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Abstract:In this paper, analytical solution of the Klein–Gordon equation with Coulomb-like scalar plus vector potentials

is obtained exactly. We considered the Laplace transform approach in our calculation. The exact bound state energy

eigenvalues and the corresponding eigenfunctions are reported for various values of the quantum numbers n and l .
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1. Introduction

In recent years, the problem of exact solutions of nonrelativistic and relativistic wave equations for a number

of special potentials has been of great interest. Among various wave equations in both nonrelativistic and

relativistic regions, the Klein–Gordon equation has been receiving much theoretical and phenomenological

attention as it allows us to study spin-zero particles. The most appealing choices for the considered potentials are

perhaps the spherically symmetric ones because of their wide applications in many branches of physics including

particle and nuclear physics. These potentials, due to their wide applications in theoretical physics, have been

receiving increasing interest within recent decades. This statement is true in both relativistic and nonrelativistic

regimes. Some authors, by using different methods, studied the bound states solutions of relativistic wave

equations [1–6]. For example, Jia et al. [7] obtained the exact solution of the Klein–Gordon equation under

the scalar and vector kink-like potentials. Dong et al. [8] studied the Klein–Gordon equation with a Coulomb

potential in D dimensions and represented the energy eigenvalues and the corresponding eigenfunctions for this

system. The Klein–Gordon equation in the presence of Woods–Saxon potential was investigated by Badalov et

al. [9]; the authors provided an exact expression for energy eigenvalues and corresponding eigenfunctions. Here,

we shall attempt to solve the Klein–Gordon equation under the Coulomb-like scalar plus vector potential by

using the Laplace transform approach (LTA). The LTA is an integral transform and is comprehensively useful

in physics and engineering [10]. The LTA is a powerful method that helps us to solve second-order differential

equations. In this method, a second-order equation can be converted into a simpler form whose solutions may

be obtained easily. As a result, the LTA describes a simple way of solving radial and one-dimensional differential

equations [11,12]. The organization of this manuscript is as follows: in section 2 we investigate the solution of

the Klein–Gordon equation under the Coulomb-like potential with the LTA. The conclusion is given in section 3.
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2. Klein–Gordon equation

The Klein–Gordon equation with Coulomb-like scalar potential S(r) and vector one V (r) can be written as:{
−∇2 + [M + S(r)]2

}
ψn,l(r) = [En,l − V (r)]2ψn,l(r) (1)

where

∇2 =
d2

dr2
+

2

r

d

dr
− ℓ(ℓ+ 1)

r2
, S(r) = −Zs

r
, V (r) = −Zν

r
(Zs, Zν > 0) (2)

Substituting Eq. (2) into Eq. (1),{
d2

dr2
+

2

r

d

dr
− ℓ(ℓ+ 1)

r2
+ [M2 − 2MZs

r
+
Z2
s

r2
]

}
ψn,l(r) =

[
E2

n,l +
2En,lZν

r
+
Z2
ν

r2

]
ψn,l(r) (3)

Defining a wave function as ψn,l (r) = rAf (r) with A as a constant and inserting it into Eq. (3) leads to

d2f(r)

dr2
+

2 (A+ 1)

r

df(r)

dr
+

1

r2
{
(
E2

n,l −M2
)
r2 + 2 (MZs + En,lZν) r

+
(
A(A+ 1)− ℓ(ℓ+ 1)−

(
Z2
s − Z2

ν

))
}f (r) = 0 (4)

and A can be obtained from

A2 +A+ C = 0 → A =
−1−

√
1− 4C

2
(5)

where

C = −ℓ(ℓ+ 1)−
(
Z2
s − Z2

ν

)
(6)

By using Eq. (6) and the following abbreviations,

D = 2 (MZs + En,lZν) (7-a)

P =
(
E2

n,l −M2
)

(7-b)

Therefore, we can rewrite Eq. (4) as follows:

r
d2f(r)

dr2
+ 2 (A+ 1)

df(r)

dr
+

1

r

[
Pr2 +Dr

]
= 0 (8)

By applying a Laplace transform defined as

L {f(r)} = f(t) =

∫ ∞

0

dre−trf(t) (9)

we arrive at a first-order differential equation from Eq. (8) as

(t2 + P )f ′(t)− (2At+D)f(t) = 0 (10)

The solution of Eq. (10) is

ln f(t) = ln(t+ P )2A + ln(
t− P 1/2

t+ P 1/2
)

D

2P1/2
+A

(11)

82



MOMTAZI et al./Turk J Phys

To obtain single-valued wave functions we should have

n = A+
D

2P 1/2
(12)

Considering this condition and applying a simple series expansion to Eq. (11) gives

fn,l(t) =
n∑

m=0

(−1)mn!

(n−m)!m!
(t+ P 1/2)2A−m(2P 1/2)m (13)

Using the inverse Laplace transformation [10] in Eq. (13) we obtain

fn,l(r) = N
n,l
r−2A−1e−rP 1/2

n∑
m=0

(−1)mn!

(n−m)!m!

Γ(−2A)

Γ(m− 2A)
(2rP 1/2)m (14)

or equivalently

fn,l(r) = Nn,lr
−2A−1e−rP 1/2

1F1(−n,−2A, (2rP 1/2)) (15)

where Nn,l is a normalization constant and we use the following definition of hypergeometric function [13]:

1F1(−n, σ, x) =
n∑

m=0

(−1)mn!

(n−m)!m!

Γ(σ)

Γ(σ +m)
xm (16)

From the relation of Laguerre polynomials and confluent hypergeometric [13],

Lη
n(x) =

Γ(n+ η + 1)

n!Γ(η + 1)
1F1(−n, η + 1, x) (17)

We obtain fn,l(r) as

fn,l(r) =
n!Γ(−2A)

Γ(n− 2A)
Nn,lr

−2A−1e−rP 1/2

L−2A−1
n (2rP 1/2) (18)

Therefore, from Eq. (11) the equation of the energy of the system can be found as

n+
1 +

√
1 + 4ℓ(ℓ+ 1) + 4 (Z2

s − Z2
ν )

2
=

(MZs + En,lZν)√(
E2

n,l −M2
) (19)

The Table contains some numerical results for the energy of the system. The wave function of the system for

different states is shown in Figure 1. The behavior of energy of the system versus Z1 and Z2 for different values

of n and l is represented in Figures 2 and 3.
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Figure 1. Wave function of the system for different states

and Zs = 0.9, Zv = 0.3,M = 1.

Figure 2. Energy of the system versus Zs for different

states and Zv = 0.5,M = 1.

Figure 3. Energy of the system versus Zv for different states and Zs = 0.8,M = 1.
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Table. The energy of the system for different states and M = 1.

|n, l⟩ Zs = 0.9, Zv = 0.3 |n, l⟩ Zs = −0.1, Zv = −0.5
|0, 0⟩ –1.073105626 |0, 0⟩ –1.434964517
|0, 1⟩ –1.034567174 |0, 1⟩ –1.022748389
|0, 2⟩ –1.017774434 |0, 2⟩ –1.009355509
|0, 3⟩ –1.010532782 |0, 3⟩ –1.005139633
|0, 4⟩ –1.006905001 |0, 4⟩ –1.003255591
|1, 0⟩ –1.027951633 |1, 0⟩ –1.033353850
|1, 1⟩ –1.016890162 |1, 1⟩ –1.009577621
|1, 2⟩ –1.010339850 |1, 2⟩ –1.005176533
|1, 3⟩ –1.006845945 |1, 3⟩ –1.003265774
|1, 4⟩ –1.004835196 |1, 4⟩ –1.002252274
|2, 0⟩ –1.014502285 |2, 0⟩ –1.012122208
|2, 1⟩ –1.009941970 |2, 1⟩ –1.005267147
|2, 2⟩ –1.006744309 |2, 2⟩ –1.003284409
|2, 3⟩ –1.004800502 |2, 3⟩ –1.002258125
|2, 4⟩ –1.003572431 |2, 4⟩ –1.001650635

3. Conclusion

In this work we have studied the exact solution of the Klein–Gordon equation under unequal scalar and vector

Coulomb-like potentials by using the LTA. The energy eigenvalues and the corresponding wave functions are

computed. We have also given some figures to show the behavior of energy of the system versus the potential

parameters.
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