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Abstract

Salmonella spp. are Gram-negative enteropathogenic bacteria that infect a variety of vertebrate hosts. Like any other living
organism, protein secretion is a fundamental process essential for various aspects of Salmonella biology. Herein we report
the identification and characterization of a horizontally acquired, autonomous and previously unreported secretion
pathway. In Salmonella enterica serovar Typhimurium, this novel secretion pathway is encoded by STM1669 and STM1668,
designated zirT and zirS, respectively. We show that ZirT is localized to the bacterial outer membrane, expected to adopt a
compact b-barrel conformation, and functions as a translocator for ZirS. ZirS is an exoprotein, which is secreted into the
extracellular environment in a ZirT-dependent manner. The ZirTS secretion pathway was found to share several important
features with two-partner secretion (TPS) systems and members of the intimin/invasin family of adhesions. We show that
zirTS expression is affected by zinc; and that in vivo, induction of zirT occurs distinctively in Salmonella colonizing the small
intestine, but not in systemic sites. Additionally, strong expression of zirT takes place in Salmonella shed in fecal pellets
during acute and persistent infections of mice. Inactivation of ZirTS results in a hypervirulence phenotype of Salmonella
during oral infection of mice. Cumulatively, these results indicate that the ZirTS pathway plays a unique role as an
antivirulence modulator during systemic disease and is involved in fine-tuning a host–pathogen balance during
salmonellosis.
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Introduction

Salmonella spp. are Gram-negative enteropathogenic bacteria

that infect a variety of mammalian, avian and reptile hosts.

Infection by this highly versatile pathogen can lead to different

outcomes including asymptomatic carriage, gastroenteritis, or

severe, life-threatening systemic disease, known as typhoid fever.

The nature and the severity of the disease depend upon the

serovar of the infecting Salmonella as well as the species and

immunological status of the infected host [1].

The two hallmarks of Salmonella enterica serovar Typhimurium (S.

Typhimurium) pathogenesis are the invasion of non-phagocytic

cells such as epithelial cells of the intestinal mucosa, and the

survival and replication inside infected phagocytic cells. Both

mechanisms, as well as many of the virulence determinants used

by S. Typhimurium, are directly linked to genes encoded within

large horizontally acquired regions of the chromosome termed

Salmonella pathogenicity islands.

Protein secretion is a ubiquitous cellular function found in

organisms of all kingdoms. Gram-negative bacteria secrete a wide

range of proteins whose functions include biogenesis of organelles,

nutrient acquisition, virulence, efflux of toxins, and injection of

virulence factors (effectors) into host cells. Protein export from the

bacterial cytoplasm to the surface or the extracellular milieu

requires transport across the inner membrane (IM), periplasm, and

outer membrane (OM) of the cell envelope. In Gram-negative

bacteria, several secretion pathways have evolved to fulfill this

task [2,3]. The auto-transporters (ATs) and the two-partner

secretion (TPS) systems (often classified as the Type V Secretion

System) have been the focus of much interest in recent years due to

their prime role in virulence traits of Gram-negative pathogens

[4,5].

ATs are single functional units consisting of modular domains

including: an N-terminal signal sequence that targets the protein to

the general secretion (Sec) machinery at the IM; the passenger

domain, which harbors the specific effector function; and the C-

terminal translocation unit that forms, once inserted into the OM,

a b-barrel secondary structure that mediates the secretion of the

passenger domain. ATs are synthesized as pre-pro-proteins, and

after cleavage of the signal peptide, the pro-protein is released into

the periplasm. The passenger domain is then exported through the

OM via the translocation unit, often cleaved off and released into

the extracellular milieu [6,7].

In contrast to the ATs, which are synthesized as a single

polypeptide, in TPS systems the passenger domain and the

transporter domain are translated as two separate proteins,

referred to by the generic terms TpsA and TpsB, respectively

[8]. TpsA proteins are synthesized with an N-terminal cleavable
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signal peptide and transported across the IM by the Sec

machinery. Subsequently, TpsA substrates transit through the

periplasmic space to their cognate secretion partner (TpsB) which

then facilitates their secretion [9]. The TpsB cluster members

show characteristic features of integral OM proteins and like

TpsA, are thought to be exported across the IM by the Sec

apparatus [9]. Conserved amphipathic motifs throughout their

sequence indicate that TpsB proteins are likely to contain high

numbers of transmembrane b-strands [10]. This secondary

structure is believed to adopt a b-barrel conformation forming a

pore in the OM that enables the translocation of TpsA across the

OM into the extracellular environment.

Another group of proteins, which are conceptually analogous to

ATs is the intimin/invasin (Int/Inv) family of adhesins. These

family members are specialized OM proteins found in strains of

Yersinia spp. (Inv), pathogenic E. coli (Int), and Citrobacter spp. (Int)

that mediate adhesion of these pathogens to their hosts. Both

invasins and intimins are translocated from the cytoplasm across

the IM via the Sec-translocase and are related to each other both

in terms of sequence and structure. The structure of Int/Inv

includes a C-terminal C-type lectin receptor-binding domain,

which is separated from a membrane-embedded N-terminal

domain by several tandem Ig-like repeats, four in invasin and

three in intimin. The conserved N-terminus domain is believed to

form a b-barrel in the OM, which is used for the export of the C-

terminal region. The extracellular C-terminus of Int/Inv is

responsible for the receptor binding (Tir and b1 integrin,

respectively) [11,12]. Not much is known about the secretion

mechanisms of Int/Inv, but based on existing similarities with ATs

[13], it has been proposed that Int/Inv are secreted by an ATs-like

mechanism [14].

In this report we describe the identification and characterization

of a novel secretion pathway in Salmonella, named ZirTS. We

show that ZirTS share important characteristics with the TPS

systems and the Int/Inv family, and demonstrate that ZirTS play a

unique role as an antivirulence modulator during systemic disease

in mice.

Results

Identification of zirTS in a conserved Salmonella genomic
island

Many virulence factors are pathogen-specific, however, a

growing group of identified virulence determinants has been

shown to harbor homology to various eukaryotic proteins or

domains [15,16], presumably as a result of continuous co-

evolution with the eukaryotic host. Based on this idea, we

developed a bioinformatic screen aimed at identifying Salmonella

open reading frames (ORFs) that: (1) are absent from related non-

pathogenic bacterial genomes and; (2) possess homology to known

eukaryotic domains.

Screening the Salmonella Typhimurium LT2 genome while

applying these bioinformatic filters led to the identification of an

unknown ORF designated STM1668, located 26-bp downstream

to an ‘invasin-like’ annotated gene (STM1669). Herein we rename

STM1668 and STM1669 zirS and zirT, respectively, (see below).

No homologs of ZirS were found in the currently available

genome databases in any bacterial genome outside of the Salmonella

genus; however, weak homology was found to several eukaryotic

proteins including a human zinc finger protein (NP_065798, 24%

identity and 39% similarity over 199 amino acids). Additionally,

zirS was found to be A+T rich (59.7%) in comparison to the rest of

the S. Typhimurium genome (47%) and was located within a

previously identified genomic island, GEI 1664/1678 [17]. These

observations indicate that the zirS region was most likely acquired

by a lateral gene transfer event during the evolution of Salmonella.

Interestingly, a highly conserved organization of the zirS region

was found in all of the available Salmonella serovar genome

sequences including S. bongori (Figure 1), implying that the lateral

transfer event occurred before the divergence of S. enterica from the

species S. bongori (,35 to 40 million years ago), but after the split of

Salmonella from the genus Escherichia (,120 to 160 million years

ago) [18,19].

The neighboring ORFs adjacent to zirT and zirS include

STM1670 and STM1667. STM1670 is annotated as a putative

serine/threonine protein kinase and located 74-bp upstream to

zirT. STM1670 homologs are currently found only in Salmonella

databases, suggesting that it might be a unique Salmonella protein.

STM1667, which is encoded 98-bp downstream to zirS contains a

conserved peroxiredoxin domain and is annotated as a putative

thiol peroxidase.

ZirS is secreted into the extracellular milieu in a Sec-
dependent manner

ZirS is predicted to be a 276 amino acid protein with an

estimated molecular mass of 30.8 kDa. Sequence analysis of ZirS

using the SignalP 3.0 program [20] (http://www.cbs.dtu.dk/

services/SignalP/) predicted a typical prokaryotic Sec-dependent

signal sequence at its N-proximal region, with a potential cleavage

site between amino acids 24 and 25 (VLA.DS). In Gram-negative

bacteria, the presence of a signal sequence suggests that the protein

is processed and exported across the IM in a Sec-dependent

fashion. This process involves the cleavage of the signal peptide by

a LepB leader peptidase (type I signal peptidase) and requires ATP

hydrolysis by a designated ATPase, which provides the driving

force for translocation (reviewed in [21]). To examine this

hypothesis experimentally, a tagged version of ZirS was construct-

ed using a C-terminal two-hemagglutinin (2HA) tag and cloned

into a low copy number vector in the presence of the upstream

gene, zirT (pOG-zirTS-HA). As illustrated in Figure 2A, expres-

sion of zirS-HA (in the presence of zirT) in S. Typhimurium led to

Author Summary

Bacteria of the Salmonella genus are important human
pathogens and a leading cause of food-borne illness. Like
for all other living organisms, protein secretion is a
fundamental process, which is required for many different
aspects of Salmonella biology including biogenesis of
organelles, nutrient acquisition, and virulence. In this work
we describe a new secretion pathway in Salmonella
termed ZirTS. This pathway consists of an exported protein
(ZirS) and a designated membrane translocator (ZirT),
which mediates the secretion of ZirS to the extracellular
milieu. Using a mouse model of Salmonella infection, we
found that the ZirTS system is induced in Salmonella
colonizing the small intestine and in Salmonella shed in
fecal pellets during acute and persistent infections.
Interestingly, inactivation of ZirTS results in a hyperviru-
lence phenotype of Salmonella during oral infection of
mice. These observations indicate that the ZirTS pathway
plays a unique role as an antivirulence modulator and is
involved in fine-tuning host–pathogen interactions during
disease. Our study elucidates an emerging theme in
pathogenesis emphasizing the importance of pathogens
to limit their effects upon the cells they infect in order to
achieve a balance with their host.
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Figure 1. zirS and zirT are organized in a conserved Salmonella genomic island. The zirTS corresponding region was compared between
different Salmonella species and serovars, whose genome sequence is currently available, including: S. enterica serovar Typhimurium LT2; S. enterica
serovar Choleraesuis str. SC-B67; S. enterica serovar Paratyphi A str. ATCC 9150; S. enterica serovar Typhi str. CT18; S. enterica serovar Enteritidis PT4
NCTC 13349; S. enterica serovar Gallinarum 287/91 NCTC 13346; and S. bongori 12419 ATCC 43975. Spotted arrows indicate possible frameshift
mutations. ORF annotations (when available) and chromosomal position of the coresponding regions are indicated.
doi:10.1371/journal.ppat.1000036.g001

Figure 2. ZirS is an exoprotein secreted in a Sec-dependent manner. A. ZirS is secreted into the extracellular environment. S. Typhimurium
strains harboring ZirS-HA in the presence of zirT (pOG-zirTS-HA; ZirS) or the empty vector (pWSK29; vector) were grown in LB to late-logarithmic
phase. Whole bacterial cell pellets (P), culture media supernatant (S), and the periplasmic fraction (PP) were analyzed by Western-blot using an anti-
HA antibody (bottom panel). To show that the ZirS-HA detected in the supernatant is not a result of cells lysis, the same blot was reprobed for the
cytoplasmic protein, DnaK (top panel). B. ZirS is secreted in a Sec translocase-dependent manner. S. Typhimurium harboring pOG-zirTS-HA (ZirS) or
the empty vector (vector) were grown in LB to late exponential phase, washed and incubated for additional 90 or 120 min in fresh LB supplemented
with (+) or lacking (2) 2 mM sodium azide. The cellular and the secreted levels of ZirS were evaluated in the whole bacterial cell pellets (P) and the
secreted fractions (S) by Western-blot using an anti-HA antibody (bottom panel). As a fractionation control, the blot was probed against the b-ATPase
membrane protein (top panel). Protein samples were normalized according to the optical density (O.D.600) of the cultures and separated on SDS-
13.5% PAGE.
doi:10.1371/journal.ppat.1000036.g002
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prominent secretion of ZirS-HA into the medium as detected by

Western-blot analysis.

To assess the contribution of the Sec-translocon to the

extracellular export of ZirS, the secretion of ZirS-HA in the

absence and presence of azide was studied. Low concentrations of

azide (2 mM) specifically inhibit SecA, the ATPase component of

the Sec-complex, and therefore interfere with Sec-dependent

protein secretion, resulting in accumulation of pre-proteins in the

cytoplasm [22,23]. In performing this experiment, Salmonella strain

expressing ZirS-HA (pOG-zirTS-HA) that was grown in LB to late

logarithmic phase was washed, resuspended in fresh medium, and

incubated for 90 or 120 min in the presence or absence of 2 mM

sodium azide. Subsequently, the intracellular and the secreted

ZirS-HA were analyzed by Western-blot. As demonstrated in

Figure 2B, the presence of low concentrations of azide strongly

reduced the secretion of ZirS-HA into the medium and led to

accumulation of a higher molecular-weight (pre-ZirS-HA) isoform

in the cytoplasm. We concluded from these experiments that the

secretion of ZirS into the extracellular environment is dependent

on the function of the Sec-translocon and involved signal peptide

cleavage at the N-terminus of ZirS.

ZirT is homologous to members of the Int/Inv family of
adhesins

ZirT, encoded by the gene immediately upstream to zirS, is

predicted to be a 660 amino acid protein with an estimated

molecular mass of 72.7 kDa. In contrast to ZirS that showed no

prokaryotic homologs outside of the genus Salmonella, a bioinfor-

matic search against non-redundant protein databases revealed

several bacterial protein groups that share significant homology

with ZirT. All are known OM proteins including various invasins

and intimins from different Gram-negative pathogens (Figure 3).

More precise comparison of ZirT to these proteins revealed that

the sequence similarity is concentrated within the mid-N-terminal

region of ZirT, spanning from amino acid 88 to 368. Importantly,

Figure 3. ZirT is homologous to the Int/Inv family members. Amino acid sequence alignment of ZirT (NP_460627); Yersinia frederiksenii
predicted invasin (ZP_00829972); Yersinia intermedia predicted invasins (ZP_00833278 and ZP_00835369); Yersinia pseudotuberculosis invasin
(P11922); Escherichia coli O127:H6 intimin (P19809); Citrobacter rodentium intimin (Q07591); and Yersinia enterocolitica invasin (P19196) is presented.
Sequence alignment was performed by ClustalW and the output was reformatted by BoxShade 3.21. Amino acid identity is shown in black and similar
amino acids are shown in gray. The highly similar region spanning amino acids 88 to 368 of ZirT is highlighted.
doi:10.1371/journal.ppat.1000036.g003
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these homologous regions are thought to form porin-like b-barrels

in the bacterial OM [13].

ZirT is folded into a b-barrel protein in the outer-
membrane

Further sequence analysis of ZirT also predicted a Sec-

dependent signal sequence in the N-terminus with a potential

cleavage site between amino acids 27 and 28 (VIA.DS), which

supported the possible export of ZirT from the cell cytoplasm. In

agreement with the sequence homology found, other localization

prediction tools (PSORTb v.2.0 http://www.psort.org/) [24]

suggested a subcellular localization of ZirT in the OM, with 31

predicted trans-membrane b-segments (TMBETA-NET, http://

psfs.cbrc.jp/tmbeta-net/) [25]. In order to investigate the

subcellular localization of ZirT, a C-terminus HA tagged version

was constructed and cellular fractionation analysis of Salmonella

cells expressing ZirT-HA (pOG-zirT-HA) was performed. This

experimental approach showed the localization of ZirT-HA in the

cellular membranes fraction (Figure 4A).

To further characterize the precise localization of ZirT in the cell

envelope, we utilized sucrose density gradient ultracentrifugation

fractionation. S. Typhimurium total membranes fraction was

isolated and subjected to ultracentrifugation through a sucrose

density gradient (30–60% sucrose, w/v). The specific localization

of ZirT was determined based on the presence of OmpA and b-

ATPase used as controls for the OM and the IM fractions,

respectively [26,27]. As shown in Figure 4B, ZirT-HA was found

to be distinctively localized into the OM fractions.

In general, many OM proteins with b-barrel structures exhibit

heat-modifiable electrophoretic mobility behavior, in which strong

resistance to denaturation in the presence of 1% SDS is observed,

unless heated to 100uC. Consequently, the folded and the compact

b-barrel conformations migrate more quickly in SDS-PAGE than

their denaturated forms [28]. As ZirT was found to have sequence

similarity to known b-barrel OM proteins and predicted to be

amphipathic b-strand rich, we investigated whether ZirT also

exhibited heat-modifiable electrophoretic mobility. When protein

extracts from Salmonella cells expressing ZirT-HA (pOG-zirT-HA)

were incubated in a sample buffer without boiling and analyzed by

SDS-PAGE, instead of running at its expected denatured position

of ,75 kDa, non-boiled ZirT-HA migrated mainly as a faster

protein band at ,62 kDa (and a secondary band at ,55 kDa).

Figure 4. ZirT is arranged into a b-barrel structure in the outer membrane. A. ZirT is localized into the cell envelope. S. Typhimurium SL1344
expressing ZirT-HA was grown in LB to late-logarithmic phase followed by cellular fractionation as explained in the Materials and Methods section.
Proteins from the whole bacterial cell pellets (P), cytoplasmic fraction (C), and membranes (M) were analyzed by SDS–10% PAGE and immunoblotted
with anti-HA. As a control for cytoplasmic proteins, the blot was probed with anti-DnaK. Antisera raised against the b-subunit of ATPase were used as
a control for membrane proteins. B. ZirT is an outer membrane protein. Total membranes fraction (TM) was isolated from SL1344 expressing ZirT-HA
by ultracentrifugation, applied to the top of a sucrose density gradient and subjected to ultracentrifugation at 100,000 g for 16 h. Fractions were
collected from the bottom of the gradient and aliquots were separated on SDS-10% PAGE followed by Western blotting. As controls for OM and IM
proteins we used polyclonal antisera raised against OmpA (two OmpA isoforms are shown) and the b-subunit of ATPase, respectively. C. ZirT is
expected to adopt a compact b-barrel secondary structure. Total protein extract from whole cell lysate of S. Typhimurium expressing ZirT-HA was
subjected to heat-modifiable electrophoretic mobility analysis. Equal protein portions were heated for 10 min at 25, 37, 42, 65, and 100uC (left panel)
or boiled for 0, 1, 2 or 4 min (right panel), immediately placed on ice and separated in SDS-8% PAGE followed by Western blotting using an anti-HA
antibody. The ZirT-HA bands representing the folded and the denatured forms are indicated.
doi:10.1371/journal.ppat.1000036.g004
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Heat denaturation of the samples before analysis reproduced the

unfolded form in a time and temperature-dependent manner

(Figure 4C). These data suggest that the folded, mature ZirT is

arranged into b-barrel architecture in the OM.

It is noteworthy that Western-blot analyses against the

denatured tagged version of ZirT allowed the detection of 2–3

distinct molecular-weight bands (Figure 4). This observation might

indicate possible processing of ZirT, resulting in different protein

isoforms.

ZirS and ZirT compose a novel secretion system in
Salmonella

We next focused our interest on examining possible interactions

between ZirT and ZirS. The secretion of ZirS-HA was, therefore,

analyzed while expressed from a low-copy number construct

harboring ZirS-HA alone (pOG-zirS-HA), or from a plasmid

containing both ZirT and ZirS-HA (pOG-zirTS-HA). This

assessment was done in three different S. Typhimurium genetic

backgrounds (wild-type, DzirS, and DzirT strains) using immuno-

blots against the cellular and the secreted protein fractions.

Interestingly, expression of ZirS-HA was observed in both the

presence and absence of ZirT, as evidenced in the cellular

fractions. However, in contrast to protein expression, secretion of

ZirS-HA was only detected when ZirT was co-expressed

(Figure 5A). Thus, secretion, but not expression, of ZirS was

found to be dependent on the presence of ZirT.

Unexpectedly, the same results were observed in all three

genetic backgrounds, including the wild-type and a DzirS mutant

strain, both carrying a chromosomal copy of zirT that did not seem

to support the secretion of ZirS-HA expressed from an episomal

construct. Two possible interpretations of this result were: (1) the

nature of the interaction between ZirS and ZirT requires specific

stoichiometry that was not achieved from chromosomal expression

of ZirT, or that (2) the secretion of ZirS demands the presence of

ZirT in cis. To examine these possibilities we analyzed the

expression and the secretion of ZirS-HA in the presence of ZirT

that was provided either in cis from the same episomal construct

(pOG-zirTS-HA) or in trans from a different vector with a similar

(low) copy-number (pOG-zirS-HA and pOG-zirT-4). As can be

seen in Figure 5B, providing ZirT either in cis or in trans from a

similar copy number vector was able to complement the secretion

of ZirS, implying that particular stoichiometry of ZirS and ZirT

might be required for efficient secretion of ZirS.

To gain further insight into the nature of ZirS secretion, we

expressed the HA-tagged version of ZirS alone (pOG-zirS-HA) or

together with ZirT (pOG-zirTS-HA), in a heterologous E. coli K-

12 host that does not possess any homologs of ZirTS (or any

neighboring genes). Introducing ZirS-HA alone into an E. coli host

resulted in detectable expression, but not secretion of ZirS-HA. In

contrast, introducing ZirS-HA together with ZirT led to

prominent secretion of ZirS-HA into the medium by E. coli

(Figure 5C). We concluded from this experiment that zirTS

encodes an autonomous and self-sufficient secretion system, in

which ZirS is secreted in a strict ZirT-dependent manner.

Cumulatively, the data presented describing the nature of ZirT

and ZirS are consistent with several key characteristics of TPS

systems and/or the Int/Inv family. These similarities includes: (1)

primary sequence homology to various intimins and invasins; (2)

ZirT being an outer membrane b-barrel protein, similar to TpsB

or the N-terminus module of the Int/Inv members; (3) like TpsA,

ZirS seems to be translocated from the cytoplasm across the IM

via the Sec translocase; (4) ZirT containing a prototypical N-

terminal signal sequence, as the TpsB and the Int/Inv members;

and (5) ZirS being secreted into the extracellular milieu in an

explicit ZirT-dependent manner, analogous to the relation

between TpsA and TpsB.

Nevertheless, despite the shared similarities, some fundamental

differences exist between the ZirTS and the compared systems (see

Discussion). Based on this, we suggest that the ZirTS secretion

system is functionally similar to the TPS pathway, but represents a

distinctive secretion pathway in Salmonella.

The transcription factor OxyR and zinc are involved in
zirTS regulation

In order to understand better the regulation the ZirTS pathway,

we were interested in identifying different regulatory factors that

govern the expression of zirTS. Using the Virtual-Footprint

Figure 5. ZirS and ZirT compose an autonomous secretion
system in Salmonella. A. The secretion of ZirS is ZirT-dependent. Wild-
type S. Typhimurium (wild-type) or its isogenic strains harboring a
deletion mutation in zirS (DzirS) or zirT (DzirT) expressing ZirS-HA only
(pOG-zirS-HA; ZirS) or both ZirT and ZirS-HA (pOG-zirTS-HA; ZirS+ZirT)
were grown in LB to late-logarithmic phase. To evaluate the expression
and the secretion of ZirS-HA, whole bacterial cell pellets (P) and culture
media supernatant (S) were analyzed by immunoblot using antibodies
against hemagglutinin (bottom panel). To show that the ZirS-HA
detected in the supernatant is not a result of bacterial cell lysis and that
equal amounts of protein were loaded, the same blot was reprobed for
the bacterial cytoplasmic protein, DnaK (top panel). B. Complementa-
tion of ZirS secretion in the presence of ZirT in cis and trans. The
secretion of ZirS-HA was analyzed in wild-type S. Typhimurium (wild-
type) or in a zirT mutant strain (DzirT) expressing ZirT and ZirS-HA either
in cis from a single low copy number construct (pOG-zirTS-HA;
ZirS+ZirT) or in trans, from two different, but similar-copy numbered
vectors (pOG-zirS-HA and pOG-zirT-4; V1ZirS+V2ZirT). Whole bacterial
cell pellets (P) and the secreted fractions (S) were analyzed by Western-
blot using antibodies against HA (bottom panel) or DnaK (top panel). C.
Expression of ZirS and ZirT in a heterologous host leads to the secretion
of ZirS to the extracellular milieu. E. coli DH5a harboring an empty
vector (vector), ZirS-HA only (pOG-zirS-HA; ZirS), or ZirS-HA and ZirT
(pOG-zirTS-HA; ZirS+ZirT) were grown in LB. Whole bacterial cell pellets
(P) and the secreted fractions (S) were analyzed by Western-blot as
outlined above.
doi:10.1371/journal.ppat.1000036.g005

A Novel Secretion Pathway of Salmonella

PLoS Pathogens | www.plospathogens.org 6 April 2008 | Volume 4 | Issue 4 | e1000036



program (http://www.prodoric.de/vfp/) [29] we were able to

identify a potential binding site for OxyR located 97-bp upstream

from the start codon of zirT. The OxyR transcription factor is a

LysR-type regulator that activates the expression of numerous

genes in response to oxidative stress [30]. To test whether OxyR

affects zirTS expression, S. Typhimurium SL1344 oxyR mutant

strain and a reporter-gene construct harboring a fusion between

zirTS and a promoterless b-galactosidase gene (zirTS::lacZ) were

constructed. Since zirTS::lacZ was found to be most strongly

induced in M9 minimal medium (pH 7.4) in comparison to LB

(742673 and 258621 M.U., respectively), the expression of this

reporter-gene fusion was compared in both strains under these

conditions. As demonstrated in Figure 6A, zirTS::lacZ expression

was found to be about 2.3 fold higher in the DoxyR background

Figure 6. The ZirTS pathway is negatively regulated by zinc and OxyR. A. OxyR negatively regulates the expression of zirTS. Wild-type S.
Typhimurium SL1344 (wild-type) and an isogenic strain harboring a mutation in oxyR (oxyR) expressing zirTS::lacZ were grown in M9 minimal medium
to late stationary phase. b-galactosidase assay was performed to evaluate the expression of zirTS::lacZ in each strain. The presented values represent
the average of at least 7 independent cultures with a standard deviation shown by the error bars. B. Expression of zirT and zirS in the oxyR
background vs. the wild-type strain as determined by q-RT-PCR. RNA was harvested from SL1344 and the oxyR mutant strains grown in M9; reverse-
transcribed and the expression of zirT and zirS was examined by quantitative real-time PCR. The fold change in the expression of zirT and zirS in the
oxyR background, relative to their expression in the wild-type strain is presented. Expression was normalized using the housekeeping rpoD gene as a
control. The results represent the average of 4 independent experiments (each included 3–5 replicates) with a standard deviation shown by the error
bars. C. Expression of zirTS in the presence of metals. S. Typhimurium SL1344 expressing zirTS::lacZ was grown in M9 medium (M9) or M9
supplemented with the following metal salts: 0.1 mM MgSO4 (Mg), 0.1 mM FeCl3 (Fe3+), 0.1 mM FeSO4 (Fe2+), and ZnSO4 (Zn) in the indicated
concentrations (0.01, 0.1, or 0.5 mM). Cultures were grown to a late stationary phase and b-galactosidase assay was performed to evaluate the
expression levels of zirTS::lacZ under each condition. The presented values represent the average of at least 8 independent cultures with a standard
deviation shown by the error bars. D. Expression in the presence of metal chelators. S. Typhimurium SL1344 expressing zirTS::lacZ was grown in LB
broth (LB) or LB supplemented with the following compounds: 1 mM ZnSO4 (LB+Zn), 0.1 mM metal chelators (DTPA, EDDA, or TPEN), metals
chelators with 1 mM ZnSO4 (Zn), or metal chelators with 1 mM FeSO4 (Fe). Cultures were grown to a late stationary phase following by b-
galactosidase assay. The presented values represent the average of at least 8 independent cultures with a standard deviation shown by the error bars.
E. Expression of zirT and zirS in the presence and absence of zinc and metal chelators as determined by q-RT-PCR. RNA was harvested from wild-type
Salmonella cultures that were grown either in M9 medium in the presence or absence of 0.5 mM ZnSO4; or in LB supplemented with or lacking DTPA
(0.1 mM) or TPEN (0.05 mM). RNA was reverse-transcribed and the expression of zirT and zirS was examined by real-time PCR. The fold change in the
expression of zirT and zirS in cultures that were grown in the presence of zinc (M9+Zn) or metal chelators (LB+DTPA/TPEN) relative to their expression
in the appropriate unsupplemented media is presented. Expression was normalized using the housekeeping rpoD gene as a control. The results
represent the average of 3 independent experiments (each included 3–5 replicates) with a standard deviation shown by the error bars.
doi:10.1371/journal.ppat.1000036.g006
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than the wild-type strain (P,0.0001), suggesting that OxyR is

involved in the regulation of these genes. To further confirm these

results we applied a qualitative real-time PCR approach and

compared the abundance of zirT and zirS transcripts in the DoxyR

background vs. the wild-type strain. In agreement with the lacZ

reporter-gene results, the expression levels of zirT and zirS were

about 1.5 (P = 0.0033) and 2.5 (P,0.0001) fold, respectively,

higher in the DoxyR background, compared to the wild-type strain

(Figure 6B). Together, these results suggest that OxyR plays a role

as a negative regulator of the ZirTS pathway.

The induced expression of zirTS::lacZ in M9 minimal medium

in comparison to LB and the initial identification of ZirS as a

Salmonella protein, which presented some sequence homology to

eukaryotic zinc-binding proteins, prompted us to examine possible

effect of different metals ions on the regulation of zirTS. To

investigate this, we complemented defined M9 medium with

different metal salts and examined the expression levels of

zirTS::lacZ under these conditions. Addition of Mg2+, Fe2+ or

Fe3+ ions to the medium did not alter the expression of zirTS::lacZ;

however, addition of subinhibitory concentrations of Zn2+ ions

resulted in moderate but statistically significant (P,0.0001)

reduction of zirTS::lacZ expression, in a dose-dependent manner

(Figure 6C). These results implied that Zn2+ may repress the

expression of zirTS. If this assumption were true, we expected that

addition of metal chelators to LB broth would lead to an increased

expression of zirTS::lacZ. Indeed, addition of different divalent

metal chelators (DTPA, EDDA, and TPEN) resulted in a

significant (P,0.0001) increase of zirTS::lacZ expression. Further-

more, when the presence of these metal chelators was counter-

acted by the addition of excessive Zn2+, induction was prevented.

Addition of excessive Fe2+ did not prevent zirTS::lacZ induction,

indicating that the observed repression is zinc-specific (Figure 6D).

In order to further support these results, we implemented a

quantitative RT-PCR methodology and compared the abundance

of the zirT and zirS transcripts in minimal medium supplemented

with or lacking zinc, as well as in LB in the presence or absence of

metal chelators. As illustrated in Figure 6E, the addition of zinc

salt to an M9 defined medium, decreased the expression of zirT

and zirS by about 2 and 2.5 fold, respectively (P,0.0001). As

oppose to that, when the metal chelators DTPA was added to LB

broth, a moderate induction of zirS expression, by more than 2.6

fold (P,0.0001) was observed. Strikingly, when LB was supple-

mented with the intracellular zinc-specific chelator, TPEN [31],

stronger induction by more than 2 and 5 fold, was observed

(P,0.0001) in the expression of zirT and zirS, respectively.

Collectively, we concluded from these experiments that zinc

significantly contributes to negative regulation of the ZirTS

pathway and therefore we named STM1668 and STM1669, zinc

regulated secreted protein (zirS) and zinc regulated transporter

(zirT), respectively.

ZirTS modulates virulence during salmonellosis in the
mouse model

To investigate the role of ZirTS in vivo, we used the murine

model for systemic salmonellosis and evaluated the survival-time of

BALB/c mice infected orally with ,16106 cfu of wild-type, DzirS,

and DzirT S. Typhimurium strains. Surprisingly, the median

survival-times of DzirS and DzirT strains were 7.5 and 6 days,

respectively, while the median survival-time of the wild-type strain

was longer (8.5 days), implying the possibility that the DzirS and

DzirT strains might possess virulent capability higher than the

wild-type. However, although a trend was apparent, with a sample

size of 8 mice in each group, these differences were not statistically

significant (P.0.05).

In many cases, comparing survival time is not sensitive enough

to reveal virulence differences, especially when two virulent strains

are compared. In contrast, the competitive index (CI) approach

[32] is considered to be more sensitive to subtle differences. In

these experiments, mice were challenged orally with a mixed

inoculum containing equal numbers of wild-type bacteria and a

mutant strain carrying an in-frame deletion of zirS. Six days post

infection (p.i.) mice were sacrificed and the recovered cfu ratio

between the mutant and the wild-type strain (i.e. CI value) was

evaluated. As the main sites of Salmonella replication during

systemic infection are the spleen and the liver [33–35], the CI

geometrical mean was calculated for these sites. In 129X1/SvJ

mice, the mean CI was found to be 4.4 and 4.2 for the spleen and

liver, respectively (Figure 7A), indicating that the DzirS mutant

strain outcompeted the wild-type strain by more than 4 fold during

the infection. Comparable results were also obtained when a DzirT

mutant was competed against the wild-type strain (data not

shown). This CI analysis correlates with the single infection results,

which suggested a shorter survival-time of mice infected with DzirS

and DzirT mutant strains in comparison to the wild-type, and

together demonstrated a hypervirulent phenotype for DzirS and

DzirT mutant strains in mice.

Nramp1 (natural resistance-associated macrophage protein-1;

also known as Slc11a1) is a host resistance gene that provides

protection against several intracellular pathogens, including S.

Typhimurium [36]. In order to examine a possible effects of

Nramp1 on the observed hypervirulent phenotype, and to further

validate these results, we repeated the CI analysis in 129Sv/J

(Nramp1+/+) and isogenic Nramp1-deficient (Nramp12/2) mouse

genetic backgrounds. As can be seen in Figure 7B and C, a similar

trend was observed in these mouse strains, with an even more

pronounced difference in the Nramp12/2 background. In the

latter, the mean CI values were 10.3 and 12.7 in the spleen and the

liver respectively, demonstrating a significant overgrowth of the

DzirS mutant in comparison to the wild-type strain.

Next, we examined whether the apparent hypervirulence

behavior of the DzirS mutant is dependent on the route of

infection. To test this, 10 129X1/SvJ mice were infected

intraperitoneally (i.p.) with approximately 26104 cfu and sacri-

ficed 3 days p.i.. Intriguingly, as indicated in Figure 7D, when the

bacteria were administrated i.p., both strains reached equal

numbers and no growth advantage of the DzirS mutant was

observed, suggesting that following i.p. infection, wild-type and the

DzirS mutant are equally virulent. Similar results were obtained

during CI infection of a DzirT mutant versus a wild-type strain

(data not shown).

We infer from these experiments that the absence of the zirS (or

zirT) gene leads to hypervirulence of Salmonella in vivo, resulting in

a significant (3–12 fold, P,0.05) overgrowth of the DzirS strain in

systemic sites. Interestingly, the differential growth of the DzirS

mutant was evident only following oral infection but not when the

mice were infected i.p.. Since the lack of ZirTS leads to an

increased virulence of Salmonella, we propose that the ZirTS

secretion pathway functions as an antivirulence modulator during

systemic disease in mice.

zirT displays a unique expression pattern in vivo
The results attributing an antivirulence function to zirTS during

Salmonella infection in mice, prompted us to study the expression

pattern of the ZirTS pathway during the course of both acute and

persistent infections in the murine model. A reporter-gene fusion

between zirT and the luxCDABE operon was constructed and

introduced into wild-type S. Typhimurium. As a positive control

for in vivo expression, we used a similar construct containing a
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Salmonella sigma 70 (RpoD) dependent promoter [37]. Both

reporter strains, designated zirT::lux and rpoD::lux, were used to

infect C57BL/6 mice orally. Three days post-infection mice were

sacrificed and immediately examined for luciferase activity in the

gastrointestinal (GI) tract and systemic sites. Although zirT::lux had

about two logs lower expression levels in vitro in comparison to

rpoD::lux (data not shown), induced and distinct expression of

zirT::lux was observed in vivo. In contrast to rpoD::lux, which

showed strong expression in systemic sites (liver, spleen, and

mesenteric lymph nodes) and the small intestine, zirT::lux

expression was localized primarily within the small intestine,

while at systemic sites, zirT::lux expression was low, despite being

heavily colonized with Salmonella (Figure 8). These results suggest

that the in vivo expression of zirT is induced mainly throughout

the gastrointestinal tract of infected animals rather than at systemic

sites. This unique expression pattern is in agreement with the CI

experiments that showed a virulence difference between the wild-

type and a zirS mutant strain following oral, but not i.p., infection.

In light of these data, suggesting that zirT is not abundantly

induced at systemic sites; we propose that by administrating the

bacteria i.p., the induction of zirT in the GI tract was bypassed and

differences between the wild type and the zirTS mutants were not

noticeable.

Besides the induction in the small intestine, strong expression of

zirT::lux was apparent in the fecal pellets from both C57BL/6

(Nramp1 negative) mice that developed an acute systemic disease

and 129X1/SvJ (Nramp1 positive) mice carrying a persistent

Salmonella infection (Figure 9). Remarkably, the induced expression

of zirT::lux in Salmonella shed within fecal pellets of both mouse

strains was evident starting from day one p.i. and lasting at least 8

weeks p.i. in 129X1/SvJ mice during persistent Salmonella

infection. At 6 weeks p.i., due to low levels of Salmonella shedding

(as determined by cfu counts), expression of zirT::lux was not

detected in the feces, but reappeared at 8 weeks p.i., when high

numbers of Salmonella were shed. These results indicate strong and

continuous expression of zirT in the feces of shedding mice.

Figure 7. ZirS modulates Salmonella virulence during systemic disease in mice. The geometrical means of competitive index values are
shown for the spleen and liver of mice that were infected orally (panels A–C) or i.p. (panel D). Six to seven weeks old 129X1/SvJ (panels A and D),
Nramp1+/+ (panel B), or Nramp12/2 (panel C) female mice were infected with a 1:1 mixed inoculum of marked wild-type SL1344 strain and a DzirS
mutant. For oral infection, mice were inoculated with 16106 cfu in 0.1 ml of infection buffer (0.1 M HEPES pH 8.0, 0.9% NaCl) and sacrificed after 6
days. For i.p. infection, 26104 cfu were injected in 0.2 ml PBS and mice were sacrificed after 3 days. Panels A and D represent pooled results from 2
independent experiments.
doi:10.1371/journal.ppat.1000036.g007
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Discussion

In this study we described the identification and characteriza-

tion of a Salmonella-conserved autonomous and previously

unidentified secretion pathway, termed ZirTS. We showed that

this novel secretion system consists of an OM protein, ZirT that is

expected to adopt a b-barrel structure and the exoprotein ZirS,

which is secreted into the extracellular environment in a strictly

ZirT-dependent manner.

The ZirTS secretion system was found to share several

important features with members of the TPS system and the

Int/Inv family. However, despite the mutual similarities, some

fundamental differences exist between the ZirTS and the

compared systems. Obviously, as opposed to Int/Inv members,

ZirTS function as a secretion system comprised of two separate

components. Likewise, comparison of ZirTS to TPS systems

reveals several hallmarks of TPS, which are absent from ZirTS.

The most characteristic feature of the TPS exoproteins is a

conserved N-terminal domain, known as the TPS domain. This

region has been identified in all of the TpsA proteins characterized

thus far and includes highly conserved NPNGI and NPNL motifs.

The TPS domain is necessary for secretion and has been proposed

to mediate recognition of the exoprotein by the transporter

[8,9,38–40]. An additional feature of TPS is the sequence

conservation of TpsB family members, particularly within the C-

terminus [41]. Amino acid sequence analysis and comparison of

ZirS and ZirT to other known TPS members indicated the lack of

these conserved modules in ZirS and ZirT and therefore

differentiate ZirTS from the TPS pathway. Based on this we

contend that zirTS encode a novel secretion pathway in Salmonella.

Adapting the currently accepted mechanism of TPS systems, we

propose the following model for the modus operandi of ZirTS: pre-

ZirS is translocated across the IM, via the Sec translocase. Upon

translocation, the signal peptide of pre-ZirS is cleaved off by a

specific periplasmic signal peptidase and the mature ZirS is

released in the periplasmic space. As was shown for other TPS

systems, there appears to be no accumulation of periplasmic

intermediates [8] and ZirS is expected to transit through the

periplasmic space, only briefly. Following Sec-dependent export

across the IM, ZirS interacts with ZirT and then is translocated

across the OM to the extracellular environment through a

hydrophilic b-barrel pore formed by ZirT.

One of many intriguing questions related to ZirTS is its

evolutionary origin. A conceivable scenario for the evolution of

such a system might be a molecular separation of an ancestral Int/

Inv related protein (or an AT) into two distinct functional

polypeptides, early in the evolution of Salmonella. Other circum-

stances that might explain the development of ZirTS include a

Figure 8. zirT is induced and displays a unique expression pattern in vivo. Two groups of female C57BL/6 mice were infected orally with
,107 cfu of wild-type S. Typhimurium expressing rpoD::lux (A) or zirT::lux (B) reporter strains. At day 3 p.i. mice were sacrificed and their intact GI tracts
as well as systemic organs were removed and imaged immediately. The detected bioluminescence signal is shown as pseudocolor images, with
variations in color representing light intensity at a given location. The color bar indicates relative signal intensity (as photons s21 cm22 sr21).
Different organs are indicated as follow: liver (L); spleen (S); mesenteric lymph nodes (LN); colon (C); ileum (I); and jejunum (J). The experiment was
repeated twice (with 9 mice in total for each reporter strain), and representative images are shown. Bacterial load is indicated by a cfu per organ in a
table below each image.
doi:10.1371/journal.ppat.1000036.g008
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later acquisition of zirS into the genome and the ‘‘exploitation’’ of

an already existing OM b-barrel porin for its secretion.

Thus far, Int/Inv and TPS systems have been shown to be

primarily involved in different virulence traits of Gram-negative

pathogens. In contrast, the ZirTS secretion pathway demonstrated

an interesting and somewhat surprising antivirulence activity,

rather than a virulence determinant, in the murine salmonellosis

model. Presently, it is still unknown if the ZirTS pathway is unique

to Salmonella or related systems exist in other bacteria. A

bioinformatic search for non-invasin/intimin ZirT homologs has

led to the identification of a predicted 934 amino acid OM protein

(SG0602) in Sodalis glossinidius, which share 28% identity and 45%

similarity with ZirT (E-value 5e-47). The gene localized immedi-

ately downstream to SG0602 is expected to encode a 371 amino

acid protein (SG0603), with a predicted signal sequence.

Interestingly, S. glossinidius is an endosymbiont residing intracellu-

larly in tissues of the tsetse flies and utilize for cell invasion a

type III secretion system, which is phylogenetically related to

the SPI-1 type III secretion system of Salmonella [42]. Although

at this point, experimental evidence is still needed, de facto

secretion of SG0603 in a SG0602-dependant manner will indicate

a broader distribution of the ZirTS-like pathways among the

Enterobacteriaceae.

Despite the fact that ZirS is being secreted into the extracellular

environment, in mixed infection experiments, secretion of ZirS

from a wild-type strain did not seem to complement the phenotype

of a co-infecting zirS mutant. This observation may imply that

ZirS exerts its effect only topically or has a short in vivo half-life.

Another interesting feature of ZirTS is its location on a

horizontally acquired genomic island known as GEI 1664/1678

[17]. The acquisition of genomic islands by horizontal gene

transfer enables bacteria to rapidly gain complex functions from

other species and are crucial for the interaction of S. Typhimurium

with eukaryotic host cells. From an evolutionary and ecological

standpoint, infections caused by microbial pathogens that have

sustained a long-standing association with their hosts are most

often self-limiting or go unnoticed. Salmonella enterica, as an example

of such a pathogen, has maintained a coexistence with vertebrate

hosts for millions of years and evolved extremely sophisticated

mechanisms to engage vertebrate hosts. When examined at the

Figure 9. The expression of zirT is induced in shed Salmonella within fecal pellets during persistent and acute infection. S.
Typhimurium expressing zirT::lux was used to infect 129X1/SvJ and C57BL/6 mice as explained above. (A) Fresh fecal pellets were collected from
129X1/SvJ mice with persistent Salmonella infection and imaged immediately. Bioluminescence of fecal pellets is shown for 1, 28, 42, and 56 days p.i..
An asterisk at day 42 p.i. indicates low levels of Salmonella shedding in the collected stool as was determined by cfu count. (B) In vivo imaging of
129X1/SvJ mouse, 1 day p.i. The induced expression of zirT::lux in the stool is shown. (C) Bioluminescence of fecal pellets from C57BL/6 mice
developing an acute Salmonella infection is shown for day 4 p.i. Fresh pellets were harvested directly from the animal prior to imaging and dried
stools were collected from the cage.
doi:10.1371/journal.ppat.1000036.g009
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cellular and molecular levels, this functional interface reveals an

impressive array of bacterial determinants designed to manipulate

the host immune system, to sense the host environment or to

modulate a variety of cellular processes. The overall picture

emerging from close examination is perhaps one of balance, self

restraint and sophistication rather than one of uncontrolled

hostility towards its host [43]. Most studies in bacterial

pathogenesis are directed towards finding genes that promote

virulence in the host. Nonetheless, recent studies have demon-

strated that indeed, a fine balance during host infection is kept due

to the function of a subset of Salmonella genes known as

‘antivirulence genes’ [44]. Deletion mutations of these genes have

led to an overgrowth phenotype in the mouse model. Mouslim and

colleagues have shown that a PhoPQ regulated gene, pcgL, is

involved in stimulating the host immune system to prevent

bacterial overgrowth in mouse organs [45]. Another example of an

antivirulence gene is sciS. A sciS mutant strain has been shown to

display increased intracellular numbers in J774 macrophages and

hypervirulence in mice, when administered intragastrically [46]. A

null mutation in a Gifsy-2 phage harbored gene, grvA, increased

virulence as measured by competitive index experiments in mouse

spleens and small intestine [47]. Cumulatively, these studies

contribute to a recurring theme in pathogenesis emphasizing the

importance of pathogens to limit their effects upon the cells they

infect in order to achieve a balance with their host. These

examples prove that it is possible for an inactivated gene to lead to

an increase in bacterial numbers in host tissues. Increased bacterial

loads in the murine host would likely lead to more rapid sepsis and

toxic shock, thus increasing lethality and decreasing transmission

of the pathogen. The hypervirulence of DzirTS observed in the

mouse model during oral infection and its induction in the fecal

pellets at an early stage of the infection are consistent with this

concept. As with all Salmonella species, S. Typhimurium is primarily

transmitted through the fecal-oral route. Infected animals excrete

Salmonella in the feces, which will then gain access to an uninfected

host, starting a new infection cycle. Supported by induction of zirT

in the small intestine and its constant induction in feces, we

hypothesize that ZirTS play a role as a ‘virulence modulator’ in

the early stages of infection. We propose that ZirTS contribute to a

host-pathogen balance after the transmission from an infected to

naı̈ve host. The role ZirTS play during an early stage of the

infection may be in prevention of premature host death and,

perhaps, demonstrate at the molecular level, what was understood

by MacFarlane Burnet almost 70 years ago that ‘‘there is little

point in a microorganism destroying its host in a spectacular

fashion if this leaves it with no prospect of being ferried to other

vulnerable hosts’’ [48].

Materials and Methods

Bacterial strains and in vitro growth conditions
Bacterial strains and plasmids used in this study are listed in

Table 1. S. Typhimurium SL1344 was used as the wild-type strain,

and all mutants used in this study were isogenic derivatives of

SL1344. Bacterial liquid cultures were maintained in Luria-

Bertani (LB) broth or M9-glucose minimal medium supplemented

with 0.0021% (w/v) histidine (since SL1344 is a histidine

auxotroph). The appropriate antibiotics were used at the following

concentrations: chloramphenicol, 25 mg ml21; kanamycin,

50 mg ml21; ampicillin, 100 mg ml21; and streptomycin,

100 mg ml21. The metal chelators diethylenetriaminepentaacetic

acid (DTPA), N,N9-ethylenediaminediacetic acid (EDDA), and

NN9N9-tetrakis(2-pyridylmethyl)ethylene diamine (TPEN) were

added to LB in the indicated concentrations.

Construction of S. Typhimurium SL1344 mutant strains
S. Typhimurium OG2006 carrying an in-frame deletion (amino

acid 9–270) of zirS, and OG2007 harboring a Kan cassette in zirT,

were generated by allelic exchange using the counter-selectable

suicide vector pRE112 [49] containing the levansucrase-encoding

sacB gene [50]. pRE112 based plasmids were transformed into E.

coli DH5alpir and then electroporated into E. coli SM10lpir [51]

that was used as the conjugative donor strain to S. Typhimurium

SL1344. Streptomycin/chloramphenicol-resistance merodiploid

colonies were grown for 4 h in LB broth without antibiotic

selection, diluted and then plated onto agar containing 1% (w/v)

tryptone, 0.5% (w/v) yeast extract, 5% (w/v) sucrose and

incubated at 30uC. Sucrose-resistant colonies were selected, and

the presence of the constructed mutation was confirmed by PCR.

An SL1344 oxyR mutant strain was constructed by P22

transduction from TA4101 (S. Typhimurium LT2). The growth

of these constructed strains was indistinguishable from the parental

strain while growing in liquid culture in vitro.

Generating hemagglutinin tagged proteins and reporter-
gene constructs

Primers used in the study are listed in Table 2. Two-

hemagglutinin (2HA) tagged version of ZirS was constructed

using the primers OG-61 and OG-63. The resulting PCR product

containing the intact sequence of zirT following by zirS (without

the stop codon) was cloned into the vector pOG-WSHA after

digest with SacI and XbaI. The resulting plasmid harbors a C-

terminal fusion of the 2HA tag with ZirS (pOG-zirTS-HA). The

primers OG-62 and OG-63 were used to amplify a PCR fragment

(containing zirS and ,1-kb upstream to zirS) that was cloned using

SacI and XbaI into pOG-WSHA to generate pOG-zirS-HA. To

construct a 2HA tagged version of ZirT we used the primers OG-

61 and OG-158 to amplify a PCR fragment that was cloned using

SacI and XbaI into pOG-WSHA resulting in pOG-zirT-HA.

A reporter gene construct containing a translational fusion

between zirTS and a promoterless lacZ gene was generated using

the primers OG-89 and OG-92. The resulted PCR product was

cloned into pCR-Blunt (Invitrogen), digested with EcoRI and SmaI

and subcloned into pMC1403 to generate pOG-zirTS::lacZ.

Reporter-gene fusion of zirT with the luxCDABE operon from

Photorhabdus luminescens was generated by PCR amplification using

the primers OG-186 and OG-187. The resulted product was

cloned into pCR-Blunt (Invitrogen), digested with XhoI and BamHI

and cloned into pSC26 [37] to generate pOG-zirT::lux.

Secretion assay and immunoblotting
To examine the expression and secretion of ZirS and ZirT,

culture supernatant was filtered through a 0.2 mm pore-size filter

membrane, concentrated by precipitation with 10% (vol/vol)

trichloroacetic acid (TCA), and washed with acetone. The secreted

protein fraction and the corresponding bacterial cell pellets were

resuspended in 16 sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE) sample buffer and subjected to

Western blot analysis using the appropriate primary antibodies:

rat monoclonal anti-HA (a-HA; 1:2,000; Roche Applied Science)

or mouse a-DnaK (1:2,000; Stressgen Biotechnologies). Rabbit

polyclonal antibodies against subunit beta of E. coli ATP synthase

and OmpA were generous gifts from Gabriele Deckers-Hebestreit

and Francisco Garcia-del Portillo, respectively, and were both

used in a 1:10,000 dilution. Goat a-rat, mouse, or rabbit

immunoglobulin G conjugated to horseradish peroxidase were

used as a secondary antibodies (1:7,500) followed by detection with

ECL reagents (Amersham Pharmacia).

A Novel Secretion Pathway of Salmonella

PLoS Pathogens | www.plospathogens.org 12 April 2008 | Volume 4 | Issue 4 | e1000036



b-galactosidase assays
b-galactosidase assays were performed according to [52]. The

assays were performed with 100 ml of culture, and the substrate for

b-galactosidase hydrolysis was o-nitrophenyl-b-D-galactopyranoside

(ONPG, Sigma). The background expression of the vector

(pMC1403) was 2.7660.5 and 1.2160.14 Miller Units (M.U.)

when cultures were grown in LB and M9 minimal medium,

respectively.

Table 1. Bacterial strains and plasmids used in the study.

Strain or plasmid Genotype and description* Reference or source

Salmonella

S. Typhimurium SL1344 wild-type Smr xyl hisG rpsL ATCC

NB24 ushA::res-cat-res [57]

OG2006 (zirS) In-frame deletion of STM1668 in SL1344 This study

OG2007 (zirT) STM1669::kan in SL1344 This study

OG2013 SL1344 oxyR::kan transduced by P22 from TA4101 This study

TA4101 LT2 oxyR1 zii-166::Tn5 SGSC1407 SGSC

E. coli

DH5a F- w80lacZDM15 D(lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rk2, mk+) supE44 thi-1 gyrA96 relA1 l- Lab collection

DH5alpir For propagation of p-dependent plasmid Lab collection

SM10 lpir thi thr leu tonA lacY supE recA::RP4-2-Tc::Mu Kmlpir [51]

TOP10 mcrAD(mrr-hsdRMS-mcrBC) w80lacZ DM15 DlacX74 deoR recA1araD139 D(ara, leu) 7697 galU galK l- rpsL
endA1 mupG

Invitrogen

Plasmids

pACYC184 Tcr Cmr cloning vector NEB

pBR322 Tcr Ampr cloning vector NEB

pCR-Blunt Kanr cloning vector Invitrogen

pCR-Blunt II-TOPO Zeocinr kanr cloning vector Invitrogen

pCS26 Kanr cloning vector for luxCDABE fusion [37]

pMC1403 Ampr lacZY cloning vector [58]

pOG-PCR-zirT zirT ORF in pCR-Blunt This study

pOG-PCR-zirTS Regulatory region of zirTS in pCR-Blunt (for lacZ fusion) This study

pOG-PCR-zirT-2 zirT regulatory region in pCR-Blunt (for lux fusion) This study

pOG-RzirT-Km zirT::kan in pRE112

pOG-TzirS zirS in pCR-Blunt II-TOPO This study

pOG-TzirS-2 DzirS in pCR-Blunt II-TOPO This study

pOG-TzirS-3 DzirS in pRE112 This study

pOG-TzirT zirT in pCR-Blunt II-TOPO This study

pOG-WSHA 2HA tag in pWSK29 This study

pOG-UzirT zirT region in pUC-19 This study

pOG-UzirT-2 zirT ORF in pUC-19 This study

pOG-UzirTS zirTS in pUC-19 This study

pOG-UzirT-Km zirT::kan in pUC-19 This study

pOG-zirS-HA zirS-2HA in pOG-WSHA This study

pOG-zirT-3 zirT ORF in pBR322 This study

pOG-zirT-4 zirT ORF in pBR322 D Ampr This study

pOG-zirT-HA zirT-2HA in pOG-WSHA This study

pOG-zirTS-HA zirTS-2HA in pOG-WSHA This study

pOG-zirTS::lacZ zirTS::lacZ in pMC1403 This study

pOG-zirT::lux zirT::lux in pCS26 This study

pRE112 Cmr sacB1 suicide vector [49]

pSIG70-16 rpoD::lux S. Typhimurium RpoD (s70) responsive synthetic promoter cloned in pCS26 [56]

pWSK29 Ampr low copy number cloning vector [59]

pUC19 Ampr high-copy number cloning vector NEB

*Sm, streptomycin; Cm, chloramphenicol; Kan, kanamycin; Amp, ampicillin.
doi:10.1371/journal.ppat.1000036.t001
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Quantitative real-time PCR analysis
Salmonella RNA was extracted from mid-exponential phase

cultures using the Qiagen RNAprotect Bacteria Reagent and the

RNeasy mini kit according to the manufacture instructions,

including an on-column DNase digest using the RNase-free

DNase set (Qiagen). The quantity and quality of the extracted

RNA were determined by a ND-1000 spectrophotometer

(NanoDrop Technologies). To diminish any genomic DNA

contamination, RNA was secondly treated with an RNase-free

DNase I (Invitrogen). 0.5 mg of DNase I-treated RNA was

subjected to a first strand cDNA synthesis using the QuantiTect

Reverse Transcription Kit (Qiagen). Real-time PCR reactions

were performed in an Applied Biosystems 7500 Fast Real-time

PCR System. Each reaction was carried out in a total volume of

10 ml on a 96-well optical reaction plate (Applied Biosystems)

containing 5 ml FastStart Universal SYBR Green Master (ROX)

mix (Roche Applied Science); 1 ml cDNA; and two gene-specific

primers in a final concentration of 0.3 mM each. Real-time cycling

conditions were as follows: 50uC for 2 min; 95uC for 10 min; and

40 cycles of 95uC for 15 s, 60uC for 1 min. No-template and no

reverse-transcriptase controls were included for each primers set

and template. Melting curve analysis verified that each reaction

contained a single PCR product. Reported gene expression levels

were normalized to transcripts of rpoD, a housekeeping gene that

serves as an internal control. Gene-specific primers were designed

using PRIMER3 software (http://primer3.sourceforge.net/), are

listed in Table 2, and correspond to the following genes: rpoD, OG-

220 and OG-221; zirT, OG-216 and OG-217, OG-216 and OG-

229; zirS, OG-212 and OG-215, OG-228 and OG230.

Subcellular fractionation
S. Typhimurium SL1344 strains expressing ZirT-HA or ZirTS-

HA were grown for 3 h in LB to late log phase (O.D.600,1.0).

Cells were harvested at 5,000 g for 10 minutes at 4uC, and washed

with ice-cold phosphate buffered saline (PBS). All the following

steps were performed at 4uC. Cells were resuspended in 1 ml of

cold lysis buffer [50mM Tris (pH 8.0), 20% (w/v) sucrose,

protease inhibitor cocktail (Roche Applied Science), and lysozyme

(100 mg/ml)] and incubated on ice for 1 h to generate sphero-

plasts. MgSO4 was added to final a concentration of 20 mM and

spheroplasts were collected by centrifugation for 10 min at

5,000 g. The supernatant containing the periplasmic fraction was

recovered and the pellet containing the cytoplasm and the

membranes fractions was resuspended in 1 ml cold sonication

buffer [50 mM Tris (pH 8.0), 20 mM MgSO4, RNase A (10 mg/

ml), DNase I (5 mg/ml), and protease inhibitor cocktail] and lysed

by sonication. Unlysed bacteria were removed by low-speed

centrifugation at 5,000 g for 10 min. The supernatant was

recovered and subjected to ultracentrifugation for 1 h at

100,000 g (in a TLA 100.3 fixed angle rotor in Beckman TL100

ultracentrifuge) to pellet the membrane fractions. The supernatant

represented the cytoplasmic fraction was recovered and the

membrane pellet was washed in cold sonication buffer, repelleted

for 30 min at 100,000 g and resuspended. This fraction repre-

sented the total membranes fraction.

Sucrose density gradient
S. Typhimurium membranes were prepared from 100 ml

cultures expressing ZirT-HA that were grown to late log phase

(O.D.600,1.0) in LB. Cells were harvested at 5,000 g for

10 minutes at 4uC, and washed with 20 ml of ice-cold PBS. All

steps were performed at 4uC afterwards. Cells were resuspended in

5 ml of cold PBS containing protease inhibitor cocktail and passed

twice through a French Pressure cell at 10000 psi. Debris was

removed by centrifugation at 5,000 g for 10 min and the clarified

cell extract was centrifuged for 1 h at 100,000 g (30,000 rpm in a

SW41Ti rotor; Beckman). Membrane pellets were resuspended in

250 ml of PBS by repeated passage through a syringe equipped

with a 25 gauge needle. To separate inner and outer membranes,

200 ml of membranes were layered on top of a discontinuous

sucrose gradient composed of 0.5 ml of 60%, 1 ml of 55%, 2.4 ml

of 50%, 2.5 ml of 45%, 2.4 ml of 40%, 1.4 ml of 35%, and 0.8 ml

of 30% sucrose in PBS (w/v) and centrifuged for 16 hours at

100,000 g in a Beckman SW41Ti rotor. Membrane fractions

(800 ml) were recovered from the gradient by using a 20 gauge

needle from the bottom of the gradient. Fractions aliquots were

separated on a SDS-10% Polyacrylamide gel. The presence of

OmpA and the b-subunit of ATPase in the different fractions were

used as markers for the analysis of the inner and outer membranes

using Western-blot with the respective antibodies.

Mice and S. Typhimurium infection
129X1/SvJ female mice were purchased from the Jackson

Laboratories. A breeding colony of inbred strain of 129Sv/J

(Nramp1+/+) mice and isogenic Nramp1-deficient (Nramp12/2)

strain have been previously described [53] and are maintained at

the University of British Columbia Animal Facility. All the mice

were kept in sterilized filter-topped cages and given food and water

ad libitum. Experiments were carried out under specific-pathogen-

free conditions according to the standard animal care guidelines

and protocols of the UBC Animal Care Committee and the

Canadian Council on Use of Laboratory Animals. For competitive

index (CI) infection experiments, 6–7 weeks old female mice were

infected orally or i.p. with mixed inoculum containing a marked

wild-type strain resistant to chloramphenicol (ushA::cat, NB24) and

a DzirS or DzirT mutant strain (OG2006 and OG2007,

respectively). For oral infection, mice were administered with

16106 cfu in 0.1 ml of infection buffer (0.1 M HEPES pH 8.0,

0.9% NaCl) and sacrificed after 6 days. For i.p. infection, 26104

cfu were injected in 0.2 ml PBS and mice were sacrificed after 3

Table 2. List of primers used in the study.

Primer Sequence (59-39)

OG-61 GAGCTCGGGCATAATTTCACAGGCGG

OG-62 GAGCTCCAGCAAAATCCGCATTACGG

OG-63 TCTAGATAGTCTTCCTCTGATGGAAATTTC

OG-89 GAATTCGGGCATAATTTCACAGGCGG

OG-92 CCCGGGGATAATAAGATTATGTTTCGAC

OG-158 TCTAGAATTCGCATCAGAGGTTGCGG

OG-186 GTCGAGATAGTGCATTCTTGCCTGCC

OG-187 GGATCCTGTATTGTCTCCTGCTATATCC

OG-212 TTTCCGGGAATGACTATTGC

OG-215 ATCTGGGCTTGGCGTATTAG

OG-216 GATGCCGACATCCGTTATTC

OG-217 TCCCGATATCCTGCTCTGAC

OG-220 GTGAAATGGGCACTGTTGAACTG

OG-221 TTCCAGCAGATAGGTAATGGCTTC

OG-228 GCCAAGCCCAGATTTAACAG

OG-229 AAAGCCATATGCCGGACGC

OG-230 ACGCGCTACAGTCTTATTAATG

doi:10.1371/journal.ppat.1000036.t002
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days. Spleen and liver were homogenized in cold PBS, diluted and

plated on LB plates containing streptomycin for determination of

total Salmonella cfu. Colonies were replica-plated under chloram-

phenicol selection for enumeration of SL1344 ushA::cat. The

competitive index was calculated as [mutant/wild-type]output/

[mutant/wild-type]input. CI experiments, in which mice were co-

infected with the chromosomally marked strain (SL1344 ushA::cat)

and an unmarked SL1344 strain, or strains harboring mutation in

non-virulent genes, demonstrated a CI value of 1, indicating equal

virulence capability in mice [54,55].

Bioluminescence imaging of Salmonella during murine
infection

Wild-type Salmonella Typhimurium harboring pOG-zirT::lux or

pSIG70-16, carrying the lux operon under an RpoD dependent

promoter [56] as an expression control were grown for 16 h in

LB+Kan at 37 uC. Female C57BL/6 mice were orally infected

with 26107 cfu of the reporter strains in 0.1 ml of PBS. At 3 days

p.i. mice were anaesthetized with 2% isofluorane carried in 2% O2

and imaged using IVIS 100 (Xenogen Imaging Technologies).

Greyscale reference images taken under low illumination were

collected and overlaid with images capturing the emission of

photons from the lux-expressing bioluminescent S. Typhimurium

using Living Image Software version 2.50 (Xenogen). To

determine the total numbers of colonizing Salmonella (cfu), the

spleen, liver, MLN, ileum, caecum and colon were homogenized

in PBS using a high-speed mixer mill (MM301; Retsch), diluted

and spread plated on LB agar supplemented with streptomycin.

Statistical analysis
Data of the b-galactosidase assays are expressed as mean6-

standard deviation. The statistical significance between two mean

values was calculated by the unpaired t-test with two-tailed P

value. The statistical significance of the measured mean fold-

change by the qRT-PCR was evaluated by t-test against

hypothetical value of 1 with two-tailed P value. Data of the CI

experiments in mice are expressed as geometrical mean. The

statistical significance was calculated by the Wilcoxon Signed

Rank Test, against theoretical median of 1 with two-tailed P value.

P,0.05 was considered to be statistically significant.
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