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In this paper the position control design of a pneumatic servo actuator system using a combined H-inf 
/QFT technique is presented. First, an H-inf controller is designed to assure robust stability for the 
system. Particle swarm optimization (PSO) algorithm is used to tune the weighting functions. This 
method is used to find the optimal values of weighting functions parameters that lead to obtain an 
optimal H-inf-controller by minimizing the infinity norm of the transfer function of the nominal closed 
loop system. The quantitative feedback theory (QFT) is used to enhance the closed loop system 
performance. A multiplicative unstructured model extracted from the parametric uncertainty is used for   
control design. Finally, the simulation results are presented and compared with previous work.  
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INTRODUCTION 
 
Robust control techniques such as modern H-inf and 
quantitative feedback theory (QFT) have received 
comparatively little attention in the fluid power literature, 
especially with regard to pneumatic systems (Karpenko 
and Sphri, 2004). The H-inf and QFT techniques are 
popular robust feedback control schemes that achieve 
desired system objectives in presence of plant and/or 
disturbance uncertainties. Recently, it has been esta-
blished that both techniques (H-inf and QFT) can be used 
together to overcome each other’s limitations (Nudeh and 
Farooq, 2007). 

The H-inf optimization approach and its related 
approaches, being developed in the last two decades and 
still an active research area, it have been shown to be 
effective and efficient robust design methods for linear, 
time invariant control systems (Gu et al., 2005). It is one 
of the most known techniques available nowadays for 
robust control and the design of optimal controllers. Also, 
the H-inf control technique is an optimization method that 
takes into consideration a strong definition of the 
mathematical way to express the ability to include both 
classical   and  robust  control  concepts  within  a  single  
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design framework. It is an effective method for 
attenuating disturbances and noise that appear in the 
system (Alok, 2007). On the other hand, the design 
approach robust solutions may not give adequate 
transient response resulting in somewhat relaxed 
performance specifications (Nudeh and Farooq, 2007). 

Quantitative feedback theory (QFT) is another control 
design in Nichols chart developed by Horowtz in early 
1960. QFT is a unified theory that emphasizes the use of 
feedback for achieving the desired system performance 
tolerances despite plant uncertainty and plant 
disturbance. 

QFT quantitatively formulates these factors in the form 
of the set of acceptable command or tracking input-output 
relationships and a set of possible plants that include the 
uncertainties (Jihong et al., 2007). It is generally 
understood that QFT achieves robust performance for 
minimum phase, stable and unstable plants that has 
limited success for non-minimum phase systems. Also, 
the output time response bounds sometimes do not 
entirely match with frequency domain bounds of system 
transfer functions (Nudeh and Farooq, 2007). 

In this paper a combination of H-inf/QFT design 
technique for nonlinear and uncertain pneumatic servo 
actuator system is presented. This combination can give 
better performance than if only one of them is used. A 
simple and effective position controller  of  the  system  is  
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Figure 1. Schematic diagram of pneumatic servo actuator system. 

  
 
 

the main objective of this paper. PSO method minimizes 
the cost function as a powerful optimization method with 
high efficiency in comparison to other methods. The use 
of PSO algorithm to tune the weighting functions simpl-
fies the design procedure of the conventional   controller.  
 
 
PNEUMATIC SERVO ACTUATOR 
 

System description 
 

High performance position control of pneumatic actuators 
remains a difficult task. In most industrial applications, 
safety requires that the pressure of the air supply be kept 
low, which makes it difficult to design high bandwidth 
systems. Moreover, low supply pressure tends to limit the 
achievable actuator stiffness, which affects the ability of 
the servomechanism to reject disturbing loads. Nonlinear 
control valve flows and uncertainties in the plant 
parameters also complicate the design of high 
performance pneumatic servos. On the other hand, the 
pneumatic actuators are widely employed in position and 
speed control applications when cheap, clean, simple, 
and safe operating conditions are required. In recent 
years, low cost microprocessors and pneumatic com-
ponents became available in the market, which made it 
possible to adopt more sophisticated control strategies in 
pneumatic system control (Jihong et al., 2007). The 
pneumatic cylinders can offer a better alternative to 
electrical or hydraulic actuators for certain types of 
applications and the pneumatic actuators provide the 
previously enumerated qualities at low cost. They are 
also suitable for clean environments and safer and easier 
to work with. However, position and force control of these 
actuators in applications  that  require  high  bandwidth  is 

difficult due to compressibility of air and highly nonlinear 
flow through pneumatic system components. A typical 
pneumatic system includes a force element (pneumatic 
cylinder), a command device (valve), connecting tubes, 
piston, pressure and force sensors. The external load 
consists of the mass of external mechanical elements 
connected to the piston and perhaps a force produced by 
environmental interaction (Edmond and Yildirim, 2001). A 
schematic diagram of the pneumatic actuator system is 
shown in Figure 1. 

The purpose of the servo actuator unit is to move the 

load by displacement py in compliance with the com-

manded signal. Figure 1 shows the schematic diagram of 
the electro-pneumatic servo actuator. The source of 
power used in this type of actuator is compressed air 
supplied to the jet pipe. An electromagnetic force 
generated by the flowing electric current rotates the jet 
pipe. Reacting to the pressure differential in the cylinder 
cavities, the piston together with the rod moves with 
speed dependent on the airflow, air pressure and load. 
The diameter and stroke of the piston are 80 and 50 mm, 
respectively. Output piston feedback is provided by a 
linear potentiometer, the slider of which is driven by the 
piston. The servo unit consists of a control surface 
actuator, a feedback transmitter, a polarized jet relay, and 
a power amplifier (Ali at al., 2008). The minor loop of the 
servo shown in Figure 2 is used to ensure a proportional 
movement with respect to input commands.  
 
 
System model and dynamics 
 
The analysis of pneumatic actuators requires a 
combination of thermodynamics, fluid  dynamics  and  the  



Noor et al.          951 
 
 
 

Amplifier Polarized 

Relay 
Actuator 

Feedback 

Transducer 

Input +  

                                

      -

Output 
Polarized 

relay 

Feedback 

transducer 

 
 
Figure 2. Block diagram of servo actuator system. 

  
 
 

dynamics of motion. For constructing a mathematical 
model, three major considerations must be involved (Ali 
et al., 2009). 
 
(i) The mass flow rates through the valve. 
(ii) The pressure, volume and temperature of the air, in 
cylinder. 
(iii) The dynamics of the load.  
 

The valve is a four port pneumatic jet pipe valve. This 
valve is treated as equivalent to two three-port valves, 
one of each side of the cylinder. Considering the left hand 
side of the cylinder (Figure 1), the thermodynamic system 
is enclosed in the box, or control volume. Many studies 
have shown that for adequate models for controller 
design an isothermal behavior of the air may be 
assumed. Starting with the definition of the density, using 
the ideal gas equation and assuming an isothermal 
process the mass flow rates equations can be written as 
(Peter, 2010): 
 

aaaaa VVM &&& ρρ +=
                              (1) 

 

bbbbb VVM &&& ρρ +=−
                                                       (2) 

 

where 
a

M& and 
b

M&  are the mass flow rates in (chambers 

(a) and (b)) respectively, ρ  is the density of the air, 
a

V  

and 
b

V  are the volumes in chambers a and b.  

For a symmetric cylinder the volumes in chambers a 
and b are given by: 

 

pPoa yAVV +=
                                                              (3) 

 

pPob yAVV −=
                                                              (4) 

where py  is the position displacement, pA  is the piston 

area, 
o

V  is the air volume in cylinder when the piston in 

mid point, 
a

V and 
b

V  are the volumes in chambers a and 

b, respectively. 
Differentiating Equations (3) and (4) and substitute 

them in (1) and (2) the following equations will be 
obtained: 
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where R  is the gas constant, α is the specific heat ratio, 

a
T  and 

b
T  are the temperatures in chambers a and b 

respectively, 
a

P  and 
b

P  are the pressures in chambers a 

and b respectively. 
Rearranging the Equations (5) and (6) and adding the 

load dynamics equation that influences the overall 
performance of the piston motion, the system equations 
will be:  
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where M, LF and fF  are the load mass, disturbing force 

and friction force respectively. 
The equation that governs the mass flow rate of air 

through each control valve orifice is nonlinear equation 
and not suited for controller design. If a fast servo valve is 
used, the dynamics of the valve can be neglected. 
Assuming for the moment a positive input signal to the 
valve, a short line between valve and cylinder and 
chamber pressures of about half the supply pressure, the 
control valve equations will be simplified to be (Peter, 
2010): 

 

 u
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=&                                                 (10) 
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where 
V

K  is the valve coefficient, 
S

P  is the supply 

pressure and u is the electric valve input signal 

respectively. 
Substituting Equations (10) and (11) in Equations (7) 

and (8) and combining the Laplace transformations of 
Equations (7), (8) and (9) allows the operating point 
dependant transfer function model of the open loop 
system to be written as: 
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2

S

V

P
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This system considered, a four-port valve used to control 
a double acting through rod cylinder. There are three 
nonlinearities in the pneumatic servo system. The first 
one is the nonlinear characteristic of the valve, and the 
other two nonlinearities are the volume and bulk modulus  

 
 
 
 
when they are used as coefficients in the equations. The 
nominal values of system parameters are given in Table 
1 (Ali et al., 2008). 

The frequency characteristics of the pneumatic actuator 
with all parameters uncertainty and with a wide range of 
load variation from 0.1 to 100 kg are shown in Figure 3. 
These characteristics show that the system bandwidth 
decreases when the load increases, until the system 
becomes slower. Also the phase margin decreases when 
the load increases and this tends the system to oscillate 
and be unstable system. 
 
 
CONTROLLER DESIGN 
 
The design requirements and objectives for pneumatic 
servo actuator system in this paper is to find a linear, 

output feedback control )()()( sysKsu ∞= which ensures 

that the closed loop system will be internally stable. Also, 
the required closed loop system performance should be 

achieved for the nominal plant pG .  

Since the system model has jw-axis pole, the ∞H  

controller, if it is reliably computed, would have marginally 
stable closed loop pole at the corresponding jw-axis 
location. This problem lead to singularities in the 
equations that determine the state space realization of 

∞H  control law. So a simple bilinear transform has been 

found to be extremely useful when it used with robust 
control synthesis. This transformation can be formulated 
as a jw-axis pole shifting transformation (Chiang and 
Safanov, 1997): 
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where 01 <p  and selected to be 0.1, 2p  is selected to 

be infinity.  

This is equivalent to simply shifting the jw-axis by 1p  

units to the left. The ∞H  controller is obtained for the 

shifted system then it is shifted back to the right with the 
same units. 
 
 
Weighting functions selection 
 

One of the important parts in the design of ∞H  controller 

is the selection of weighting functions and weighting 
gains for specific design problem. This is not an easy 
procedure and often needs many iterations and fine-
tuning and it is hard to find general formula for the 
weighting functions that will work in every case (Anselmo 
and Moura, 1998). So to obtain a good  control  design,  it 
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Table 1. The nominal system model parameters and their range. 
 

Uncertain parameter Minimum value Nominal value Maximum value 

Piston area, PA )(
2

m   0.005  

    

Air density, )(
3m

kg
ρ   1.185  

    

Ideal gas constant, R (
Kkg

J

.
)  287 

 

 

    

Air volume when the piston in mid point, )(
3

mVo
4

10×  1.5 2.5 
4 

 

    

Chamber pressure, iP (bars)  3 
4 

 

    

Load mass M (Kg) 0.1 1 100 

    

Viscous damping coefficient, f )
sec.

(
m

N
  50 60 

80 

 

    

Overall valve gain, (K )
.Vs

kg 3
10×  3.2 3.4 

 

 

    

Temperature of air source, T )(
o

K   293.15 
 

 

    

Specific heat ratio, α   1.4 
 

 

    

Potentiometer constant, )/( mVK P   400 
 

 
  
 
 

is necessary to select suitable weighting functions. The 
performance and control weighting functions formulas 
used in this paper are (Chiang and Safanov, 1997; Zhou 
and Doyle, 1998): 
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where β  is the d.c. gain of  the  function  which   controls  

the disturbance rejection, a is the high frequency gain 

which controls the response peak overshoot, 
c

w  is the 

function crossover frequency, 1ζ  and 2ζ  are the 

damping ratios of crossover frequency, 
bc

w  is the 

controller bandwidth, 
u

M  is the magnitude of SK∞ , and 

ε  is a small value.  
 
 

∞H  Controller design 

 

The ∞H  control design deals with both structured and 

unstructured uncertainty. However, since a design 
scheme involving unstructured uncertainty gives more 
control   over   the  system  (as  it  can  cover  unmodeled  
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Figure 3. Frequency response characteristics of the system with parameters uncertainty and 
with M=0.1 to 100 kg. 

  
 
 

dynamics at high frequencies (Nudeh and Farooq, 
2007)), the plant with structured uncertainty can be 
expressed in terms of unstructured multiplicative 
uncertainty. By selecting a set of nominal plants to 
evaluate the disk of uncertainty, the uncertainty plant is:  
 

pG  is the )1(ˆ
mmpp WGG ∆+=                       (18) 

 
where nominal plant and the multiplicative uncertainty 

m∆  can be expressed as: 
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From Equation (19), multiplicative uncertainty weight mW  

can be calculated such that )()( jwWjw mm ≤∆  and 

can be expressed as: 
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The ∞H  controller has been designed so that the infinity 

norm from input 



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where dy  is the set point and dF  is the input 

disturbance, up ee ,  are the weighted error and control 

signals.  
Figure 4 shows the standard feedback diagram of the 

system with weights. The generalized plant P is 
expressed by: 
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The lower linear fractional transformation of the 

generalized plant P and controller ∞K can be described 

by: 
 

NPKPKPPKPFl =−+= −
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and



Noor et al.          955 
 
 
 

 
 
Figure 4. The standard feedback diagram of the system with weights.  
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where 1
)1(

−
∞+= KGS p  is the sensitivity function of the 

nominal plant and 
1)1( −

∞∞ += KGKGT pp  is the 

complementary sensitivity function. 

The objective of ∞H  control is to find the controller 

∞K  that internally stabilizes the system such that the 

maximum singular value of N is minimized. 

On the other hand, the ∞H  control minimization depends 

on γ -iteration (Skogestad and Postlethwaite, 2005) to 

find the stabilizing controller such that: 
 

γ<
∞

N                                                (25)             

                                                                       
In this paper the optimal value of γ  was found by using 

PSO algorithm. This can be achieved by tuning the 
weighting functions that have a significant effect on the 

overall design of ∞H  control technique. The optimal 

value of γ  is the infimum overall γ  such that the ∞H  

control conditions in (Zhou and Doyle, 1998) are 
satisfied. 
 
 
Combined controller design 
 

To combine both ∞H  and QFT control techniques, the 

following steps must be ensured: 
 
(i) The upper and lower tracking performance 
specifications must be satisfied as:  

)(
)(1

)(ˆ)()(
)( jwT
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jwGjwKjwF
jwT U

p
L ≤

+
≤         (26) 

 

where )( jwTL  and )( jwTU  are the closed loop 

tracking bounds, F(jw) is the prefilter and )(ˆ jwG p  is the 

uncertain plant. An acceptable response must lie 
between the upper and lower bounds of the tracking 
performance specifications (Fujita et al., 2008). These 

closed loop-tracking bounds )(sTL  and )(sTU  are 

selected to give a closed loop bandwidth between 3.88 
rad/s and 11 rad/s in case of a small range of load 
variation and between 1.41 rad/s and 4.47 rad/s in case 
of a wide range of load variation. The tracking bounds 
used in the design of the controller for small and wide 
ranges of load variation, respectively, are: 
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In case of a small range of load variation, the time 

response specification of )(sTLs  is overdamped and has 

a rise time of 0.662 s and settling  time  of  1.06 s  for  2%  
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Figure 5. Block diagram of the two degrees of freedom combined ∞H /QFT controller for pneumatic 

servo actuator system. 

  
 
 

criterion. )(sTUs  has a rise time of 0.194 s, settling time 

of 0.778 s for 2% criterion and 10% maximum overshoot. 
Whereas, in case of a wide range of load variation, the 

time response specification of )(sTLw  is overdamped 

and has a rise time of 1.78 s and settling time of 2.67 s 

for 2% criterion. )(sTUw  has a rise time of 0.507 s, 

settling time of 1.52 s for 2% criterion and 10% maximum 
overshoot.  

This requirement is achieved using ∞H -norm optima-

sation algorithm by minimizing the following performance 
criterion (objective function) in Equation (25) such that: 
 

)()( iRiL jwjw δδ ≤                                                   (31) 
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(ii) In order to fit the feedback closed loop gain of the 
system inside the upper and lower boundaries, the 
prefilter F(jw) is designed. 

The control design technique can be formulated as two 
degrees of freedom QFT control strategy as shown in 
Figure 5. In this method the designed controller K(s) is 

the resulting controller from ∞H -norm optimisation 

algorithm. The PSO algorithm was used to tune the 
weighting functions to obtain the  optimal  values  of  their 

parameters to ensure a controlled system with a good 
disturbance rejection, good transient response and low 

control signal. The flowchart of combined ∞H /QFT 

control design procedure is shown in Figure 6. The cost 
function used in PSO algorithm for tuning the weighting 
functions is the performance criteria in Equation (25). The 
algorithm obtains the minimum value of the infinity norm 
of the performance criteria that achieves the QFT con-
straint in Equation (31). The minimization process of the 
objective function in Equation (25) represents the 
reduction of the variation of the closed loop responses 
due to the uncertainty in the system, the reduction of the 
peak magnitude, the reduction of the sensitivity function 
which is required to improve the response due to the 
disturbing force and finally the reduction of the control 
effort. 

Since the controller K(s) in the combined ∞H /QFT 

design is obtained by ∞H -norm, the following steps are 

not needed: 
 
(i) Generating the uncertain plant templates bounds on 
the Nichols chart procedure. 
(ii) The loop shaping step of the nominal L(jw), which is 
performed manually and depends on the experience of 
the designer. 
 
The time consumed by the above two steps is saved in 

the design of combined ∞H /QFT controller. 

The PSO algorithm is used to tune the selected 
weighting functions to obtain the optimal values of their 
parameters that ensure a controlled system with a good 
disturbance rejection, good  transient  response  and  low 
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Figure 6. Flowchart of combined ∞H /QFT control design 

procedure. 
  
 

 
control signal. The cost function used in PSO algorithm is 
the performance criteria in Equation (25). The algorithm 
obtains the minimum value of the infinity norm of the 
performance criteria. The velocity and position equations 
of PSO algorithm are (Zheng et al., 2007; Siby et al., 2010): 
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where 
k

iv  is the particle velocity, 
k

ix  is the current 

particle position, w is the inertia weight and it is selected 

to be 1.5, 
b

ix  and 
g

ix  are the best value and the global 

best value, rand is a random function between 0 and 1, 

1c  and 2c  are learning factors and are selected to be 

221 == cc . The swarm size is (100) with (7-

dimensions) (variables to be obtained) and the number of 
generations is (100). The proposed PSO algorithm can 
be described by the flowchart shown in Figure 7.  

It was found that setting the parameters of  PSO to: 

population size equal to 10, inertia weight factor 2=h , 

21 =c  and 22 =c , maximum iteration set to 100 were 

sufficient to produce the best parameters of the weighting 
functions that give the minimum value of Equation (25) 
and achieves the QFT requirement in equation (31). 

In the following, the PSO steps for obtaining the optimal 
parameters of the performance and control weighting 
functions are done by minimizing Equation (25) such that 
Equation (31) is satisfied. 
 

Step 1: Define the system model )(sG p . 

Step 2: Initialize the individuals of the population 
randomly in the search space. These individuals 
represent the parameters of the weighting functions 

( )(),( sWsW pu ). 

Step 3: Construct the overall augmented plant, P.  

Step 4: For each initial iη  of the population, where iη  is 

the vector of the parameters to be optimized in each case 
of the proposed controllers and i=1,…., n, where n 
denotes the population size of PSO, determine the cost 
function N in Equation (25) using the built in function in 
Matlab Software. 
Step 5: Compare each value of equation (25) with its 

personal best ix . The best value among the ix  is 

denoted as 
g
ix . 

Step 6: Update the velocity of each individual iη  

according to (34). 

Step 7: Update the position of each individual iη  

according to (35). 
Step 8: If the number of iterations reaches the maximum, 
then go to step 9, otherwise, go to step 4. 

Step 9: If )()( iRiL jwjw δδ ≤  then go to 10, otherwise, 

go to step 2. 
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Figure 7. Flowchart of PSO algorithm for determining weighting functions parameters. 

 
 
 

Step 10: The latest 
g
ix  is the optimal controller 

parameter. 

The following designed combined ∞H /QFT controllers 

for small and wide ranges of load variation, respectively: 
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The weighting functions optimal parameters obtained 
using PSO algorithm for the two designed controllers are 
given in Table 2. 
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Table 2. Optimal parameters of weighting functions. 
 

 

Load range/parameter 
β  α  

cw  
1ζ  2ζ  bcw  uM  

Load (M)=0.1 to 5 Kg 100 2.8
2

10
−×  12.5 1.8 4.96 50 15 

Load (M)=0.1 to 100 Kg 3.5725 1.3
2

10
−×  4.94 1.38 16.1242 10.01 11.001 

  
 
 

 
 
Figure 8. Frequency characteristics plot of complementary sensitivity T, sensitivity S and nominal loop L. 

  
 
 

RESULTS AND DISCUSSION 
 
A frequency characteristics plot of complementary sen-
sitivity function T, sensitivity function S and nominal loop 
L are shown in Figure 8. On the other hand, it depends 
on the actuator load variation; two cases of load variation 
ranges have been used. The first case is the small range 
of load variation with load variation from 0.1 to 5  kg.  The 

second case is the wide range of load variation with load 
variation from 0.1 to 100 kg. These two cases have been 
classified for the purpose of comparison with previous 
work that used small range of load variation. Figure 9 
shows the singular value of the controlled closed loop 
system. It seen that the maximum value of the closed 
loop system with the two cases of load variation is less 
than   one.    This   means   that   the   condition   of    the  
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Figure 9. The largest singular value of the closed loop controlled system.  

  
 
 

performance criteria is satisfied. A frequency 
characteristic of the sensitivity function compared with the 

inverse of the performance weighting function pW  is 

shown in Figure 10. It is clear that the magnitude of the 
sensitivity function is less than the inverse of the 
performance weighting function for all frequencies. Figure 
11 shows the frequency response of the controlled 
system with all parameters uncertainty.  It  is  shown  that 

the system is stable with all parameters uncertainty; this 
means the robust stability of the system has been 
achieved. The step response characteristics of the 
nominal system and uncertain system can be shown in 
Figure 12. The response characteristic of the uncertain 

system with combined ∞H /QFT controller is shown in 

Figure 13. It is clear that the performance of the system 
has been improved and the response lies between  upper
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Figure 10. Frequency characteristics plot of sensitivity S (solid line) and inverse of weighting function 
p

W  

(dotted line). 
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Figure 11. Frequency response characteristics of the system with ∞H  controller.  
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(c) Nominal plant with M=0.1 to 100 Kg                      (d) Perturbed plant with M=0.1 to 100 Kg 

Time (s) 

 
 

Figure 12. Step response of the system with ∞H  controller. 

  
 
 

 
 

Figure 13. Step response of the perturbed system with combined ∞H /QFT.  
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Figure 14. The largest singular value of the control signal. 

 
 
 

Table 3. Comparison between QFT controller and combined ∞H /QFT controller for pneumatic servo actuator system. 

 

               Controller 

 

Specifications 

Small range of load variation Wide range of load variation 

Standard QFT 
controller 

Hybrid ∞H /QFT 

controller 

Standard QFT 
controller 

Hybrid  ∞H /QFT 

controller 

Rise time, rt (s) 0.661 0.292 1.49 1.03 

Settling time (2%), st (s) 1.06 0.533 2 1.3 

Overshoot, pM%  - - - 3 

GM (dB) 5.16 6.35 3.2 9.4 

PM (degree) 30.8 53.2 57 55.7 

Controller order 4 3 5 5 
  
 
 

and lower boundaries. As one of the necessary practical 
requirements a small magnitude of control signal has 
been obtained as shown in Figure 14. Table 3 compares 
the results of the time and frequency responses of the 
standard QFT controller and combined ∞H /QFT con-

troller for pneumatic servo actuator system. It is shown 
that, the design  of  the  combined  ∞H /QFT  controller  is  

more efficient for the pneumatic servo actuator system 
than the standard QFT controller. In case of small range 
of load variation, it can be seen that the time and 
frequency response specifications obtained by the com-

bined ∞H /QFT controller are better than those obtained 

by standard QFT controller. Furthermore, the resulting 
controller is lower than the  standard  QFT  controller.  On 



 
 
 
 
the other hand, in case of wide range of load variation, it 
can be seen that the rise time, settling time and gain 

margin obtained by the combined ∞H /QFT controller are 

better than those obtained by standard QFT controller.   
 
 
Conclusions 
 

A robust combined ∞H /QFT controller has been 

designed to assure robust stability and robust perfor-
mance of the uncertain pneumatic servo actuator system 
with small and wide ranges of load variation. First, the 

∞H  controller was designed to achieve robust stability of 

the system. The parametric structured uncertainty of the 
system was converted to multiplicative unstructured 
uncertainty.  

Suitable formulas for performance and control 
weighting functions were selected for controller design 
requirements. The particle swarm optimization algorithm 
(PSO) has been used to tune the selected performance 
and control weighting functions by minimizing the infinity 
norm of the transfer function of the nominal closed loop 
system. PSO method was used because of its simplicity 
and easy to implement. The obtained weighting functions 
have been used to obtain the optimal robust controller 
that achieves the position control of the pneumatic servo 
actuator system.     

To enhance the closed loop system performance the 
prefilter was designed to fit the closed loop system in the 
set inside the upper and lower bounds. The design of 

combined ∞H /QFT controller has achieved in the same 

time the design requirements that arise from both QFT 

and ∞H  control techniques. Finally, the combined 

∞H /QFT controller has been given better performance 

than the previous works that used only one of them. The 
robust stability and performance of the proposed design 
were verified by simulation. 
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