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Abstract
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1 Introduction

fp>1 5+ .=1f(),80) =0, f € ’R.), g € L/R.), Ifll = (fowfp(x)dx)%' > 0, and
ligll; > 0, then we have the following Hardy-Hilbert integral inequality [1]:

oof(x)g()’) T
/ / dxdy < mﬂfﬂpﬂgﬂqr @

xX+Yy

where, the constant factor ﬁ is the best possible. If a,,,b, > 0, a = {a,}5,, € P,

= (b2 €ld, Nall, = (o, am)P >0, and ||b]l4 > 0, then we have the following Hardy-

Hilbert’s inequality with the same best constant m [1]:

Mg

> lall,121l,. (2)
m=1

PR
sin(r /p)

I
—_

n

Inequalities (1) and (2) are important in analysis and its applications (see [1-5]).

Suppose that u;,v;> 0 (i,j e N = {1,2,...}),

u, = i Wi V= 2": v, (m,neN). (3)
i=1 j=1
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Then we have the following inequality ([1], Theorem 321):

e e] 1/q 1/p

Wim Vi b T
DB B T~ lallp 161l (4)
oo m+ Vi sin(7 /p)

Replacing /ﬁ,ﬁqam and vi/p b, by a,, and b, in (4), respectively, we obtain an equivalent
form of (4):

S

m=1 n=1 m=1

o o \b
(=) ?

For ;= v; =1 (i,j € N), both (4) and (5) reduce to (2). We call (4) and (5) Hardy-Hilbert-
type inequalities.

ZZL[ +V, s1n(p)<Z fn‘l)

Note The authors of [1] did not prove that (4) is valid with the best possible constant
factor.

In 1998, by introducing an independent parameter A € (0,1] Yang [6] gave an extension
of (1) with the kernel - for p = g = 2. Later, Yang [5] refined [6] by giving extensions of
(1) and (2) as follows

Assuming that A;,Ap € R, A1 + X3 = A, ky(x,y) is a nonnegative homogeneous func-
tion of degree —A with k(A1) = [3~ ki(£,1)eM171 dt € Ry, ¢(x) = 4?1747, () = 4707271
fx),g(n) =0,

felpsRy) = {f’ 1 llpp == {/0 ¢(x)lf(x)|pdx}p < oo},
g€ LyyRy), fllpe lIgllgy >0, we have

/0 /0 ko (o) (0)g0) dxdly < KO o Il ©)

where the constant factor k(1;) is the best possible. Moreover, if k; (x,7) keeps finite and
ky (%6, y)x™1 7 (ky, (%, y)y*?71) is decreasing with respect to x > 0 (y > 0), then for a,,, b, > 0,

1
00 »
acly,= {a; lallpg := (Z«b(n)mnw) < oo},
n=1

={bu}o2y € gy, llallpgs 101l 4y > 0, we have
N ki, m)anby < k(a)llallpg 15l gy (7)
m=1 n=1

where the constant factor k(1) is still the best possible.
For 0 < Aj, Ay <1 such that A; + A, = A, we set

k;. (%, y) = ((x,y) € R?).

1
(x +y)*
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Then by (7) we have

0o 00 anb,
§ § ( )‘-lr)\Z)”d”pd)”b”ql//r (8)
m=1 n=

where the constant B(A, A,) is the best possible, and
_ u—
B(u,v) = /0 a- t)uwt dt (u,v>0)

is the beta function. Clearly, for A =1, ; = é, Ay = Il’, inequality (8) reduces to (2).
In 2015, by adding some conditions, Yang [7] gave an extension of (8) and (5) as follows:

;;(U + V,)*

1 1
00 Uﬁl(l—kl)—lafn p [ o© VZ(I—AQ)—le q
<B()»1,)\2) (Z T Z T ’ (9)

m=1 Hm n=1 Vn

—_

where the constant B(A;, A,) is still the best possible.

Some other results including multidimensional Hilbert-type inequalities are provided
by [8-25].

About the topic of half-discrete Hilbert-type inequalities with inhomogeneous kernels,
Hardy et al. provided a few results in Theorem 351 of [1], but they did not prove that the
constant factors are the best possible. However, Yang [26] gave a result with the kernel
(1+ 7 - by introducing a variable and proved that the constant factor is the best possible. In
2011, Yang [27] gave the following half-discrete Hardy-Hilbert’s inequality with the best
possible constant factor B(A1, Ap):

/ 1) [Z o }dx <BOw 22 f polallyy, (10)

where, A1 > 0,0 < A2 <1,A; +Ap = L. Zhong and Yang [17, 28—-33] investigated several half-
discrete Hilbert-type inequalities with particular kernels. Applying weight functions, a
half-discrete Hilbert-type inequality with a general homogeneous kernel of degree —A € R
with the best constant factor k(A;) is obtained as follows:

|56 ki, < k) f sl an
n=1

which is an extension of (10) (cf [34]). At the same time, a half-discrete Hilbert-type in-
equality with a general inhomogeneous kernel and the best constant factor is given by
Yang [35]. In 2012-2014, Yang et al. published three books [36, 37] and [38] for building
the theory of half-discrete Hilbert-type inequalities.

In this paper, by applying weight coefficients and technique of real analysis, a half-
discrete Hardy-Hilbert-type inequality related to the kernel of hyperbolic secant function
and the best possible constant factor is given, which is an extension of (11) for A = 0 and
a particular kernel. The equivalent forms, the operator expressions with the norm, the
reverses, and some particular cases are also considered.
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2 Some lemmas
In the following, we make appointment that w;, v; > 0 (i,j € N), U,, and V,, are defined by
(3), n(¢) is a positive continuous function in R, = (0, 00),

U(x) := /‘x p(t)dt<oo  (x € [0,00)),
0

v(t) :=v,, t € (n—1,n] (n e N), and
Vo) [ v0de (e f0,00),

V4 7/011’ }9 + é =1,é8¢ {_L 1}’f(x)xdn >0 (x €R,,ne N)r ”f”p,d)g = (fooo q)ﬁ(x),fp(x) dx)}g;
lallgw = (552 Wb ?, where

up(l—&o)—l (x) g(1-0)-1
Ps(x) = ——, Y (n) =

l,(}”l(x) ? (x eR,,ne N)

Example 1 For p,y,0 >0, a > —p, sech(u) = euw,y (# > 0) is called the hyperbolic secant

function (cf. [39]), we set h(t) = <229 (t e R,).

o(tV

(i) Setting u = pt”, we find

k(U) o= / Mto_ldt
0

eatV
1 ®sech(u) o_
_ / a( )W '
vool” er”
2 o0 gty y !
= yp(r/y/ el 4 g U du
2 ) e—(%ﬂ)uu%—l
= oly —2u du
Yo l+e
_ 2 / Z( 1 ~(2k+%+1)u 771du
v Jo
_ J/y/ —(4k+< +1) —(4k+2+ +1)u ] 7—ldu
yp

By the Lebesgue term-by-term theorem (see [39]), setting v = (2k + % +1)u, we have

0 Y
k(o) = / sec o) o1 gy
0

eatV
_ 4k+ +1)u (4k+2+g+1)u LA |
2 [ F0uE
- o
e > / e Gty dy
0
k=0

2 0 (_l)k 0 o,
= E e'vr T dy
ypolr e (2k + % +1)777 /o

Page 4 of 24
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2ar¢) & —1)k
y(zp)a/y Z(k 01+P)(7/y

2I(%) (o a+p
5 R+: 12
V(2,0)"/7’§<V 2p )e (12

«
where £(s,a) =Y 1o % (s,a >0) and

C(y):= /Oooe"’vy’ldv (y>0)

is the gamma function (see [40]).

In particular, for & = p > 0 and y = o, we have h(t) = <X ©) and k(o) = 1“2 ;fora=0

ert®
and y =0, we ﬁnd h(t) = sech(pt”) and k(o) = m

(ii) We have W > 0 and (e"‘+e’“ ) = (;1;-:2 <0 for u>0.If g(u) >0 and g'(u) < O,
then for y > 0, g(pt”) > 0, %g(pt”) oyt g (pt”) < 0; for y € (n - 1,n), g(V(y) > 0,
AV =g(Vy)v, <0 (neN).

If gi(u) > 0 and g/(u) < 0 (i = 1,2), then we find for u > 0,

aWow) >0,  (aWew) =g W) + g (g u) <0

(iii) Therefore, for p,y,0 >0, @ > —p (¢ > 0), we have h(t) > 0 and #'(¢) < 0 with k(o) €
R;, and then for ¢ > 0 and # € N, adding o <1, we have

h(cV(y)) Vol(y) >0, %h(a\/(y)) Voly) <0 (y en- l,n)).

Lemma 1 Ifg(¢) (> 0) is decreasing in R, and strictly decreasing in [ngy,o0) (ng € N) and
satisfies [° g(t)dt € R,, then we have

/wgnm<§:gm</wgaﬁ. (13)
1 n=1

0

Proof Since we have
n+l n
/ gmmsgms/’gwm (n=1,...,m),
n n-1

no+2 no+1
f gt)dt <g(ng +1) < f g(t)de,
n

0+1 no

it follows that

no+1 no+1

no+2 n np+1
O<f dt<2g Z/ g(t)dt:/ g(t)dt < oo.
1 n-1 0

In the same way, we still have

0 o0 00
0< / gpyde < Z gln) < / g(t) dt < o0.
no+2 n=ng+2 no+1

Hence, adding these two inequalities, we have (13). O

Page 5 of 24
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Lemma 2 Fory,p>0,a>—p (¢ >0), and 0 < o <1, define the following weight coeffi-
cients:

ws(0,%) := Z sec h(p(U (x)V,,)7) U% (x)v,

— B @V)? vie x€R,, (14)
* sech(p(U’(x)V,)") Vi u(x)
ws(o,n):= /0 pRTIEAT: 11 (x) neN. 15)
Then, we have the following inequalities:
ws(0,x) <k(o) (x€R,), (16)
ws(o,n) <k(c) (meN), (17)

where k(o) is defined in (12).

Proof Since V,, = V(n) and V'(t) = v, for ¢ € (n — 1,n), by Example 1(iii) and the proof of

Lemma 1 we have

sec h(p (U (x) V)" v,
P @ V)Y /1o

_sec h(p(UP (x)V (n))” v,
T W@V m)Y 11~ ()

" sech(p(UPX)V(®)) V()
< /n . (B X)V@)Y Vl,g(t)

dt (neN),

ws(0, %) < Z / sec 1(p Uax)Wt»V)U“( v

V7 Vo (f)

Y sec h(p(L(x) V(£))) L% (x)V'(t)
= /0 A DRV Vi=o (¢)

Setting u = U®(x) V(¢), by (12) we find

(%) / UOVE sec hipu?) UM (U (x)
ws\0,X) <
' 0 e (Wl @)

E/ sec h(pu )u”‘ldu
0

eatuV

= k(o).

Hence, (16) follows.
Setting u = V,,U%(x) in (15), we find du = 8 V,, U’} (x) u(x) dx and

1 /V" ) sec h(pu?) VIV, "I(V,Ilbl)%_1
du
v,

wslo,n) = -
6( ) S - 15(0) e’ (Vn_lu)%—a

1 /’V”UB(OO) sech(pu”)
R
v,

g ' us (0) e"”‘y
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If § =1, then
VU (c0) h y oo h y
mi(o,n) = / %u""l du < / %u”‘l du;
0 € 0 (4
if § = -1, then
vatt h % sech(ou?
w‘_l(g,n) = _/ % o-1 du < / Secea(,ﬁu )MO_71 dus.
0o 0

Then by (12) we have (17). 0

Remark 1 We do not need o <1 to obtain (17). If U(00) = 00, then we have
ws(o,n)=k(c) (neN). (18)

For example, set u(t) = —5 (¢ > 0; 0 < 8 <1). Then, for x > 0, we find

1+t

Xt M’ 0< 1,
U(x>=/ e T =P<b o,
o L+1)f Inl+x), pB=1

and U(o0) = [~ (1fzt)ﬂ = 00.

Lemma3 Ify,p>0,a>-p (¢ >0),0 <o <1, thenthereexists ng € N such that v, > v,
(n € {ng,ng +1,...}), and V(c0) = 0o. Moreover, then

(i) forx € Ry, we have
k(o)(1-65(0,%)) < ws(o,%), (19)

where 05(c,x) = O(U(x))%?) € (0,1);
(i) forany b >0, we have

Proof By Example 1(iii) we have

[ee}

Z sech(p ( )V ) U% (x)v,

e“ UB Vi-o

ws(o,x) =

0 Lsec h(p(L% (x) V(n))?) U (X)v,,41 dit
Z./ BV () V()=

Lsech(p LI‘S(x)V(t))V)U“”(x)V’(t)
Z/ oy (vape @

n=ng

[ sech(p(UP(x)V(2))Y) U (x)V'(t)
‘/m) STOVOr (V)
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Setting u = U* (x) V(¢), in view of V(c0) = 00, by (12) we find

ws(o, %) >/ Mu"_l du

Y
WV, €

@ Ving
= k(o) - / MO o1 gy - k(o) (1 - 63(0)),

eauV

1 U () Vi h(ou
05(0,x) := —/ ‘ Mu“’l du € (0,1).
k(O') 0 et

Since F(u) = % is continuous in (0, c0) and satisfies F(z) — 1 (u — 0%), F(u) —
0 (u — 00), there exists a constant L > 0 such that F(z) < L, namely, M <L (ue
(0, 20)). Hence, we find

L (10 LU (%) Viny)°
0<05(o,x) < — o lgy = 2T N0
<bilo,) < k(o) /0 " " k(o)o
and then (19) follows.
For b > 0, we find
i Vo % Vy . i Vy
b b b
n=1 V’l’+ n=1 V”l’+ n=np+1 V1+ (Vl)
V'(x)
V1+b Z /_ V“b(x

n=np+1

_Z /00 dV(x) _i w1
V1+b o V1+b(x) - = Vr}+b bvb(no)

(1 Y
== b z
13D VW)
o vy S n+l Vn+1 n+l V/ x) dx
Z V1+b = Z V1+b Z V1+b
n=1 " n=ng V" n=

o [Cave 11
_/ VIt(x)  bVP(ng) bV

Hence, we have (20). O

Note For example, v, = nL/B (n € N; 0 < B <1) satisfies the conditions of Lemma 3 (for
no = 1)

3 Main results and operator expressions
Theorem 1 Ify,p>0,a>—p (¢ >0),0 <o <1, k(o) is defined in by (12), then for p > 1,
0 < fllp055 lallgw < 00, we have the following equivalent inequalities:

h(p
I Z / S MpCL V) ) s < K0 s Nl (21)

eot LI‘s
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oo

" h(p(U° (x) g
|

n=1 "1

<k(@)Ifllp.os

. © ulx) o sech(p(ub‘(x)vn)y) q %
]2 = {/() Ul—q(W (x) |:; eo‘(ua(JC)Vn)V ﬂy,i| dx}

<k(o)llallgw.

Proof By Hoélder’s inequality with weight (see [41]), we have

o sech(p(ua(x)vn)y) »
|:/0 (B (=) V)Y f(x) dx:|

_ /wsech(p(ué(x) ) (U @)f () W(x) J ?
L V)7 Lo ul = *
V,” i (x) (%)

< [ eV (u"“f"” UGN
0

g 4
ea(L[ @) Vi)Y Vy}_a:u q (x)

y [ /°° sec h(p(U(e) Vi) Vit~ () dx]“
0

WP )Va)? 1157 (x)

(w50, m)Pt [ sec h(p(UP(x)V,)7) UMD (x)v,
- Vfa_lvn 0 ea(ué(x)v,,)y Vl o pp- 1( )

7 (x) dx.

Page 9 of 24

(22)

(24)

In view of (17) and the Lebesgue term-by-term integration theorem (see [42]), we find

WO VI ur ()

1 8 (1-30)(p-1) 1%
h = (ko)) Z A il LY dx}

7 8 3o )(p—
- (ko)) / Z sec h(p(LP (x)V,)7) LO-390-D (),

Q=

- (ko)

o0 uv p(1-80) 1( ) é
A a)g(O’,x)Wf (x)dx] .

Then by (16) we have (22).
By Holder’s inequality (see [41]) we have

nd f,l’ sech(p (LI (x) V’l_’iga,,
[ [ ] ()

< 1||ﬂ||q,\11-

RSN

Then by (22) we have (21). On the other hand, assuming that (21) is valid, we set

a, =

Vn sec h(p(ua(x)v )) p-1
Vi_po |:~/0 (B (x)V; f (%) dx i| , neN.

p
60‘ (U () V)Y V’% Gulp 1( ) f (x) dx:|

(25)

(26)
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Then we find J/' = ||a||g,q,. If J; = 0, then (22) is trivially valid; if /; = oo, then (22) keeps
impossible. Suppose that 0 < J; < 0. By (21) we have

lally =7 =1<k@)|flposllalgw,  llally =/ <k@)Iflpos

and then (22) follows, which is equivalent to (21).
Again by Holder’s inequality with weight we have

>, sech(p(UP)V,)") |
Z (U ®) Vi)Y n

n=1

°° sech(mua(x)vnm(u15"<x>v$’)( V¥ ay )T

U8 (x) Vi)Y 1o
[m LG Vi,"

% sech(p(UP (x) V,)) UA320D (), 1"
ZSCC :|

8 —
e‘)‘(u () V)Y an o

g-0)
i sech(p(UP(x)V,)Y) Vi, P .
(
e

X a
U (x) V)Y _ q-1"n
ol o (%) Vi) Ul So (x)v,,

(@3(0, %)™ S sech(p(WP @)V,)") Vi Vut)

T UBTI(@p) T e @OV (1o (!

(27)

Then by (16) and the Lebesgue term-by-term integration theorem it follows that

ot )
[ e
- (ko)) Zwa(a Y Vit }}I' )
Then by (17) we have (23).

By Holder’s inequality we have

[ UT'SU (%) Oosech U‘S(x )Y)
1_/0 < )f( ))[ Z a,,i|dx

e LT (%) 2
< llp05)2- (29)

Then by (23) we have (21). On the other hand, assuming that (23) is valid, we set

o]

5 a-1
fx) = Z sechlp(U (x)V,,)V)an] , x€R,.

U5 (x) [ U@V,

n=
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Then we find /7 = |[f||p o5 If J, = 0, then (23) is trivially valid; if J, = oo, then (23) keeps
impossible. Suppose that 0 < J < co. By (21) we have

W1y, ;=S5 =1 < k(@) Ifllpasllalyw, Ilfllp oy =2 <k(o)lallqw,

and then (23) follows, which is equivalent to (21).
Therefore, (21), (22), and (23) are equivalent. O

Theorem 2 With the assumptions of Theorem 1, if there exists ng € N such that v, > v,
(n € {no,no +1,...}) and U(co) = V(00) = 00, then the constant factor k(o) in (21), (22),
and (23) is the best possible.

Proof Fore €(0,q0), wesetG =0 — f; andf :f(x), xeRy,a={a,}%,

- e xu(x), 0<a’ <1,

X - 30
J) = { N oo (30)
~ 5-1 o-g-1
ay=V] v, =V, v,, #neN. (31)

Then for § = &1, since U(00) = 00, we find

f wo) e %LI“(I). (32)
{

x>0;0<x5 <1} - (x)

By (20), (32), and (19) we obtain

1/ 0 7
- . ux)dx \» Vy
a =
Pl Iallg < fwwsu Ul_,;g(x)) (Zl VW)

- %Ll’i'f(l)(vi;0 +5O(1))q, (33)
00 X sech -

/ sech( (WPE)V;)Y) Vi va()
x>0; 0<x5<1

ea(U‘S(x)V,,)V U1—5(6+8)(x)
n=

w(x)
JX)———d.
/x>0 0<xd<1} 8 o )ul—és(x) ¥

y - m(x)
= k(a) {x>0;0<xd <1) (1 % (O" )) ul—és(x)

o o )
- K@) /{}( o(uw)"* ) i

)
~ () ( (%) ) ]
= k —d. Ay d
©) I:-/{x>0;0<x5 <1} - (%) ¥ {x>0 ;0<xd <1} P7 x

- lk(o - f) (L) - £0(1)).
e q
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If there exists a positive constant K < k(o) such that (21) is valid when replacing k(o)
by K, then, in particular, by the Lebesgue term-by-term integration theorem we have eI <

eK||f l|p,o5 llallg,w, namely,

k<a - 5>(uﬁs<n £0) <K - u%a)(vig + eoa)) "

no

It follows that k(o) < K (¢ — 0%). Hence, K = k(o) is the best possible constant factor
of (21).

The constant factor k(o) in (22) ((23)) is still the best possible. Otherwise, we would
reach a contradiction by (26) ((29)) that the constant factor in (21) is not the best possi-
ble. O

For p > 1, we find W' P(n) =

following real normed spaces:

(neN), &;7(x) = A= (x € R,) and define the

1 pd - q5<7

Lp,cl),s R,) = {f’f :f(x)rx eR,, Hf”p,(l?‘a < OO}»
lq,\ll = {ﬂ;ﬂ = {ﬂn},ﬁp ”ﬂ”q,\ll < OO};

qu)l «(Ry) = {h h=h(x),x €R,, ||h||q’¢,(1§*q < OO},

Lywir = {c;c ={Cu}iys el pwir < oo}.

Assuming that f € L, ¢,(R,) and setting

> sech(p(L(x)V;,)Y)
c=A{culooss Cp = /(; — BV f(x)dx, mneN,

we can rewrite (22) as |[c|l, y1-» < k(o) |[f]lp,0; < 00, namely, ¢ € 1, y1-p.

Definition 1 Define a half-discrete Hardy-Hilbert-type operator 71 : Lyo,(Ry) — [, y1-»
as follows: For any f € Lj,¢,(R,), the exists a unique representation Tf = ¢ € [, y1». We
define the formal inner product of Tif and a = {a,,}52, € [,y as follows:

S 'S} h § y
(Tif, ) ::Z[/O = e(au(]i[ CV") )dx:|an (34)

n=1

Then we can rewrite (21) and (22) as follows:

(T1f, a) < k(@)If lp.05 lallgws (35)
1Ty Nl wi-r < k(@)1 llp,05- (36)

Define the norm of operator 7 as follows:

1T s

73] :=
feelpa;®)  fllpes
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Then by (36) it follows that || T || < k(o). Since by Theorem 2 the constant factor in (36)
is the best possible, we have

2I'(3) o a+p
IT11l = k(o) = y(2p)“/1’s<;’ 2 ) (37)

Assuming that a = {a,};°; € [, v and setting

oo
sech(p(U°(x)V,)")
h(x) := Z ey €eR,,
n=1

we can rewrite (23) as || 4| 1-¢ <k(0)|lallgw < 00, namely, h € L _1-4(R,).
q,CI){S ’ qv‘b(s

Definition 2 Define a half-discrete Hardy-Hilbert-type operator T5 : [,y — Lq ¢l—q(R+)
)
as follows: For any a = {a,};, € l, v, there exists a unique representation Tha = h €
Lq ol (R;). We define the formal inner product of Toa and f € L, ¢;(R,) as follows:
P

[e¢]

o h(p(UP (x) V)Y
(Taa,f) :=/0 |:Z see e((ﬁL(ﬁ(x)(\i))V ) )a,,:|j(x) dx. (38)
1

n=

Then we can rewrite (21) and (23) as follows:

(Taa.f) < k(@) llp,o; l1allqw (39)

1T2all, g1-a < k(o)lallgw- (40)

Define the norm of operator 7T as follows:

. ||T2ﬂ||q’¢§—q
IT2ll:= sup ————
aelyy  lallgw

Then by (40) we find || T3|| < k(o). Since by Theorem 2 the constant factor in (40) is the
best possible, we have

2l(S) (o a+p
T2l = k(o) = y(zp)g/},é(;; oy ) = Il (41)

4 Some equivalent reverse inequalities
In the following, we also set

up(l—aa)—l (x)

55(96) = (1 - Gg(a,x))W

(x € R,).

For 0 <p<1lorp <0, westill use the formal symbols ||f ||, [If1l,,3,, and [|allgw.

Theorem 3 Ify,p>0,a>—p (¢ >0),0 <0 <1, k(o) is defined in (12), there exists ny €
N such that v, > vy (n € {no,no +1,...}), and U(oo) = V(00) = 00, then for p <0, 0 <
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fllp,055 l2llqw < 00, we have the following equivalent inequalities with the best possible

constant factor k(o):

h(p )Y
<[Z/SWWW)VHMWWWWWMMM% 42)
> v, ® sech(p(U%(x)V,)"
h=§;vfw[l o ﬂ)d] > KO- (43)
mwmmmvm ng
/ - q‘s"(x) TSR B
> k(o) lallgu- (44)

Proof By the reverse Holder inequality with weight (see [41]), since p < 0, similarly as
obtaining (24) and (25), we have

sech(p@@V))
[ e

_ (@slo,mpPt (% sech(p(U(x)V,)”) y4-50)p-D (x Vy
- v o ex U0V Vi owrt

f”( ) dx.

Then by (18) and the Lebesgue term-by-term integration theorem it follows that

L o [ sech(p(UP(x)V,,)7) U0 (x)v, v
hiz (Ker) [;/0 e (P V)Y Vo wp (%) fe) dx}
~ é oo up(l—éa)—l(x) »
= (k(0)) |:/0 a)g(a,x)WfP(x) dx] .
Then by (16) we have (43).

By the reverse Holder inequality we have

1

i 5’ h(o V,) v a,
1 [ [0 ()

n=

RS

> Nillallgw- (45)
Then by (43) we have (42). On the other hand, assuming that (42) is valid, we set a,, as in

Theorem 1. Then we find J¥ = ||“||Z,\p' If J; = oo, then (43) is trivially valid; if /; = 0, then
(43) keeps impossible. Suppose that 0 < J; < co. By (42) it follows that

lallge =J =1>k©0)If lpe;llallyw,

lalZs = /1 > k(@)IIf llp05

and then (43) follows, which is equivalent to (42).
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Still by the reverse Holder inequality with weight, since 0 < g < 1, similarly as obtaining
(27) and (28), we have

> sech(p(P@)V,)") |
2 A

n=1

_ (@027 isechwus(x)vm Vi )

U () () eau® U150 (x) vt -

n=

Then by (16) and the Lebesgue term-by-term integration theorem it follows that

1 sech (p(UP(x)V,))7) VD ()
J2 > (k(0))? WB@ V) -1 i, dx
ea (%) Vi ul—éa (x)vn
1
1-0)-1 q
{Zwa(a n— } .
Then by (18) we have (44).

By the reverse Holder inequality we have

00 U——Sa(x) q x) ad sech(p(ué(x)v )y)
I:_/O ( —fl(x ))|: __5(,( Z (P (x ﬂn:| dx

Hq( ) x) n=
> |If llp,05)2- (46)

Then by (44) we have (42). On the other hand, assuming that (44) is valid, we set f(x) as
in Theorem 1. Then we find ]2 = |[f||p - If J, = 0o, then (44) is trivially valid; if J, = 0, then
(44) keeps impossible. Suppose that 0 < J; < co. By (42) it follows that

VI g, =2 =15 K@) f oy Nallgwr  IF Iy = o> k(@) @l g
and then (44) follows, which is equivalent to (42).

Therefore, inequalities (42), (43), and (44) are equivalent.
Fore € (0,q0),wesetd =0 — [91 andf :f(x), xeR,,a=1{a,};,

WO u(x), 0<a’ <1,
0, x>0,

By (20), (32), and (16) we obtain

1
Vjo

15 )

1
7 ~ 1 s a
Wl = gm (1)( re0)
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~ u(x
= ws(0, %) dx
Kx>0;0<x5 <1} Ut-%(x)

< k(5) o) %k(o - 2>u58(1).

{x>0;0<x‘S <1} ul—Sa (x)

If there exists a positive constant K > k(o) such that (42) is valid when replacing k(o)
by K, then, in particular, we have el > eK |[f|| p,®; 1@l 4w, namely,

N 50(1)> ‘.

k<a - f)u“(l) SK- u‘%u)( !

q Vio

It follows that k(o) > K (¢ — 0%). Hence, K = k(o) is the best possible constant factor
of (42).

The constant factor k(o) in (43) ((44)) is still the best possible. Otherwise, we would

reach a contradiction by (45) ((46)) that the constant factor in (42) is not the best possi-

ble. O

Theorem 4 With the assumptions of Theorem 3, if 0 < p <1, 0 < ||fll,0;, and ||all 4w < 00,
then we have the following equivalent inequalities with the best possible constant factor

k(o):
h(p(Us (x) V)Y
- }j/’ o aaf ) > K@)l 3, Il (a7)
= v, sec h(p (U (x) V)Y
h=;;ViW[A s > ko3, (@9)
" L0l ute > sechpwny) ) %

]:= i'/(; lsjl thc |:Z eot (s (x dn:| dx}

> k(o) llallgw- (49)

Proof By the reverse Holder inequality with weight, since 0 < p <1, similarly as obtaining
(24) and (25), we have

U OV T
[ e

_ (@s(o,m)Pt (% sech(p(UP(x)V,,)") U2 D) vnfp( d
— v o e U@V Vo bt

In view of (18) and the Lebesgue term-by-term integration theorem, we find

sec h(p(U (x)V;,)7) U301 (x)y, 3
{Zf e (U () V) Vi () f* (x)dx}

~ %, 00 up(1—aa)_1 (x) 11,
= (k(O’)) |:v/0 a)g(a,x)Wfp(x) dx] .

Then by (19) we have (4.8).
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By the reverse Holder inequality we have

1

> vé ® sech(p (LI (x) V”igan
S o)

-0
n= Vp v

= Nillallgw- (50)

RSN

Then by (48) we have (47). On the other hand, assuming that (47) is valid, we set a,, as in
Theorem 1. Then we find ]f = ||a||Z'q,. If J; = oo, then (48) is trivially valid; if /; = 0, then
(48) keeps impossible. Suppose that 0 < J; < co. By (47) it follows that

lallfy =7 =1>k@)fl,3,lalgw,  laliy =h>k@)Ifll,z,

and then (48) follows, which is equivalent to (47).
Again by the reverse Holder inequality with weight, since g < 0, we have

> sech(p(UP®V,)") |
21: @V "

n=

q
e

(ws(o,%))1™ Z sech(p LI‘S(x) 7)) VD )

U251 (x) 11 (x) e (U (x L1850 (x)vZfl

Then by (19) and the Lebesgue term-by-term integration theorem it follows that

3 (x =
ex (U U= (x)v}

V"“ o)1 )d
k(o Zw(g o,n)———alt .

Then by (18) we have (49).
By the reverse Holder inequality we have

1:/000[(1—93(0,@) U e )}

/M(x)
(L= 65(0,%)) 7 17 () < sech(p(U (@)V,)")
[ L7 () ; AU DVn) an] “
= Ifllp,3,/- (51)

Then by (49) we have (47). On the other hand, assuming that (47) is valid, we set f(x) as
in Theorem 1. Then we find J7 = |[f||§ B, If ] = 0o, then (49) is trivially valid; if ] = 0, then
(49) keeps impossible. Suppose that 0 < J < co. By (47) it follows that

WFID 5, =77 =1 > k(@) ll,3,allgv, I 5 —]>/<( o)llallqw,

and then (49) follows, which is equivalent to (47).
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Therefore, inequalities (47), (48), and (49) are equivalent.
Fore € (0,po), weseto =0 + f; andf :f(x), xeRy, a=1{a,},

2o U @), 0<a’ <1,
f(x)_{o, x>0,

o-£-1

ay, = \75_5_11),, =V, “ v, mneN.
By (19), (20), and (32) we obtain

1
q

- . oy (X)) dx oy Vy
”f”p,aa”ﬂ”q"p B |:/{‘x>0;0<x5<1}(1_ O((U(x))s ))m} (; W)

L e (1 %
_S(L[ (1) - £0(1)) (VE +sO(1)) ,

no

> sec h(p(U(x)V,)?) .
(5 [ A
oy e
_ i see (oW @)V,)") Vip@ |\ va
- =1 x>0 ;0<xd <1} ea(uﬁ() n)? ut- Ba(x) Vrllw
ad * sec h(p(U8(x)V,)?) V2 () Vn
=< Z (P )V)Y U135 (x) Vise
o0 _ vn ~ o0 ])n
= Z ZD'g(O',n) Ve = k(a) Z Ve
n=1 n n=1 "

If there exists a positive constant K > k(o) such that (42) is valid when replacing k(o)

by K, then, in particular, we have el > eK |[f|| @ llallgw, namely,

k(a + E) (VLE + 80(1)) > K(U*(1) —80(1))}’ (VLE + 80(1)>q'

V4 ng no

It follows that k(o) > K (¢ — 0%). Hence, K = k(o) is the best possible constant factor
of (47).

The constant factor k(o) in (48) ((49)) is still the best possible. Otherwise, we would
reach a contradiction by (50) ((51)) that the constant factor in (47) is not the best possi-
ble. O

5 Some corollaries
For § =1in Theorems 2-4, we have the following inequalities with inhomogeneous kernel.

Corollary 1 If y,p >0, ¢ > p (¢ > 0), 0 <o <1, k(o) is indicated by (12), there exists
ng € N such that v, > v, (n € {ng,ng +1,...}), and U(c0) = V(00) = 00, then
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@) forp>1,0<|fllpe llallgw < 00, we have the following equivalent inequalities:

h
Z f s MOWIV) , fx) d < k(@) f s Il (52)
} h ’
Z V]:_pa [ /O sec (IO((La{) A f( )dx] <k(O)IIf 1,1 (53)
n=1 n
sech(oW@v)) 1 |*
{/ Li-ao x)|: U V)Y “"} dx] <kio)llallgv; (54)

(ii) for p<0,0 < ||fllp0,, and ||allgw < 00, we have the following equivalent inequalities:

A v
Z [ anf @) > Kl (55)
| [T s koW, (56)
n=1 "
~ @[S secho@vy 1)
{,/0 U110 (x) |:§ e (U@) V)7 ﬂ”:| dx} > kio)llallg,v; (57)
(iii) for 0 <p <1, 0 < ||fllpe,, and ||algw < 00, we have the following equivalent
inequalities:
h
Z / eIV a0 5 x> K 3, el (58)
" h(p(U(x)V,)”
;V;_W [ /0 LA )dx} > k@I 1,5, (59)
(1= 6(0,0) 1) [ sech(pU@V,)Y) | g
{fo U4 (x) [; U@V “"} dx}
> k(o)llallgw- (60)

The above inequalities are with the best possible constant factor k(o).

For § = -1 in Theorems 2-4, we have the following inequalities with the homogeneous
kernel of degree 0.

Corollary2 Ify,p>0,a>—-p(x >0),0 <o <1,k(0) isdefined in (12), there exists ny € N
such that v, > v, (n € {ng,no +1,...}), and U(c0) = V(00) = 00, then

(i) forp>1,0 < ||fllp0_,, and ||allgw < 00, we have the following equivalent inequalities:

=, (o0 sech(p(g)")
| S ) da < K@ o Nl (61)
n=190 ea(m)y
= = sechlp(gy)) T
Z —pa |:/ ( U)(V f(x) dx] < k(0)|[f||p,¢,1> (62)
U(x)

n=1 ”
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o 1
sec h(p(gis) )a”j| dx} <k(o)llallgw; (63)

*ux |«
{/(; U1+ (x) |:n2=1: ea(%)y

(ii) forp< 0,0 < ||fllp0_,, and llallqw < 00, we have the following equivalent

inequalities:
0 oo sech(p(s)?)
/ O 4 f () dx > K0 f oy lall g, (64)
n=1 70 e‘)‘(mw
© [ sech(p(R)Y) »
dx| >k , 65
n2=1: Vi—pa |:/ (L}/(Z)) f (%) x] > k(@) llpe_ (65)
oo q 1
© ) [ sech(p(g)) : |
i o UM (x) |:Z oyl an | dxy >k(o)llallgw; (66)
n=1 e
iii) for0<p<1,0<|flpo_,and |algw < 0o, we have the following equivalent
inequalities:
oo sec h(p(25)7)
/ —— @) dx > KO 1, 4l g (67)
n=1"0 e‘“m”
[ sechlp(E)) P
dx| >k b 68
L S
% (1= 01 (0, ) apu() [ S sech(p(2)) 17 )
/ 1 0. 2z Z VnL[(x) o | dx
0 U+ao (x) — oty
(69)

> k(o)llallgw-
The above inequalities are with the best possible constant factor k(o).

For o = p and y = ¢ in Theorems 2-4, we have the following corollary.

")

Corollary3 Ifp >0,0 <o <1, thereexists ng € N such that v, > v,,1 (n € {ng,no+1,.
and U(o0) = V(00) = 00, then
) for p>1,0 <|[fllpes llallgw < 00, we have the following equivalent inequalities with

the best possible constant factor = n2,

Z / e MUV ey < 2 >l Nl (70)
21: V;f”” [/o = he(pa(fﬁ( >(\f)>v n)a)f ) de < 1:_; fllp.@s5 (71)
i/ [ sec h(p(UP (x)V,,)° )an}qu}%
ur- q‘s”(x) P @) V)?
(72)

< —|allgv;
o lalows
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(ii) for p< 0,0 < ||fllpa;, llallgw < 00, we have the following equivalent inequalities with

the best possible constant factor '“;

h(p
Z/ = e,o LII;I (x) ”f(x)dx> _”f”pcb,;”a”q\l/y (73)
Vi sec hi(p(U° () V,)”) ? In2
;V,}‘P” [/o PP @Vy)° f(")dx} >E”f”p,<l>5; (74)
© ) [Ssecho@evyy) 10 |T m2
{/o L= () [21: PP V) “n} dx} > oo 14llas (75)

(iii) for 0 <p <1, 0 < ||fllpe; and ||lall4w < 0o, we have the following equivalent
inequalities with the best possible constant factor 1;‘—2
P

sec h(p(UP(x)V;,)?) In2
Z / vy @ x> I, . (76)
" h(p(UP (%) Vy,)° 7 In2
I T =
n=1 n
* (1-65(0, x))l qu) > sech(,o(ua(x)vm ok
[ | S e
1
S 78)
op

For o =0 and y = o in Theorems 2-4, we have the following corollary.

Corollary4 Ifp > 0,0 <o <1, thereexists ng € N such that v, > v,,1 (n € {ng,np+1,...}),
and LI(oo) = V(00) = 00, then
(i) forp>1,0<|flpe; and llallgw < 00, we have the following equivalent inequalities
with the best possible constant factor 57— 505"

Z f sech(p (U’ @)V,)" )anf (x) dx < -— |lf||p<1>5||ﬂ||q\p, (79)
i s Uoo seci(p (U () V)" )f (%) dx]p < llpsos. (80)
n=1 Vi Lo 20p 0 T

) . s ! a T

0 Ul qéo(x) ZSCCI’I U (x)V) ) @n dx < E”ﬂ”q,\lﬁ (81)

(ii) for p<0,0 < ||fllp0; and ||allgw < 00, we have the following equivalent inequalities
with the best possible constant factor %:

Z/ sech(p U’S(x)V))unf(x)dx> |Lf||p¢8||a||qu,, (82)
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> Vn o 5 o v T
ZW[/(; sec h(p (U (x)Vy) )f(x)dx] >E”f”p'¢8’ (83)
n=1 n
) [ U L
{/(; ulﬂqéa(x) [Zsech U‘S(x)vy,)”)an:| dx} >E||ﬂ||q,\v; (84)

ili) for 0 <p <1, 0 <||fllpws, and |lallgw < 00, we have the following equivalent
inequalities with the best possible constant factor 5 —

p

[e¢]

3 /0 sec h(o (U@ Va)anf x> Z— 1,3, lal g
n=1

(85)
Z _n_ |;/OO sech(p(l,[‘s(x)V )a)f(x) dx]p > Ll[f” 3 (86)
n=1 v, 7 Lo ! 20p " P

(o] 1 > ! %
{ /0 (1- 925?53) 1 (x) [Z (p(UP)V,))a ] dx}
1
T
205 1@la-

> —

(87)
Remark 2 For u(x) = v, = 1in (52), we have the following inequality with the best possible
constant factor k(o):

Z/ sech(p(x n)V)

o ————a,f(x)dx
eO( X'

00 1o %
< k(o) |:/ xp(l"s")’lfp(x) dx:| ' |:Z nq(l")laZ:| .
0 n=1

(88)

In particular, for § = 1, we have the following inequality with inhomogeneous kernel

Z/ sec h(p

nf (x) dx
eD( xn

1 1

00 5| X q

< k(a)|:/ a0 LeP () dx:|p |: E nq(l_”)_laz:| ;
0 n=1

(89)
for § = —1, we have the following inequality with inhomogeneous kernel

Z/‘X’ sech 25 af () dx

1 1

0 51 o q

< k(o) |:/ xp(“")’lfp(x) dx] ' |:Z nq(l")laz:| .
0 n=1

(90)

We still can obtain a large number of other inequalities by using some particular param-
eters in theorems and corollaries
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