < M , but the

condition a(f(I × B1 × B2)) ≤ L1a (B1) + L2a (B2) is stronger than condition a(f(t, B1,

B2)) ≤ L1a (B1) + L2a (B2)(t Î I) in (H0), where B1, B2 ⊂ KR. Hence the assumption

(H0)* is different from assumption (H0). It is another improvement of assumption (P0).

The same technique can be carried over for the boundary value problem defined by

(2) and (3) with M ∈ (0, π2

4 ) . We only need to change the Green’s function to

G(t, s) =

⎧⎪⎨
⎪⎩

cos(m(1 − t)) · cos(ms)
m sinm

, 0 ≤ s ≤ t ≤ 1,

cos(m(1 − s)) · cos(mt)
m sinm

, 0 ≤ t ≤ s ≤ 1,

and the cone in C(I, K) to

P := {u ∈ C(I,K) : u(t) ≥ σu(τ ), ∀t, τ ∈ I},

where now s = cos2 m. Similar to the proof of Theorems 1 and 2, we can obtain the

following result.

Theorem 3 Let E be an ordered Banach space, whose positive cone K is normal. If <

M <π2

4
and f 2 C(I × K × K, K) satisfy the assumption (H0) or (H0)* and the condition

(H1) or (H2), then the boundary value problem defined by (2) and (3) has at least one

positive solution.

Remark 3 The conditions (H1) and (H2) are a natural extension of the inequality

conditions (P1)** and (P2)** in ordered Banach space E. Hence, if f(t, u, v) = f(t, u), then

Theorems 1, 2, and 3 improve and extend the main results in [2-4].
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