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Abstract

We consider the relaxed and contraction-proximal point algorithms in Hilbert spaces.
Some conditions on the parameters for guaranteeing the convergence of the
algorithm are relaxed or removed. As a result, we extend some recent results of
Ceng-Wu-Yao and Noor-Yao.
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1. Introduction
Throughout, H denotes a real Hilbert space and A a multi-valued operator with

domain D(A). We know that A is called monotone if 〈u - v, x - y〉 ≥ 0, for any u Î Ax,

v Î Ay; maximal monotone if its graph G(A) = {(x,y): x Î D(A), y Î Ax} is not prop-

erly contained in the graph of any other monotone operator. Denote by S: = {x Î D

(A): 0 Î Ax} the zero set and by Jc: = (I + cA)-1 the resolvent of A. It is well known

that Jc is single valued and D(Jc) = H for any c > 0.

A fundamental problem of monotone operators is that of finding an element x so

that 0 Î Ax. This problem is essential because it includes many concrete examples,

such as convex programming and monotone variational inequalities. A successful and

powerful algorithm for solving this problem is the well-known proximal point algo-

rithm (PPA), which generates, for any initial guess, x0 Î H, an iterative sequence as

xn+1 = Jcn(xn + en), (1:1)

where (cn) is a positive real sequence and (en) is the error sequence (see [1]). To

guarantee the convergence of PPA, there are two kinds of accuracy criterion posed on

the error sequence:

(I) ‖en‖ ≤ εn,
∞∑
n=0

εn < ∞ or

(II) ‖en‖ ≤ ηn
∥∥x̃n − xn

∥∥ ,
∞∑
n=0

ηn < ∞,

where x̃n = Jcn(xn + en). In 2001, Han and He [2] proved that in finite dimensional

Hilbert space criterion (II) can be replaced by
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(II’) ‖en‖ ≤ ηn
∥∥x̃n − xn

∥∥ ,
∞∑
n=0

η2
n < ∞.

The infinite version was obtained by Marino and Xu [3].

There are various generations or modifications on the PPA. Among them Eckstein

and Bertsekas [4] proposed the relaxed proximal point algorithm (RPPA):

xn+1 = (1 − ρn)xn + ρnJcn(xn) + en, (1:2)

where (rn) ⊂ (0, 2) is a relaxation factor. The weak convergence of (1.2) is guaran-

teed provided that (en) satisfies criterion (I),

cn ≥ c̄ > 0, 0 < δ ≤ ρn ≤ 2 − δ. (1:3)

On the other hand, since the PPA does not necessarily converge strongly (see [5]),

many authors have conducted worthwhile studies on modifying the PPA so that the

strong convergence is guaranteed (see, for instance, [6-8]). In particular, Marino and

Xu [3] proposed the contraction-proximal point algorithm (CPPA):

xn+1 = λnu + (1 − λn)Jcn(xn) + en, (1:4)

where the parameters above satisfy (i) limn ln = 0, Σn ln = ∞; (ii) either Σn|ln+1- ln| < ∞;

or limn ln/ln+1 = 1; (iii) 0 < c ≤ cn ≤ c̄ < ∞,
∑

n |cn+1 − cn| < ∞; (iv) Σn ||en|| < ∞.

Under these assumptions, the CPPA converges strongly to PS(u), the projection of u onto S.

In this article, we shall focus on the RPPA and CPPA. We note that the resolvent is

in fact the arithmetic mean of the identity and a nonexpansive operator. By using this

fact, we relax or remove some sufficient conditions to guarantee the convergence of

the algorithms. As a result, we extend and improve some recent results on the PPA.

2. Some lemmas
We know that an operator T : H ® H is called (i) nonexpansive if ||Tx - Ty|| ≤ || x -

y|| ∀x,y Î H; and (ii) firmly nonexpansive if 〈Tx - Ty, x - y〉 ≥ ||Tx - Ty||2 ∀x,y Î H.

Denote by Fix(T) = {x Î H : x = Tx} the fixed point set of T. It is well known that

firmly nonexpansive operators have the following properties.

Lemma 1 (Goebel-Kirk [9]). Let T be firmly nonexpansive. Then (1) 2T - I is nonexpan-

sive; (2) 〈Tx - x, Tx - z〉 ≤ 0 for all x Î H and for all z Î H Fix(T).

It is well known that Jc is firmly nonexpansive and consequently nonexpansive;

moreover, S = Fix (Jc). Since the fixed point set of nonexpansive operators is closed

convex, the projection Ps onto the solution set S is well defined whenever S ≠ ∅. Here-

after, we assume that S is nonempty. The following lemmas play an important role in

our convergence analysis.

Lemma 2 (resolvent identity [3]). Let c, t >0. Then for any x Î H,

Jcx = Jt

(
t
c
x +

(
1 − t

c

)
Jcx

)
.

Lemma 3 ([10]). Let (rn) be real sequence satisfying

0 < lim inf
n→∞ ρn ≤ lim sup

n→∞
ρn < 1.
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Assume that (xn) and (yn) are bounded sequences in H satisfying xn+1 = (1 - rn)xn +

rnyn. If

lim sup
n→∞

(
∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖) ≤ 0,

then limn®∞||xn -yn|| = 0.

Lemma 4 For r, s, > 0, let Tr = 2Jr - I. Then for any x Î H,

‖Tsx − Trx‖ ≤
∣∣∣1 − s

r

∣∣∣ ‖x − Trx‖ . (2:1)

Proof. Using the resolvent identity, we have

‖Tsx − Trx‖ = 2
∥∥∥Jsx − Js

( s
r
x +

(
1 − s

r

)
Jrx

)∥∥∥
≤ 2

∥∥∥x −
( s
r
x +

(
1 − s

r

)
Jrx

)∥∥∥
= 2

∣∣∣1 − s
r

∣∣∣ ‖x − Jrx‖

=
∣∣∣1 − s

r

∣∣∣ ‖x − Trx‖ ,

where the inequality uses the nonexpansive property of the resolvent.

Lemma 5 ([11]). Let (εn) and (sn) be positive real sequences. Assume that Σn εn < ∞.

If either (i) sn+1≤ (1 + εn)sn, or (ii) sn+1≤ εn, then the limit of (sn) exists.

3. The relaxed proximal point algorithm
Under criterion (II’), Ceng et al. [12] considered another type, RPPA:{

x̃n = Jcn(xn + en),
xn+1 = (1 − ρn)xn + ρnx̃n,

(3:1)

and proved the weak convergence of (3.1) under the assumptions:

cn ≥ c̄ > 0, 0 < δ ≤ ρn ≤ 1.

We note that the choice of (rn) excludes the case whenever rn Î (1,2), the overre-

laxation. The overrelaxation, however, may indeed speed up the convergence of the

algorithm (see [13]). Below, we shall improve their conditions on the relaxation factor

from 0 <δ ≤ rn ≤ 1 to 0 <δ ≤ rn ≤ 2 - δ.

Theorem 6. Assume that the following conditions hold:

(a) cn ≥ c̄ > 0;

(b) 0 <δ ≤ rn ≤ 2 - δ;

(c)
∑

n ‖en‖ ≤ ηn
∥∥x̃n − xn

∥∥ ,∑n η2
n < ∞.

Then the sequence generated by (3.1) converges weakly to a point in S.

Proof. The key point of our proof is to show limn sn = 0, where sn =
∥∥xn − Jcn(xn)

∥∥ .
To see this, let z Î S be fixed. Since Jcn is firmly nonexpansive and z ∈ Fix(Jcn), apply-

ing Lemma 1 yields 〈x̃n − z, x̃n − xn − en〉 ≤ 0. This together with (3.1) enables us to get

‖xn+1 − z‖2 − ‖xn − z‖2 =
∥∥(xn − z) + ρn(x̃n − xn)

∥∥2 − ‖xn − z‖2

= 2ρn〈xn − z, x̃n − xn〉 + ρ2
n

∥∥x̃n − xn
∥∥2

= 2ρn〈x̃n − z, x̃n − xn〉 − ρn(2 − ρn)
∥∥x̃n − xn

∥∥2
≤ 2ρn〈x̃n − z, en〉 − ρn(2 − ρn)

∥∥x̃n − xn
∥∥2

= 2ρn〈x̃n − xn, en〉 + 2ρn〈xn − z, en〉 − ρn(2 − ρn)
∥∥x̃n − xn

∥∥2

≤ 2ρn ‖en‖
∥∥x̃n − xn

∥∥ + 2ρn ‖en‖ ‖xn − z‖ − ρn(2 − ρn)
∥∥x̃n − xn

∥∥2
≤ 2ρnηn

∥∥x̃n − xn
∥∥2 + 2ρnηn

∥∥x̃n − xn
∥∥ ‖xn − z‖

− ρn(2 − ρn)
∥∥x̃n − xn

∥∥2.
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Using the basic inequality 2ab ≤ a2 / ε + εb2 (a,b Î ℝ, ε > 0), we arrive at

2ρnηn ‖xn − z‖ ∥∥x̃n − xn
∥∥ ≤ 2ρn

2 − ρn
(ηn ‖xn − z‖)2 +

2 − ρn

2ρn

(
ρn

∥∥x̃n − xn
∥∥)2

=
2ρnη

2
n

2 − ρn
‖xn − z‖2 + ρn(2 − ρn)

2

∥∥x̃n − xn
∥∥2

≤ 2(2 − δ)η2
n

δ
‖xn − z‖2 + ρn(2 − ρn)

2

∥∥x̃n − xn
∥∥2

= εn‖xn − z‖2 + ρn(2 − ρn)
2

∥∥x̃n − xn
∥∥2,

where εn = 2(2 − δ)η2
n/δ is a summable sequence. Substituting this into above yields

‖xn+1 − z‖2 ≤ (1 + εn)‖xn − z‖2 − ρn(2 − ρn − 4ηn)
2

∥∥x̃n − xn
∥∥2.

Since by Lemma 5 the limit of ||xn - z ||
2 exists and lim infn rn (2 - rn -4hn) ≥ δ (2 - δ),

this implies that
∥∥x̃n − xn

∥∥ → 0.On the other hand, we note that for all n Î N

sn ≤ (1 + ηn)
∥∥xn − x̃n

∥∥ → 0;

therefore, limn sn = 0. The rest proof is similar to that of [12, Theorem 3.1].

We now turn to the RPPA (1.2). Under the criterion (I), the assumptions on relaxa-

tion factors can be relaxed to Σrn(2 - rn) = ∞ (see [3, Theorem 3.3]). Since the proof

there is very technical, we wang to restate this result with a simple proof.

Theorem 7. Assume that the following conditions hold:

(a) Σn ||en|| < ∞;

(b) Σn rn(2 - rn) = ∞;

(c) 0 < c̄ ≤ cn ≤ c̃ < ∞;
(d) Σn |cn+1- cn| < ∞.

Then the sequence generated by (1.2) converges weakly to a point in S.

Proof. The key step is to show limn sn = 0, where sn =
∥∥xn − Jcn(xn)

∥∥ . It has been

shown that Σn rn (2 - rn)sn < ∞ (see [3, Lemma 3.2]). Therefore, it remains to show

that limn sn exists. By letting Tn = 2Jn - I, we rewrite (2) as

xn+1 =
(
1 − ρn

2

)
xn +

ρn

2
Tnxn + en.

In view of Lemma 4 and condition (c),

‖Tn+1xn+1 − Tnxn‖ ≤ ‖Tn+1xn+1 − Tn+1xn‖ + ‖Tn+1xn − Tnxn‖
≤ ‖xn − xn+1‖ + ‖Tn+1xn − Tnxn‖

≤ ‖xn − xn+1‖ +

∣∣∣∣1 − cn+1
cn

∣∣∣∣ ‖Tnxn − xn‖

≤ ‖xn − xn+1‖ +
|cn+1 − cn|

c̄
‖Tnxn − xn‖

≤ ‖xn − xn+1‖ +M|cn+1 − cn|,
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where M > 0 is a suitable number. Consequently,

‖xn+1 − Tn+1xn+1‖ =
∥∥∥(

1 − ρn

2

)
xn +

ρn

2
Tnxn + en − Tn+1xn+1

∥∥∥
=

∥∥∥(
1 − ρn

2

)
(xn − Tnxn) + (Tnxn − Tn+1xn+1) + en

∥∥∥
≤

(
1 − ρn

2

)
‖xn − Tnxn‖ + ‖Tnxn − Tn+1xn+1‖ + ‖en‖

≤
(
1 − ρn

2

)
‖xn − Tnxn‖ + ‖xn − xn+1‖

+M|cn+1 − cn| + ‖en‖
=

(
1 − ρn

2

)
‖xn − Tnxn‖ +

∥∥∥ρn

2
(xn − Tnxn) + en

∥∥∥
+M|cn+1 − cn| + ‖en‖

≤ ‖xn − Tnxn‖ +M|cn+1 − cn| + 2 ‖en‖ .
Using sn = || xn - Tnxn||/2, we therefore arrive at

sn+1 ≤ sn + σn,

where sn = 2M |cn+1- cn| + 4||en|| satisfying Σn sn < ∞ (due to (a) and (d)). By

Lemma 5, we finally conclude that limn sn = 0.

4. The contraction-proximal point algorithm
Recently, Yao and Noor [14] extended the CPPA to the following form:

xn+1 = λnu + rnxn + δnJcn(xn) + en, (4:1)

where (ln),(rn),(δn)⊆ (0,1) and ln + rn + δn = 1. They proved the strong convergence

of the algorithm provided that (i) cn ≥ c̄ > 0, limn |cn+1 − cn| = 0; (ii) 0 < lim infn rn ≤

lim supn rn < 1; and (iii) Σn ||en|| < ∞. Also, they claimed that their algorithm includes

the CPPA as a special case. This is, however, not the case, because condition (ii)

excludes the special case rn ≡ 0. To overcome this drawback, we shall show the same

result by replacing condition (ii) with the weak condition:

lim sup
n→∞

rn < 1 ⇔ lim inf
n→∞ δn > 0.

In this situation, the CPPA is evidently a special case of algorithm (4.1). The idea of

the following proof is followed by the second author [15].

Theorem 8. Let be (ln), (rn) and (δn) be parameters in (4.1). Assume that the follow-

ing conditions hold:

(a) limn ln = 0, Σn ln = ∞;

(b) lim supn rn < 1 ⇔ lim infn δn > 0;

(c) cn ≥ c̄ > 0, |cn+1 − cn| → 0;

(d) Σn ||en|| < ∞.

Then the sequence generated by (4.1) converges strongly to PS (u).

Proof. All we need to do is to prove ||x n+1- xn|| ® 0, since the rest proof is similar

to that of [14, Theorem 3.3]. To this end, set Jn = Jcn and Tn = 2Jn - I. It then follows

from (4.1) that

xn+1 = λnu + rnxn +
δn

2
(I + Tn)xn + en

=
(
rn +

δn

2

)
xn + λnu +

δn

2
Tnxn + en.
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Let rn = ln + (δn/2). Then the algorithm has the form:

xn+1 = (1 − ρn)xn + ρnyn, (4:2)

where yn = (2lnu + δnTnxn + 2en)/2rn. Using nonexpansiveness of Tn and Lemma 4,

we have

‖Tn+1xn+1 − Tnxn‖ ≤ ‖Tn+1xn+1 − Tn+1xn‖ + ‖Tn+1xn − Tnxn‖

≤ ‖xn+1 − xn‖ +

∣∣∣∣1 − cn+1
cn

∣∣∣∣ ‖Tnxn − xn‖

≤ ‖xn+1 − xn‖ +
|cn − cn+1|

c̄
‖Tnxn − xn‖ .

(4:3)

On the other hand, it follows from the definition of yn that

∥∥yn+1 − yn
∥∥ =

∥∥∥∥ 1
2ρn+1

(2λn+1u + δn+1Tn+1xn+1 + 2en+1)

− 1
2ρn

(2λnu + δnTnxn + 2en)

∥∥∥∥
≤

∣∣∣∣λn+1

ρn+1
− λn

ρn

∣∣∣∣ ‖u‖ +
‖en+1‖
ρn+1

+
‖en‖
ρn

+

∥∥∥∥ δn+1

2ρn+1
Tn+1xn+1 − δn

2ρn
Tnxn

∥∥∥∥
≤

∣∣∣∣λn+1

ρn+1
− λn

ρn

∣∣∣∣ ‖u‖ +
‖en+1‖
ρn+1

+
‖en‖
ρn

+

∣∣∣∣ δn+1

2ρn+1
− δn

2ρn

∣∣∣∣ ‖Tn+1xn+1‖
+

δn

2ρn
‖Tn+1xn+1 − Tnxn‖ .

(4:4)

Since (xn) is bounded and Tn is nonexpansive, we can find M > 0 so that (||Tnxn|| +

||xn|| + ||u||) ≤ M for all n Î N Adding (4.3) and (4.4) and noting δn ≤ 2rn yield

∥∥yn+1 − yn
∥∥ ≤

∣∣∣∣λn+1

ρn+1
− λn

ρn

∣∣∣∣ ‖u‖ +
‖en+1‖
ρn+1

+
‖en‖
ρn

+

∣∣∣∣ δn+1

2ρn+1
− δn

2ρn

∣∣∣∣ ‖Tn+1xn+1‖
+ ‖xn+1 − xn‖ +

|cn − cn+1|
c̄

‖Tnxn − xn‖

≤ ‖xn+1 − xn‖ +M
(∣∣∣∣λn+1

ρn+1
− λn

ρn

∣∣∣∣ + ‖en+1‖
ρn+1

+
‖en‖
ρn

+

∣∣∣∣ δn+1

2ρn+1
− δn

2ρn

∣∣∣∣ + |cn − cn+1|
c̄

)
.

With the knowledge that ||en||® 0 and

λn

ρn
=

2λn

2λn + δn
→ 0,

δn

2ρn
=

δn

2λn + δn
→ 1,
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we therefore deduce from (b) and (c) that

lim sup
n→∞

(
∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖)

≤ lim sup
n→∞

M
(∣∣∣∣λn+1

ρn+1
− λn

ρn

∣∣∣∣ + ‖en+1‖
ρn+1

+
‖en‖
ρn

+

∣∣∣∣ δn+1

2ρn+1
− δn

2ρn

∣∣∣∣ + |cn − cn+1|
c̄

)
→ 0.

Note that lim infn rn = lim infn(δn/2)> 0 and lim supnrn = lim supn (δn/2) ≤ 1/2 < 1.

On the other hand, it is easy to check that (xn) is bounded and so is (yn) We therefore

apply Lemma 3 to yield limn ||xn - yn|| = 0. By means of (4.2), we finally have

‖xn+1 − xn‖ = ρn
∥∥xn − yn

∥∥ →,

and thus the required result at once follows.

As a corollary, we improve [3, Theorem 4.1] as follows.

Theorem 9. Assume that the following conditions hold:

(a) limn ln = 0, Σn ln = ∞;

(b) cn ≥ c̄ > 0, |cn+1 − cn| → 0;

(c) Σn ||en|| < ∞.

Then the sequence generated by (1.4) converges strongly to PS(u).
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CPPA: contraction-proximal point algorithm; PPA: proximal point algorithm; RPPA: relaxed proximal point algorithm.
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